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ABSTRACT:An electronic structure method is said to be size-consistent if the energy of noninteracting fragments is the samewhen
the fragments are treated in a supermolecule approach or are treated in isolation. Size consistency is often violated by Hartree�Fock
when symmetries of the exact wave function are imposed on the Hartree�Fock determinant. Relaxing the requirement that the
Hartree�Fock wave function be a spin eigenfunction leads to unrestricted Hartree�Fock, which is often (but not always) size-
consistent. In this Perspective, we discuss the usually forgotten fact that imposing none of the exact symmetries in what is known as
generalized Hartree�Fock allows Hartree�Fock to always be size-consistent and allows size extensive correlated methods such as
coupled cluster theory to also be size-consistent. Furthermore, with all symmetries broken, dissociation curves connect the molecule
to the fragments better than with symmetries imposed, although the curves are not smooth and show derivative discontinuities akin
to unphysical phase transitions. In many cases, correlated dissociation curves based on this generalized Hartree�Fock reference are
discontinuous.

1. INTRODUCTION

The past three decades have not been kind to the variational
principle in quantum chemistry. Typical state-of-the-art cor-
related calculations employ some variant of coupled cluster
theory,1�4 which has many strengths but which in practice
requires us to abandon the variational principle altogether.
Typical mean-field calculations, on the other hand, use some
form of Kohn�Sham density functional theory with an approx-
imate exchange-correlation functional; though the variational
principle does not hold for these functionals, we blithely apply
it nonetheless. Meanwhile, such genuinely variational methods
as Hartree�Fock (HF) and configuration interaction have all
but disappeared from the computational toolkit, at least in
practice.

On the other hand, it should not be forgotten that even in the
case of Hartree�Fock, we have not historically taken the
variational principle too seriously. That is, we have chosen to
constrain the variation inHartree�Fock by requiring theHartree�
Fock determinant to display at least some of the symmetries of
the exact wave function, thereby abandoning full variational
flexibility in favor of obtaining more qualitatively correct wave
functions. Thus, the restricted Hartree�Fock (RHF) wave
function is chosen to be an eigenfunction of the spin operators
Ŝ2 and Ŝ3, as well as the time-reversal operator Θ̂ and generally
the point-group operators P̂. The wave function is also usually
taken to be real (that is, it is an eigenfunction of the complex
conjugation operator K̂). The price we pay for preserving these
symmetries is that RHF cannot dissociate a closed-shell molecule
to the correct open-shell fragments. By this, we mean that RHF is
not generally size-consistent, i.e., the energy of a dissociated
molecule is not generally equal to the sum of the energies of the
dissociation fragments. In unrestricted Hartree�Fock (UHF),
we allow the wave function to break symmetry under Ŝ2 and P̂ but
not under Ŝ3 (in other words, we allow for spin contamination
and spatial symmetry breaking, but we fix the number of spin-up
and spin-down electrons). In simple cases, UHF is size-consistent,

but it is not a panacea. The UHF dissociation limits for O2 and
CO2, for example, are not size-consistent. Generally, UHF
correctly dissociates a molecule to UHF fragments only if the
open-shell electrons on a given fragment all have the same spin.
Occasionally, wemust allow the wave function to be complex, i.e.,
for the density matrix and the orbital coefficients to be complex,
although the basis functions may remain real.

Our concern here is with generalized Hartree�Fock (GHF),
in which we take the variational principle at face value and impose
none of the correct symmetries on the Hartree�Fock wave
function. The purpose of this paper is to remind the community
that if we are willing to sacrifice all symmetries of the wave
function by using GHF, then we can dissociate any molecule to
GHF fragments. The GHF wave function of the dissociated
molecule is just the product of the GHF wave functions of the
fragments, and the dissociation curve is size-consistent. General-
ized Hartree�Fock has seen only limited use, presumably
because the wave functions it delivers can be qualitatively
unreasonable and good quantum numbers are difficult to recover
once lost. On the other hand, achieving size consistency while
preserving the symmetries of the wave function is a difficult
task.5�8 Thus, there is a trade off as to what else one wants to do
with these wave functions, and for many properties, it is better to
keep some symmetries. For molecular dissociations, GHF allows
us, in essence, to connect one UHF potential energy curve with
another, thus obtaining an energetically reasonable zeroth-order
dissociation curve for all bond lengths. The qualitative deficien-
cies in the GHF wave function can then in principle be corrected
by the application of post-GHF correlated methods such as
coupled cluster theory, though such corrections are not, as we
shall see, without their own problems.
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2. GENERALIZED HARTREE�FOCK AND SYMMETRY

Elementary considerations make it clear that if a Hermitian
operator Λ̂ commutes with the Hamiltonian Ĥ, then eigenstates
|Ψæ of the Hamiltonian are also eigenstates of Λ̂ (or can be
chosen as such in the case of degeneracies). That is, we have

ĤjΨæ ¼ EjΨæ ð1aÞ

Λ̂jΨæ ¼ λjΨæ ð1bÞ
where λ is the eigenvalue of Λ̂ and is a good quantum number. In
the case of the hydrogenic Hamiltonian, for example, the orbital
angular momentum operators L̂2 and L̂3 commute with the
Hamiltonian, as does the spin operator Ŝ3. [We have used L̂3 and
Ŝ3 and not L̂z and Ŝz essentially to indicate that the spatial
direction of angular momentum quantization is irrelevant.] Thus,
in addition to the principle quantum number n, which labels the
energy, we obtain the familiar additional quantum numbers l, ml,
and ms.

Approximate wave functions need not have all the symmetries
of the real wave function (or, in other words, need not have the
same good quantum numbers). Forcing an approximate wave
function |Φæ to be symmetry-adapted introduces constraints
which reduce variational flexibility. One is forced to choose
between finding the variationally optimal wave function and
one which has the right symmetries. L€owdin was the first to point
out this conundrum, which he called the symmetry dilemma.9

A common situation in which one faces the symmetry
dilemma is in the dissociation of closed-shell molecules to
open-shell fragments. If the Hartree�Fock wave function is

optimized by preserving spatial and spin symmetry, then the
predicted potential energy curve does not dissociate to the
correct limit. On the other hand, allowing the Hartree�Fock
wave function to break spatial and spin symmetry enables it to
dissociate to the energetically correct limit with, however, a
qualitatively incorrect wave function. When we can lower the
energy by breaking a symmetry in the Hartree�Fock wave
function, we say that theHartree�Fock wave function is unstable
with respect to that symmetry.

It is useful to classify the different solutions according to the
self-consistent symmetries they preserve, an effort first under-
taken by Fukutome.10 Tomake this classification transparent, we
must first discuss the symmetries of the electronic Hamiltonian.
We note that if there is any symmetry present in the initial guess
of the density matrix, then this symmetry will be preserved
throughout the optimization procedure. That is, symmetries are
self-consistent in the Hartree�Fock equations.

For any molecular system, the wave function |Ψæ must be an
eigenfunction of the particle number operator N̂ . Solutions that
break particle number symmetry are rare in quantum chemistry,
but it is violated by the Bardeen�Cooper�Schrieffer (BCS)
wave function.11 For net repulsive interactions such as the Cou-
lombic 1/r12 repulsion between electrons in quantum chemistry,
the BCS wave function does not yield an energy lower than the HF
wave function.12 The standard electronic Hamiltionian is addition-
ally invariant to spin rotations and time reversal. Finally, the point-
group symmety determined by the nuclear framework is also
preserved in exact solutions to the electronic Schr€odinger equation.

The fact that the Hamiltonian is invariant to spin rota-
tions implies that the exact eigenfunctions of the electronic
Hamiltonian can always be labeled by the s andms quantum num-
bers, corresponding to the spin operators Ŝ2 and Ŝ3. The time
reversal operator Θ̂and the complex conjugation operator K̂ also
commute with the Hamiltonian, but the fact that they are
antiunitary operators precludes their association with good
quantum numbers.13

We will not discuss the group theoretical classification pre-
sented by Fukutome in great detail, but Table 1 does show the
different Hartree�Fock solutions discussed by Fukutome, as
well as the symmetries they preserve. We also include the
designation recently suggested by Stuber and Paldus14 in con-
nection with each of Fukutome’s solutions. We emphasize that
the solutions we present are independent of the point group
symmetry of the molecule; point group symmetry can be
separately imposed on the Hartree�Fock wave function or
not. Additionally, the classification is valid both for closed-shell
and for open-shell wave functions.

Typically, we consider only the real RHF (or ROHF) and real
UHF solutions. Complex solutions are known but are rarely
sought.15 While GHF solutions have been explored by L€owdin16

and others, they are searched for more rarely still, even though
Overhauser showed that in the uniform electron gas, the para-
magnetic (RHF) state is always unstable with respect to the
formation of helical spin density waves (which are GHF states).17

In quantum chemistry, GHF solutions have been found, for
example, in the beryllium atom in some basis sets, in BH, in H4,
and in a few other cases.10,14,16

3. HARTREE�FOCK STABILITY

The essence of Hartree�Fock is to find the single determinant
which minimizes the expectation value of the Hamiltonian.

Table 1. Classification of Hartree�Fock Solutions According
to the Symmetries of the ElectronicHamiltonianThey Preservea

Fukutome

designation

Stuber�Paldus

designation

symmetries

preserved

structure of orbital

coefficient matrix C

TICSb real RHF Ŝ2, Ŝ3 K̂, Θ̂
Cσσ 0
0 Cσσ

 !
,C ∈ R

CCWc complex RHF Ŝ2, Ŝ3
Cσσ 0
0 Cσσ

 !

ASCWd paired UHF Ŝ3 Θ̂
Cσσ 0
0 C

�
σσ

 !

ASDWe real UHF Ŝ3 K̂
Cσσ 0
0 Cσ0σ0

 !
,C ∈ R

ASWf complex UHF Ŝ3
Cσσ 0
0 Cσ0σ0

 !

TSCWg paired GHF Θ̂
Cσσ Cσσ0

� C
�
σσ0 C

�
σσ

 !

TSDWh real GHF K̂
Cσσ Cσσ0

Cσ0σ Cσ0σ0

 !
,C ∈ R

TSWi complex GHF
Cσσ Cσσ0

Cσ0σ Cσ0σ0

 !

aWe include the acronyms suggested by both Fukutome10 and Stuber
and Paldus14 in each of these solutions. The structure of the matrix of
orbital coefficients is also included for clarity along with any constraints
in the matrix elements. bTime-reversal invariant closed-shell. cCharge
current wave. dAxial spin current wave. eAxial spin density wave. fAxial
spin wave. gTorsional spin current wave. hTorsional spin density wave.
iTorsional spin wave.
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In practice, we solve

∂

∂ÆΦj ÆΦjĤjΦæ ¼ 0 ð2Þ

subject to |Φæ being a normalized determinant. This, of course,
guarantees no more than that the energy is stationary. To
determine whether or not the energy is a local minimum, we
must check the second derivative as well.18�20

Determinants can be parametrized in terms of orbital rotations
which mix occupied and virtual orbitals. The stationarity condi-
tion on the energy is simply

ÆϕajF̂ jϕiæ ¼ 0 ð3Þ
where F̂ is the Fock operator and where, here and in the
following, indices i and j will refer to occupied orbitals and a
and b will refer to virtual orbitals. To check the second derivative
of the Hartree�Fock energy, it suffices to check the eigenvalues
of the Hartree�Fock orbital Hessian

H ¼ A B
B
�

A
�

 !
ð4Þ

where

Aia, jb ¼ Æϕiϕbjjϕaϕjæ þ ÆϕbjF̂ jϕaæδij � ÆϕijF̂ jϕjæδab
ð5aÞ

Bia, jb ¼ Æϕiϕjjjϕaϕbæ ð5bÞ
in terms of the usual antisymmetrized two-electron integrals in
Dirac notation. One can restrict the sectors of the Hessian one
includes so as to test only for certain types of instabilities. For
example, spin-adapting the Hessian searches only for so-called
RHF instabilities (instabilities to states which are eigenfunctions
of Ŝ2) and removing spin-flip blocks which mix spin-up occupied
orbitals with spin-down virtual orbitals (and vice versa) tests only
for RHF and UHF instabilities.

When the orbital Hessian has a negative eigenvalue, a lower
energy Hartree�Fock solution exists, which typically displays
lower symmetries. The eigenvector associated with this nega-
tive eigenvalue distorts the wave function in the direction of
the broken symmetry solution. Having followed this eigen-
vector and obtained the self-consistent broken symmetry
solution, we can repeat the stability analysis. At some point,
we will converge to a Hartree�Fock solution which is at least
locally stable within the manifold under consideration (i.e.,
has no negative eigenvalues). This solution will generally be
one of several degenerate solutions which have broken the
same symmetries in different ways. A fact usually unknown in
quantum chemistry is that the Hessian corresponding to the
broken symmetry solution will have zero eigenvalues, with
eigenvectors pointing toward these degenerate solutions,
usually known as Goldstone modes. By forming appropriate
linear combinations of these broken symmetry solutions, one can
restore the symmetry, though not at the single-determinant
level.21,22

As pointed out by Piecuch et al., when the symmetry broken
UHF state is spin projected, the projected wave function contains
information about higher level excitations.23 Presumably, the
same is true in the case of projected GHF.

Closely related to the Hartree�Fock orbital Hessian is the
random phase approximation (RPA), where one diagonalizes

R ¼ A B
�B

� �A
�

 !
ð6Þ

to obtain excitation energies of the system. When the Hartree�
Fock solution is unstable, the RPA will yield some complex
eigenvalues. From the stable but broken symmetry Hartree�
Fock state, the RPA matrix will contain zero eigenvalues asso-
ciated with so-called collective motions that restore the broken
symmetry, as already mentioned above.21

The much thornier question of whether one has obtained not
a local minimum but a global minimum cannot generally be
answered in a practical way.

4. MOLECULAR DISSOCIATION

Consider a molecule AB dissociating to well-separated frag-
ments A and B.We will assume that in isolation, fragment A has a
GHF wave function |ΦAæ with energy EA, and fragment B has a
GHF wave function |ΦBæ and corresponding energy EB. For
the well-separated AB system, we construct the wave function
|ΦABæ = |ΦAΦBæ, which is still of the GHF form. It is not difficult
to show (see the Appendix for details) that the energy corre-
sponding to |ΦABæ is

EAB ¼ EA þ EB þ qAqB
RAB

ð7Þ

when the fragments are sufficiently far apart; here, qA and qB
are the total charges on the two fragments and RAB is the
distance between the center of charges of the two fragments.
Clearly, in the limit of infinite separation, our wave function
|ΦABæ yields the correct dissociation limit, EAB = EA + EB. In
other words, nothing prevents the most general Hartree�
Fock wave function from correctly dissociating to general-
ized Hartree�Fock fragments. Dissociation to multiple
fragments is also shown to be correct by the foregoing,
essentially in a recursive manner (i.e., EABC = EAB + EC =
EA + EB + EC).

That this result does not hold in general for RHF orUHFwave
functions is well-known, and the reason for this failure is quite
simple: the UHF and particularly the RHF wave functions
enforce symmetries which exclude |ΦABæ from the variational
space. In the case of H2 at infinite separation, for example,
|ΦABæ cannot be an RHF wave function because |ΦABæ =
|ΦAΦBæ is not an eigenfunction of Ŝ2. In the case of O2 at
infinite separation, as we shall see, UHF can only obtain the
correct dissociation limit with mS = 0 or mS = (2; neither of
these connect to the UHF ground state wave function at
equilibrium, which has mS = (1. The GHF wave function,
however, simply reduces to the UHF triplet near equilbrium
(mS = (1) and at dissociation to the UHF singlet (mS = 0),
because it does not conserve mS.

5. RESULTS

The RHF, UHF, and GHF calculations shown in this work
have been performed using a development version of the
Gaussian suite of programs.24,25 We have carried out correlated
calculations at second order in perturbation theory (MP2), as
well as with coupled cluster doubles1,2 (CCD) and coupled cluster
singles and doubles26�30 (CCSD). Correlated calculations on
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RHF and UHF references were done usingGaussian, while those
calculations on GHF references were done using an in-house
program which reads the GHF eigenvectors from Gaussian and
which works in the spinorbital basis. We verified the correctness
of this program by comparison to Gaussian’s MP2, CCD, and
CCSD results for RHF and UHF references, as well as for rotated
UHF references (i.e., UHF references in which the wave function
is an eigenfunction of Ŝx rather than of Ŝz).

All GHF solutions reported in this work are real GHF
solutions, and we did not find any complex solutions with lower
energy than the GHF solutions shown. Gaussian does not have
the capability of analyzing the stability of GHF-type wave
functions, though there is the capability to test whether UHF
solutions are GHF-stable. Thus, we cannot guarantee that there
are no GHF solutions other than those we are reporting. We did
generate a variety of different initial guesses in an attempt to
recover as many GHF solutions as possible. In selected cases, we
have tested the stability of GHF solutions using our in-house
program.

Throughout, we have used Dunning’s cc-pvdz basis set31 with
Cartesian d functions. While this basis is of minimal utility for
high-accuracy prediction of molecular properties using corre-
lated wave functions, it should be adequate for our purpose,
which is simply to show the qualitative features of GHF and post-
GHF calculations.
5.1. Dissociation of O2.Let us begin by considering O2. In the

ground state, O2 dissociates through the
3Σg

� surface into two 3P
oxygen atoms. Describing triplet O2 at the UHF level requires us
to have mS =(1, while describing two triplet oxygen atoms with
UHF requires each atom to havemS =(1 and the overall system
to therefore have mS = 0 or mS = (2.
There are, then, three relevant broken symmetry UHF states

for our purposes, shown in Figure 1 along with the symmetry
preserving UHF solution 3Σg

�. The triplet UHF curve at equi-
librium cannot properly dissociate into two triplet atoms. Both
the broken-symmetry singlet (mS = 0) and quintet (mS = (2)
curves are excited states at equilibrium but correctly dissociate to
two triplet atoms, which the singlet approaches from below and

the quintet approaches from above. It is clear that the triplet
curve must cross both the singlet and the quintet. What we might
prefer is to follow the UHF triplet solution near equilibrium and
the UHF singlet near dissociation. This is precisely what GHF
delivers: the lowest energy GHF solution connects the broken
symmetry UHF triplet solution at equilibrium with the broken
symmetry UHF singlet solution for r J 1.5 Å. In this case, the
GHF dissociation curve is differentiable but not smooth. At
dissociation, the orbitals are localized onto the atoms and
become the GHF atomic orbitals, exactly as we would expect
for a product wave function of the form |ΦABæ = |ΦAΦBæ.
Figure 2 zooms in on the region where the UHF triplet and

singlet cross. There is a small region over which a GHF solution
exists, connecting the two surfaces. In Figure 2, we show how the
GHF solution rotates the spin densities on the oxygen atoms
from being parallel for r < 1.42 Å to being antiparallel for r > 1.5
Å, where the GHF solution coincides with the broken symmetry
singlet solution. The expectation value of Ŝ2 goes down until it
merges with the curve corresponding to the spin-contaminated
singlet solution.
In Figure 3, we show the coupled-cluster results for the

dissociation of O2 on the singlet and triplet UHF references
and on the GHF reference, as well as the corresponding reference
dissociation curves. Using the UHF triplet as a reference, coupled
cluster is not size-consistent, but using the GHF curve as a
reference, it is. In the case of CCD (as well as MP2, not shown)
the curves are continuous using a GHF reference. However, the
CCSD curve on the GHF reference appears to be discontinuous.

Figure 1. Dissociation curves of the oxygen molecule computed at the
HF level. The zero of energy has been set at the energy of two triplet
UHF oxygen atoms. We show the lowest energy UHF singlet, triplet,
and quintet solutions, as well as the symmetric UHF triplet. The GHF
curve connects the UHF triplet solution at equilibrium with the UHF
singlet solution for r J 1.5 Å.

Figure 2. Top panel: Zoom-in of the region of the dissociation curve
of O2 where a GHF solution is lower than either of the UHF solutions.
Middle panel: Expectation value of Ŝ2 for the broken symmetry UHF
singlet, UHF triplet, and GHF solutions. Note that ÆŜ2æ diminishes for
the GHF solution when it goes from the triplet UHF solution and
merges into the spin-contaminated singlet solution. Bottom panel:
Mulliken atomic densities of the two oxygen atoms (left and right) as
a function of the bond length for the GHF solution. Observe how the
spin densities rotate from being parallel for r < 1.42 Å to being
antiparallel for r > 1.5 Å.
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This can be readily understood in the following way: The effect of
single excitations is simply to rotate the orbitals.18 In the region
of the potential energy curve where GHF is distinct from the
UHF triplet, the single excitations will thus rotate the GHF
reference toward the UHF triplet reference (and indeed, we see
very little difference in their energy). Where the GHF joins
the UHF singlet, however, the standard initial guess for the single
excitation amplitudes forces CCSD to preserve mS = 0. Since the
CCSD curves based on the UHF singlet and triplet do not
intersect at the same point as do the reference Hartree�Fock
curves, we therefore see a discontinuity in the CCSD curve. The
discontinuities in the CCSD curve appear to be, in other words,
essentially due to abrupt changes in the character of the reference
determinant and not due to the existence of multiple solutions to
the CCSD equations per se. It may be that with a sufficiently
clever initial guess that rotates the UHF singlet toward the UHF
triplet, the CCSD curve can be made continuous, though we
cannot guarantee this. The results of Li and Paldus32 suggest that
configuration interaction based on the GHF curve would quite
probably be smoother, though no longer size-consistent. Because
we use the lowest energy UHF solution as a reference at every
geometry, the CCD and MP2 curves behave somewhat errati-
cally where the UHF solution bifurcates.
If we were to continue to increase the level of correlation, the

coupled-cluster curve based on the UHF triplet would improve,
particularly near dissociation. Presumably the coupled-cluster
curve based on the GHF reference would do likewise, provided
with the correct initial guess. In Figure 4, we show the
CCSD(T)33 curves using the singlet and triplet UHF references.

The curve marked as using the GHF reference in fact uses one of
the two UHF states as a reference in the region where the GHF
and UHF states are identical. We have not included data from the
region where GHF is distinct from UHF, as we do not have a
genuine GHF-based CCSD(T) implementation. Qualitatively,
there is little distinction between the CCSD and CCSD(T)
results, which is to be expected, though we note that indeed the
difference between the singlet and triplet dissociation limits for
CCSD(T) is less than the corresponding difference for CCD or
CCSD. Eventually, as we reach full configuration interaction, the
UHF-based and GHF-based coupled cluster curves would coin-
cide. Finally, we point out that while GHF does go to the right
limit, it does so with an artificial barrier to the formation of the
bond in O2. This is much in analogy with the behavior of UHF in
N2, which likewise goes to the proper limit but with an unphysical
bump. Adding explicit correlations, as expected, eliminates
the bump.

Figure 3. Top Panel: Coupled-cluster doubles and Hartree�Fock
curves for the dissociation of O2. Bottom Panel: Coupled-cluster singles
and doubles and Hartree�Fock curves for the dissociation of O2. The
zero of energy has been set at the energy of two triplet oxygen atoms.

Figure 4. Hartree�Fock and CCSD(T) curves for the dissociation
of O2. The zero of energy has been set at the energy of two triplet oxygen
atoms. Comparison with Figure 3 shows that CCSD(T) andCCSDhave
no qualitative differences in this case. The curve marked as the GHF-
based CCSD(T) uses the UHF triplet as a reference for small R and the
UHF singlet as a reference for large R.

Figure 5. Dissociation curves of the CO2 molecule into a carbon atom
and a pair of oxygen atoms, computed at theHF level. The zero of energy
has been set at the energy of UHF triplet atoms. We show the lowest
energy UHF singlet, triplet, and septet solutions as well as the RHF
solution and two GHF solutions. There are two kinks in the lowest
energy GHF curve, as can be seen more clearly in Figure 6.
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5.2. Symmetric Dissociation of CO2. Now, we turn to the
description of the atomization of CO2 by symmetric stretching of
the CdO bonds. The ground state dissociation occurs through
the 1Σg surface into two

3P oxygen atoms and a 3P carbon atom.
At the UHF level, the appropriate dissociation limit can then only
be reached withmS =(3 andmS =(1, though at equilibrium the
system must clearly have mS = 0.
Dissociation curves computed at the HF level are shown in

Figure 5. This figure includes the symmetric RHF solution 1Σg,
which has a triplet instability for r > 1.6 Å, yielding the singlet
UHF solution. Several broken symmetry triplet solutions were
found, the lowest energy of which is included in the figure, as is
the broken symmetry septet solution. The lowest energy GHF
solution has two kinks, as explained below.
In Figure 6, we zoom in on the region of the potential energy

curve where the various UHF solutions cross each other. Three
different GHF solutions were found. The first (dashed in
Figure 6) crosses the RHF solution near r = 1.5 Å; we can
continue to follow this solution to r≈ 1.46 Å, but no further. This
same GHF solution crosses the UHF triplet near r = 1.64 Å and
can be followed until r ≈ 2.1 Å. The second GHF solution
(dashed-dotted in Figure 6) connects to the UHF broken-
symmetry triplet and crosses the first GHF solution near
r = 1.64 Å. A third solution can also be found in this vicinity,
but it is slightly higher in energy.
While we can continuously follow various GHF curves from

the RHF solution at equilibrium to the UHF triplet at dissocia-
tion, the result is not differentiable due to the kinks mentioned
above. We looked for other GHF solutions near these kinks, to
smooth the transition from one curve to another, but were unable
to find any. Stability analyses every 0.005 Å between 1.5 Å and
1.65 Å revealed no GHF instabilities in our solutions. We have
used a quadratically convergent algorithm34 to follow solutions as
far as possible.
In Figure 7, we show the results from MP2 based on the GHF

reference. While the MP2 curve on the GHF reference is
continuous inO2, it is discontinuous here. This is simply because,
unlike in O2 where the GHF solution merges with the UHF
triplet and UHF singlet, here in CO2 the GHF solutions, as we

have already noted, continue past the points where they cross the
RHF and UHF triplet curves. Thus, unlike in O2, the orbitals and
orbital energies on the lowest-energy Hartree�Fock reference
change abruptly at the curve crossings, and the MP2 becomes
discontinuous. Coupled cluster will inherit these same deficiencies.
5.3. Asymmetric Dissociation of CO2. The last example we

consider corresponds to the asymmetric dissociation of the CO2

into an oxygen atom and CO. In the ground state, this process
occurs through the 1Σ surface dissociating into a 3P oxygen atom
and a 1Σ+ COmolecule. Thus, only a triplet solution will yield the
right dissociation limit at the Hartree�Fock level.
Dissociation curves computed at the HF level are shown in

Figure 8. We show the symmetric RHF solution 1Σ along with a
broken symmetry singlet UHF solution. Figure 8 also shows the
lowest energy triplet UHF solution, which is unbound but which
goes to the energetically correct dissociation limit. Finally, we
include twoGHF solutions. The lowest energy GHF curve shows
a kink near r = 1.8 Å, where the triplet and UHF singlet cross.
Note that there is another solution which is bound and has lower
energy for small interatomic separations.

Figure 6. Zoom-in of the region of the symmetric dissociation curve
of CO2 where GHF solutions are lower than any of the UHF solutions.
Three different GHF solutions were found in the interval 1.4 Å < r <
1.7 Å. None of the solutions connect smoothly with the RHF/UHF
curve. We have succeeded in following the GHF solutions a short way
past the point where they cross various UHF solutions.

Figure 7. Second-order and Hartree�Fock curves for the dissociation
of CO2. The zero of energy has been set at the energy of isolated atoms.
The GHF-based MP2 curve connects the two UHF-based curves, with a
jump where the GHF and UHF singlet solution merge.

Figure 8. Dissociation curves of CO2 molecule into an oxygen atom
and the CO molecule, computed at the HF level. One of the C�O
distances has been kept constant at r= 1.1621 Å.We show the symmetric
RHF curve, the broken-symmetry UHF singlet and triplet, and twoGHF
solutions.
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Figure 9 zooms in on the region of the potential energy surface
where GHF connects the singlet and triplet UHF states. Of our
two GHF solutions, one connects to the singlet and the other to
the triplet. These two solutions intersect at r ≈ 1.78 Å, and we
were unable to find other GHF solutions which connect them
smoothly. Stability analysis of the lowest energy GHF solution
every 0.005 Å between 1.77 Å and 1.80 Å revealed no GHF
instabilities.

6. DISCUSSION

As we have seen, relaxing all of the symmetry constraints
allows for Hartree�Fock to reach the energetically correct
dissociation limit for several molecules for which RHF and
UHF are not size-consistent. The price we pay for having the
right behavior at equilibrium and size-consistent dissociation is
that the GHF dissociation curve is not always smooth or even
always differentiable. This is in analogy with UHF instabilities,
where the wave function need not have continuous derivatives,
but the situation appears to be somewhat exacerbated in GHF.
We point out that due to the nonlinearity of the Hartree�Fock
equations, this same phenomenon may exist in following the
lowest energy RHF or UHF solution at each geometry. It is also
worth noting that often one can find myriad GHF solutions
which, however, cannot always be followed from one nuclear
configuration to another. In other words, GHF is a rather tricky
method. We point the interested reader to work by Fukutome35

and Mestechkin36 on the properties of the potential energy
surface near a Hartree�Fock instability threshold and to work
of Fukutome37�39 on molecular dissociation.

Post-GHF correlated calculations inherit the same problems
as does GHF. Worse, when GHF solutions cross rather than
merge with higher symmetry solutions, correlated curves using
the GHF reference may be discontinuous. Additionally, the
inclusion of single excitations may be problematic, and one
presumably needs a fairly clever initial guess to force solutions
which carry the wave function from one symmetry to another
(for example, changing the value of mS from 0 to 1 in the dis-
sociation of O2). Configuration interaction may not inherit these

same problems, simply because rather than solving nonlinear
equations one merely diagonalizes the Hamiltonian in a re-
stricted space which can be chosen to include spin flips. On
the other hand, truncated configuration interaction is not size-
extensive, and for all of their qualitative weaknesses, it should not
be forgotten that size-extensive correlated techniques such as
many-body perturbation theory or coupled cluster theory in
combination with a size-consistent reference such as GHF result
in size-consistent correlated methods, which is not generally the
case when these same techniques are applied to a reference which
is not size-consistent.

’APPENDIX A. GHF AND SIZE CONSISTENCY

Let us return to our GHF-type wave function for the well-
separated AB system, |ΦABæ = |ΦAΦBæ, where we recall that
|ΦAæ and |ΦBæ are the GHF wave functions for the isolated
fragments A and B, respectively. The total energy of the system,
including the nuclear�nuclear repulsion energy, is then

EAB ¼ EnucAB þ EnucA þ EnucB þ ∑ÆϕAjhjϕAæ

þ∑ÆϕBjhjϕBæ þ 1
2∑ÆϕAϕA0 jjϕAϕA0æ

þ 1
2∑ÆϕBϕB0 jjϕBϕB0æ þ ∑ÆϕAϕBjjϕAϕBæ ð8Þ

where EA
nuc, EB

nuc, and EAB
nuc are, respectively, the nuclear repulsion

energy within fragment A within fragment B and between
fragments A and B, and where ϕA and ϕB are molecular orbitals
occupied in |ΦAæ and |ΦBæ. h = t + vA + vB, where vi represents
interactions with the nuclei in fragment i, the total energy
becomes simply

EAB ¼ EA þ EB þ EnucAB þ ∑ÆϕAjυBjϕAæ
þ∑ÆϕBjυAjϕBæþ∑ÆϕAϕBjjϕAϕBæ ð9Þ

The exchange energy between the two fragments vanishes since
the orbitals do not overlap, and the remaining integrals can all be
evaluated using the multipole expansion. The result is

EAB ¼ EA þ EB þ ðZA �NAÞðZB �NBÞ
RAB

þ O
1

R2
AB

� �
ð10Þ

where Zi andNi are, respectively, the total nuclear charge and the
total number of electrons in fragment i. Recognizing Zi�Ni = qi
gives us eq 7.
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ABSTRACT: The increasing accuracy of molecular dynamics force fields parameters and the increasing resolution of experimental
results allow one to carefully compare and complement in silico data with experimental observations. Here, we study the human
villin headpiece C-terminal helical subdomain (HP35) with the recent highly optimized Amber99SB*-ILDN force field and compare
the results with recent high resolution triplet�triplet energy transfer (TTET) experiments. The correct reproduction of the main
structural features reveals a good agreement between experimental data and simulations.

1. INTRODUCTION

Understanding the mechanism of protein folding with high
spatial and temporal resolution remains one of the most im-
portant and challenging goals of molecular biophysics and bio-
physical chemistry.1 Thanks to the impressive progress in
experimental techniques, such as as triplet�triplet energy trans-
fer (TTET),2 we now have access to very detailed information
about the folding mechanisms. However, the atomistic inter-
pretation of the spectroscopic observations can be complex and
often requires the help of molecular modeling and simulations.
Molecular dynamics (MD) simulations have been successfully
used for studying complex biomolecular systems, providing an
atomistic description of their structure and dynamics. Unfortu-
nately, their predictive power has been so far hampered by
the limited time-scale that they can routinely reach and by
the accuracy of the force fields used. Recently, the development
of advanced sampling algorithms,3�5 the use of specialized
hardware,6 and the concomitant improvement of force fields7�9

have extended the capability of MD simulations to the point
that they can be directly used for interpreting and complement-
ing the experiments. At the same time, a careful comparison of
the simulation prediction with much more detailed experiments
can be used to verify the quality of the latest force field.

Here, we take advantage of state-of-the-art simulation techni-
ques to reinvestigate the mechanism of folding of the human
villin headpiece C-terminal helical subdomain (HP35)10 in water
and compare it with high resolution spectroscopy experiments2

and CD measurements. Our converged free energy surfaces
agree surprisingly well with the experiments, showing a rather
dynamic folded state and an unfolded ensemble that retains
significant structure.

2. RESULTS

2.1. Different Conformations of HP35. HP35 has a well-
defined secondary and tertiary structure, characterized by three
R helices bundled together by a closely packed hydrophobic
core involving three phenylalanines,11 and is one of the smallest

peptides that folds cooperatively.12 Because of its small size
and fast folding dynamics, HP35 has been the subject of several
computational13�19 and experimental2,11,20�27 studies. We per-
formed 1.5-μs-long unbiased fully atomistic MD simulations,
massive bias exchange molecular dynamics simulations (BEMD)28

at 298 and 320 K, and calorimetry and circular dichroism (CD)
experiments. Fully atomisticMDsimulationswere performed at 298
K starting from the lowest energy NMR structure (PDB code:
1UNC).10 We used the most recent Amber99SB*-ILDN29 force
field, including improved rotamer7 and backbone corrections.8

During the simulation, we observed only partial unfolding and
refolding events. The simulation spends most of the time in two
folded structures that differ in the “compactness” of the hydro-
phobic core, while retaining all the secondary structure elements.
This observation is in agreement with TTET experiments on
HP35 folding, which have shown the presence of two folded
states, N and N0, where the latter is less compact than the
former.2 Analysis of the conformations with the highest root
mean square deviation (RMSD) from the NMR structure
revealed the presence of a partially folded state, in which helixes
1 and 2 are correctly folded while helix 3 is largely unstructured.
The higher stability of the region encompassing helixes 1 and 2
has been previously observed with both TTET andNMR.2,23 It is
worth noting that very long unbiased MD simulations at high
temperature (380 K) performed with the same Amber99SB*-
ILDN force field predicted that in the unfolded state the fraction
of residues of helix 3 that are helical is larger than that of helix 1
and helix 2.9

To reconstruct a fully converged free-energy landscape of
HP35 folding, we used massive BEMD simulations at 298 and
320 K, which is very close to the experimental melting tempera-
ture (see Supporting Information). Using BEMD, Piana et al.19

were able to correctly predict the effects of a point mutation on
HP35 in agreement withNMR andCD experiments. The BEMD
runs were performed using the PLUMED30 plug-in. The same

Received: April 12, 2011
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collective variables (CVs) of ref 19 were used. Each BEMD
simulation required considerably longer sampling time than
those used in ref 19 to converge (>300 ns). This is most probably
due to the different version of the Amber force field used. Indeed,
the folding time reported in ref 9 is 0.8 μs for Amber03 and 3.0 μs
for Amber99*SB-ILDN. The free energy profiles were recon-
structed from the unbiased probability distribution of the states
of the neutral (unbiased) replica.
The existence of the two previously identified folded struc-

tures is confirmed by the free energy landscapes at 320 K. The
representative structures of the two nearby free-energy basins
correspond to the definition of the folded states N and N0 with
the latter conformation, previously described as a “dry molten
globule”, being more open andmore flexible (see Figure 1).2 The
solvent -accessible surface area (SASA) for the N0 conformation
is 3109 Å2, slightly more than the corresponding value (3056 Å2)
for the N state (Supporting Information, Figure S1). On average,
the N0 state also shows an increase of the distance between the C-
and N-termini compared to the N state (24.0 Å vs 18.7 Å), in
agreement with experimental observations. As another point of
agreement, half of the total SASA exposed during unfolding

(ΔSASANfU = 283 Å2) is exposed during the N to N0 transition
(ΔSASANfN

max 0 = 123 Å2).
For a punctual comparison with the high resolution experi-

ment results, we calculated the free energy as a function of the set
of distances measured in the TTET experiments and the CR
RMSD from the NMR structure. The distance between residues
Trp23 and Phe35 was found to be the most suitable variable to
discern the different conformations of HP35. The free energy at
320 K as a function of the CR RMSD and the distance
Trp23�Phe35 is shown in Figure 2. Again two well-defined
minima corresponding to the N and N0 states are observed: as
opposed to the narrow N state minimum, the N0 state shows a
wider free energy basin, confirming its increased flexibility. As
suggested by Kiefhaber et al., the N and N0 conformations are
very similar, reporting an overall CR RMSD of 0.9 Å.
The calculation of relevant residues’ distances and RMSDs for

both conformations reveals that the structural differences be-
tween N and N0 are due to the stacking of the aromatic rings of
Phe10 and Phe35, responsible for the observed slightly more
compact structure in which the orientation of helix 1 slightly
changes (Figure 1).
Besides the clearly visible N andN0 states, a secondary partially

foldedminimum can be observed. Thisminimum, corresponding
to a Trp23�Phe35 distance of 9.85 Å, versus 15.22 Å of the native
state, is populated by conformations in which helix 3 is partially
unfolded (Supporting Information Figure S2). Its conformation
strongly resembles the intermediate state I proposed in ref 2 and
is consistent with the intermediate state proposed by Eaton
et al.26 and with the observed relative stability of the three
helices.23,25

This confirms the observation done in the unbiased MD
run at 298 K and is at odds with the results of unbiased
MD runs at 380 K. The difference in relative helix stability
could be due to the temperature. However, as we perform a
biased MD simulation, we are only able to reconstruct the
thermodynamics of the system, not the kinetics. Thus, we can only
hypothesize that the I state that we observe is an off-path
intermediate.
The free energy profile as a function of RMSD and the distance

between residues Leu1 and Trp23 shows once more two minima
corresponding to the folded ensemble (low RMSD values and
NMR Leu1�Trp23 distance) together with a broad minimum
corresponding to an unfolded structure (high RMSD and low
Leu1�Trp23 distance).

Figure 1. HP35 sequence and tridimensional structure. Two different
folded states, N andN0, were observed. In agreement with ref 2, a locking
mechanism exists involving the stacking of Phe10 and Phe35.

Figure 2. Left: HP35 free energy landscape at 320 K as a function of the RMSD from the ideal helical structure of the three helices. Right: Free energy
landscape at 320 K projected on the distance between residues Trp23-Phe35 and the RMSD of the CR from the NMR native structure.
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The structures found in the unfolded basin are consistent with
the well-documented observations of residual helical structure in
the unfolded ensemble of HP35.23,25,31�33 The free energy as a
function of the helical content (see Supporting Information
Figure S3) shows two minima corresponding respectively to
the value typical of the folded structure and to a higher helical
content. The absence of a minimum corresponding to low helical
content means that random coil structures are much higher in
energy. This confirms the propensity of HP35 to adopt partially
structured conformations in the unfolded ensemble instead of a
random coil.
Overall, the conformations observed in TTET experiments are

correctly identified in our simulations. However, at 320 K, the
relative stability of the various conformations does not agree with
that of the experiments, where the N and N0 states have almost
the same stability, while the I state is scarcely populated (see
Figure 2). Moreover, the stability order of the helices at 320 K
does not correspond to that predicted at 380 K with very long
unbiased MD simulations.
To assess whether these discrepancies are due to the different

temperature of the simulations and the TTET experiments or to
the force field, we repeated the BEMD simulation at 298 K. At
this temperature, the main features of the FES, as well as the
conformations of the N and N0 states, are conserved. On the
contrary, the relative stability is now in better agreement with
the experiments (as expected). The relative stability at 298 K is
N < N0 , I (see Figure 3).
While the agreement with experiments is recovered, not all is

well with respect to the population of the I state as a function of
the temperature. Indeed, TTET experiments suggest that, at
higher temperatures, the population of the N0 state increases,
while the I state remains scarcely populated, and the BEMD
simulations predict that the population of the I state at 320 K is
still significant, to the detriment of the N0 state.
We found that the calculated activation energies are lower that

the experimental values. Nevertheless, the order observed in the
experiments is reproduced, confirming that the NfN0 barrier is
high (5.9 kJ/mol) and higher than the N0fI one (3.78 kJ/mol).
Thus, the unfolding of helixR3 is fast once the system reaches the
unlocked N0 state and much faster than the NfN0 rearrange-
ments, as observed experimentally. Our results suggest that the

unfolding of HP35 should involve a three-step mechanism:
unlocking (fN0), unfolding of helix R3 (fI), and overall
unfolding (fU). However, as mentioned, it is difficult to discern
from BEMD simulations whether the unfolding of helixR3 is part
of the overall unfolding process or a competitive process leading
to an off-path intermediate. Considering the kinetics of the
process, these results are in agreement with ref 2, suggesting
that the NfN0 conformational change can constitute a rate
limiting step in fast-folder variants of HP35.
2.2. The Locking Mechanism for Native states N and N0.

We carefully analyzed the differences between the states N and
N0 performing two additional 100 ns unbiased MD simulations.
No transitions were observed in either MD, confirming that the
two structures are stable states and in agreement with the
experimentally measured interconversion characteristic time of
900 ns (see ref 2). The unbiased MDs allowed for a better
characterization of the differences between N and N0. As
observed in the BEMD simulations, the stacking of Phe35 onto
Phe10 is the most evident difference. However, the equilibrium
MD revealed that Phe35 stacking is a faster movement compared
to the NfN0 transition, as detachment and restacking of Phe35
was observed multiple times during the 100 ns. Hence,
Phe35�Phe10 interaction, while being a well-defined feature of
the N state, seems to be involved in the locking mechanism but
not univocally identifiable with it. In a previous work, Pande
et al.14 suggested that the stacking of Phe10 and Phe35 constitutes
a kinetic trap since their strong interaction prevents HP35 from
adopting a correct folding. However, it was proven experi-
mentally21 that mutation of residue Phe35 does not cause
considerable alteration of folding kinetics. The fast kinetics of
Phe35 observed in our simulations thus put into perspective the
results previously obtained: while important and characteristic of
the N state, the Phe35�Phe10 interaction is fast enough not to be
determinant for folding kinetics.
A deeper analysis of the interactions in the “lock region”,

where the terminal residues of helix R1 are in contact with
the C-terminal region belonging to helix R3, comprising resi-
dues 8�11 and 32�35, respectively, revealed the presence
of a complex network of hydrogen bonds. A highly populated
(>42 %) H bond between Ala9 and Leu34 was observed. This H
bond is almost as strong as the i, i + 4 R-helical bonds, keeping

Figure 3. Free energy profile at 298 K as a function of the CRRMSD. The relative stability of conformations N, N0, I, and U is very similar to that found
in the experiments (see ref 2).
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helices R1 and R3 close. Another strong H bond was observed
between Gln8 and Leu34, with a population of 23.1 %. At least in
15% of the entire trajectory, Leu34 is involved in a bifurcated H
bond involving both residues (see Figure 4, panel a).
A strong H bond was also observed between Phe35 and Lys29

(Figure 4, panel a); this i, i + 6 bond forces a particular
conformation of the C terminus, where the backbone forms an
additional “helix-like” turn. The identified H-bond network
was never completely broken throughout our 100 ns simulation
of the N state, even when Phe35 breifly undocks (see Figure 4,
panel b), thus proving to be the slow-kinetic step involved in the
“locking”mechanism. This is confirmed by the analysis of the N0
state conformations. In this case, none of thementionedH bonds
has a population higher then 1.8%, helices R1 and R3 are
detached, and the C-terminal region is extremely more flexible,
as observed in TTET experiments (see ref 2 and Supporting
Information Figure S4).
The stacking of Phe35 onto Phe10 is not observed anymore,

and Leu34 substitutes Phe35 in the strong HP35 hydrophobic
core (see Supporting Information Figure S5). In the 75% of the
conformations, Phe35 does not point toward the hydrophobic
core, as in the N state, but toward the back side of helix R1.
Surprisingly, in this conformation Phe35 forms strong H-bonds
with the residues left unpaired by Leu34, Gln8 (pop. 32.47%), and
Ala9 (pop. 7.99%; see Supporting Information Figure S6).
Interestingly, the interaction of Phe35 with the side of helix
R3 destabilizes the first turn of helix R1, as the population of
the first i, i + 4R-helical bond between Leu1 and Asp5 drops from
the 57% of theN state to 31.8%. This gives rise to a quite different
conformation of state N0 in the N-terminal region as well (see
Supporting Information Figure S7).
Analyses of the N0 conformations also prompted an additional

striking point toward the agreement with the experiments: con-
formations with a very low distance between residues Trp23 and
Phe35 were observed, in which the C-terminal region unwinds on
top of helix R3 (see Supporting Information Figure S8). These
conformations explain why TTET experiments observed more
rapid exchanges between Nal23�Xan35 in the N0 state.

3. EXPERIMENTAL VALIDATION

So far, the simulations provided a very detailed view of the
molecular structure and dynamics that at room temperature is in

excellent agreement with spectroscopic observations. Still, as the
temperature increases, the behavior seems to depart from that
experimentally observed. To further investigate this issue, we
performed thermodynamic and spectroscopic measurements.
HP35 in water has a well-defined structure, as shown by the
CD spectra with two minima at 208 and 222 nm and a positive
band near 190 nm, characteristic of the R-helical structure
(Figure 5). The ratio of those minima, θ222:208 has been used
as a criterion in several proteins to evaluate the presence of
coiled-coil helices. For a noninteracting R helix, the ratio has
been shown to be 0.83, while for stranded coiled coils, the ratio
was calculated to be >1.34�38 HP35 in water exhibited a θ222:208
ratio above 1 up to 50 �C. Then, we exploited thermal and
chemical denaturation to gain an in-depth thermodynamic
description. Under all conditions tested, HP35 showed a co-
operative, sigmoidal transition, and the data fit a two-state model
with a transition temperature (Tm) of 44 �C. Chemical denatura-
tion experiments using urea were also carried out at seven
different temperatures ranging from 10 to 40 �C. The addition
of urea resulted in the loss of secondary structure, and the
denaturation curve, as determined by following the dichroic
signal at 222 nm, also showed two-state unfolding behavior.
At 25 �C, the midpoint of the urea-induced unfolding transition

Figure 4. The residues involved in the locking mechanism. (a) H-bond network involving residues Gln8, Ala9, and Leu34. (b) The strong H bonds are
preserved even when Phe35 briefly detaches from the hydrophobic core. (c) As opposed to the N0 state, a strong i, i + 4 H bond is observed between
residues Leu1 and Asp5 in the N state.

Figure 5. Far-UV CD spectra and θ222:208 ratio of HP35 in water as a
function of temperature. Superimposition of the spectra acquired at
different temperatures reveals the presence of an isodichroic point at
206 nm, indicative of a two-state unfolding of the protein.
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is 2.9 M. From the combination of the change in Gibbs free
energy upon thermal and chemical denaturation, we obtained the
stability plot of HP35 (Supporting Information Figure S5),
calculated the change of the unfolding free energy at 320 K,
and compared it to the calculated value (Table 1). The agree-
ment is surprisingly good, given reports of an overestimation of
melting temperatures by various force fields.6,8,39�45

In conclusion, state-of-the-art simulations and recently im-
proved force fields not only are able to reproduce the main
structural features of HP35 folding in water but also to quantita-
tively predict the folding free energy landscape. Our simulations
were able to interpret the postulated locking mechanism inter-
converting the two folded structures (open and closed), which
involves the breaking of a strong hydrogen bond network
involving residues Gln8, Ala9, and Leu34 and the stacking of
Phe10 and Phe35 residues. Thermodynamics data obtained by
CD were also found to be in surprisingly good agreement with
the corresponding calculated values, showing that the latest
correction to the Amber99SB*-ILDN force field does improve
its predictive power in folding simulations. However, the relative
stability of the three helices seems to be dependent on the
temperature,9 an issue that is worth analyzing in future studies.
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ABSTRACT: The process of proton transfer is here analyzed for one-dimensional water chains adsorbed on metallic steps. When
the water chain contains a hydronium and a hydroxyl ion, two different mechanisms are possible, depending on the metal substrate.
On coinage metals (Ag, Au), recombination is observed through a spontaneous Grotthuss mechanism. On more reactive surfaces
(Pd and Pt), the hydronium ion is unstable and releases a proton that adsorbs onto the metal, leaving the negatively charged OH�

unbalanced. In this case, the negative charge can be transferred along the wire with very low activation barriers.

1. INTRODUCTION

Metallic surfaces, due to their hydrophilicity, present fascinat-
ing possibilities to induce ordered two- and one-dimensional
water networks stabilized by the adsorption interaction of water
molecules onto the surface. Such networks may provide channels
through which protons canmove along paths of hydrogen bonds.
Indeed, metal surfaces represent technologically relevant inter-
faces for water1 and influence the proton transfer capabilities of
adsorbed water.2,3 However, on flat highly symmetric surfaces (e.
g., the 111 cut of a fcc lattice), water builds 2D (or even 3D)
networks, and the direction of proton transfer is not uniquely
defined. This makes the experimental as well as the theoretical
study more ambiguous, and the system remains of unclear
technological utility.4 It would be different instead to have 1D
chains, where protons move along well-defined and controlled
paths. (Quasi-)monodimensional chains of water molecules
adsorbed on the step edge of Pt(111) terraces have been
experimentally observed:5 this initial finding obtained with
STM was later confirmed with X-ray diffraction6 and thermal
desorption.7 The edge of a step on a terraced metal surface
represents an ideal model of a 1D system. In fact, the step consists
of an aligned row of atoms, which are more reactive than the
surface atoms laying in the terraces due to their lower
coordination.8�10 It follows that water molecules bind more
strongly to the atoms along the step edge than to the atoms in the
terraces, so that the formation of water wires is promoted: one-
dimensional chains are only observed on steps and are stable up
to 150 K.5 This peculiar structural arrangement is such that the
interaction of a hydrogen with the oxygen of the next molecule
represents the only relevant degree of freedom for the proton
transfer mechanism. Therefore, it is of major interest to explore
the possibility of having proton transfer in water chains on
stepped surfaces.

In this work, we report on a computational ab initio study
about the proton transfer along water wires adsorbed on several
different stepped metallic surfaces (namely, the 221 surfaces of
Pt, Pd, Au, and Ag). We consider H2O wires containing one
hydronium and one hydroxyl ion, in order to trigger the proton
transfer mechanism, yet enforcing charge neutrality. The main
issue that we want to address is the ability of eachmetal species to
promote different proton transfer mechanisms in the wire at low

temperatures. To this aim, we perform a combination of density
functional (DFT) ab initio static (geometry optimization) and
molecular dynamics (MD) calculations and find two different
mechanisms each occurring on specific metals. The results show
the occurrence of spontaneous recombination of OH� and
H3O

+ via a Grotthuss mechanism11 on less reactive metals
(Au, Ag), whereas on more reactive metals (Pt and Pd), the
surface captures one excess proton from the H3O

+, and the
remaining negative charge is transferred along the wire by proton
hopping. We interpret these qualitatively different behaviors as a
consequence of the subtle balance between water/metal bonding
and hydrogen bonding, which varies from one metal to another,
and to the tendency of the metal to adsorb protons.

2. TECHNICAL DETAILS

We used the FEMD approach of Alavi et al.12 within density
functional theory (DFT). This is a state of the art method for
treating metals and molecular adsorption on metal surfaces.13,14

The method is implemented within the CPMD code.15 In this
method, the electron density and the Hellmann�Feynmann
forces are calculated via a subspace diagonalization of a finite
electronic temperature density matrix. We used the PBE
functional.16 All of the pseudopotentials are generated through
the Troullier�Martins scheme,17 and the plane-wave cutoff is set
to 60 Ry. This setup has been extensively tested by some of us in
previous work on the adsorption of molecules on metal
surfaces.14,18 We considered systems consisting of (221) metallic
steps for Pt, Pd, Ag, and Au; the lattice constants of eachmetal are
those obtained in previous studies.14 Themetal slabs consisted of
four layers, where the bottom two were fixed. We have also
checked that increasing the number of layers in the metal slab
does not influence significantly the adsorption energy of a
molecule. In fact, the difference in adsorption energy for a water
molecule on a four- and five-layer slab is about 0.01 eV, which is
within the accuracy of the method. The size of the lateral
supercell was 6 � 1 (84 metal atoms) with a variable number
of water molecules, from two to six, prearranged in a chain
oriented along the step edge. The chains counting from two to
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five molecules had a (relatively) large interruption between
periodic images and were prepared with the two charged defects
at the chain ends. The chain with six molecules, even though
there was no large interruption between the water molecules, had
the hydrogen bond chain interrupted at one point. This is
because there is no way to build a noninterrupted water chain
(through boundary conditions) containing an OH defect. The
six-membered chain was prepared with the defects according to
the sequence: H2O�H3O�3H2O�OH. The vacuum above the
chain was at least 0.7�0.8 nm to make the interaction with the
periodic images negligible, and a 1� 3� 1 mesh of K points was
used. For the geometry optimizations, first the OH distance of
the hydronium is constrained while relaxing the rest of the
system. Next, we further relax the system after the release of
the OH constraint. As a criterion of convergence, we chose a
threshold of 10�3 au on the force components. The MD runs
were performed with chains of five water molecules on a 6 � 1
(221) surface in the NVE ensemble for a maximum time of
0.5�1.0 ps, after a thermalization period of 0.1 ps at 50 K. The
time step was chosen to be 10 au, which is standard for a
Born�Oppenheimer type of dynamics for a system containing
light nuclei such as hydrogens.

3. PROTON TRANSFER, AU AND AG

For the four metals considered here, we have found that the
adsorption energies of water molecules (monomers) onto (221)
metal steps are (see Table 1) either around�0.2 eV (Au, Ag) or
�0.4 eV (Pd, Pt), i.e., on the order of one and two hydrogen
bonds, respectively.23 The adsorption energy for the monomer
on the step is systematically larger than that on flat (111) surfaces
of the corresponding metals.10,24 This stems from the lower
coordination of the metal atoms at the edge of the step, as
previously discussed for the case of nickel.8 When a water wire is
formed, one has to consider also the effect of hydrogen bonding
on the metal/water interaction. In previous works,8,18,22 it was
observed that in the adsorption of water networks onto metal
surfaces, the water molecules that directly bind to metal atoms
(via their oxygen atoms) have the strength of their hydrogen
bondsmodified. If a water donates two hydrogen bonds (HBs) to
other molecules, the bonding to the metal will be stronger, while
if it accepts bonds, the water�metal bond will be weaker even to
the point of detaching from the metal.9 This competition/
cooperation between the adsorption strength onto the metal
and strength of hydrogen bonds along the chain determines the
nature of proton transport and the stability of defective species.
Our results show that H3O

+ is unstable on all of the metallic
substrates considered here (independently from the chain length).

On Au and Ag, we found that H3O
+ and OH� recombine

spontaneously. Recombination proceeds via a Grotthuss mechan-
ism initiated from the hydroniumH3O

+, which acts as the starting
point of a proton hopping along the chain (see Figure 1), toward
the OH� defect. This entails breaking and reforming of HBs,
which in turn results in the proton being topologically transferred
along the chain. However, MD runs performed on the coinage
metals show that also the desorption barrier for the overall chain is
very low (indeed, the chain typically desorbed, after the proton
transfer completed). This observation seems to suggest that this
Grotthuss mechanism on coinage metals may never be experi-
mentally observed.

4. PROTON TRANSFER, PT AND PD

A different mechanism holds for Pt and Pd; in this case, one
proton of the hydronium is captured by the surface. This
dissociation is barrierless (see Figure 2) for all of the chains
consisting of at least three molecules; when the system counts
only one H3O

+ and one OH�, we observed a barrierless transfer
of the excess proton between the two ions. The MD run shows
that the water molecule remaining from the dissociation of
hydronium is lifted from the surfaces but does not break the
HBs with the neighboring water molecules. The readsorption of
this water molecule is not seen within the time-span of our MD
simulation, but we found that the readsorption of this water
molecule needs to overcome a small barrier of 0.1�0.2 eV.

Table 1. Adsorption Energies Eads for a Water Monomer and
a Hydrogen Molecule onto the 221 Step of the Various
Metalsa

step

(221)

Eads (H2O)

[eV]

Eads (H2)

[eV]

dabs (H2O)

[Å]

dabs (H2)

[Å]

dOH
[Å]

dHH
[Å]

Pt �0.42 �0.50 2.30 1.74 2.00 0.92

Pd �0.40 �0.35 2.35 1.84 2.10 0.85

Au �0.23 �0.05 2.60 2.20 2.20 0.77

Ag �0.20 �0.03 2.65 2.30 2.20 0.70
aThe oxygen�metal and the H2�metal distances are also reported, as
well as the average hydrogen bond lengths O 3 3 3H along the chain and
H 3 3 3H for the H2.

Figure 1. Proton transfer mechanism on Ag and Au (221). The top
view of the initial configuration is shown in the top panel; the step edge is
along the central sequence of metal atoms along the water chain. Below
is illustrated the sequence of the different steps of the proton transfer.
First, an intermediate Zundel ion (i.e., an excess proton shared by two
water molecules) is formed, and then the proton is captured by the
second water molecule, which in turn becomes a H3O

+ ion. Next, the
water molecule close to the OH� ion releases its proton, becoming in
turn anOH�. This brings close theH3O

+ andOH�, which recombine in
two neutral water molecules. The final configuration is that of a neutral
chain of water molecules.
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This leads to a stable adsorbed chain with only one OH� defect.
Since Pt and Pd steps gain energy by capturing protons, the
conclusion is that, for Pt(221) and Pd(221), the hydronium
would rather donate the proton to the surface than promote a
Grotthuss mechanism along the water chains (for chains with at
least three molecules). Regarding the process of proton transfer
along the chain, we have found that, after the adsorption of the
excess proton on the surface, a hopping mechanism is initiated at
the OH� ions. Namely, the water molecule sitting next to the
OH defect donates a proton to the OH, becoming in turn anOH,
and the process, which involves overcoming activation barriers
on the order of 0.10 eV is repeated. These values have been
evaluated by means of constrained geometry optimizations for
the system with the longer chain. The exact values depend on the
distance between the defects and the orientation of the water
molecules, but they were found to be at most 0.15 eV, that is, at
worst, on the order of a hydrogen bond, which in turn implies
that the overcoming of the barrier is not unlikely upon local
rearrangement of the chain. The height of the barriers is size-
independent; i.e., it does not vary systematically with the length
of the chains, and this is a further indication that the proton
hopping is somewhat local, i.e., does not depend on the relative
positions of the defects along the chain.

5. COMPARISON BETWEEN THE SURFACES

In Table 1 are reported several quantities which explain the
trend in affinity of the different surfaces for the excess proton of

the hydronium. Pt and Pd show a clear trend, that is, strong
interaction with the surface. In fact, adsorption energies for both
the water and hydrogen molecules are rather large, bonding
distances are short, and the ability of Pt and Pd in distorting the
molecular structure is quite high. For Ag and Au, it is the
opposite. In particular, for the coinage metals, the adsorption
energy of molecular hydrogen is practically null, while for Pt and
Pd, this energy is quite sizable. This explains the basic difference in
the behavior of the excess proton of the H3O

+ in the chains
considered. Of course, further considerations need to be made
because of the aspects neglected in this work. We have not adopted
corrections to take into account dispersion forces, and these may
play an important role regarding the stabilization of the chains on
the surfaces.20 However, given the energy differences in Table 1, it is
unlikely that dispersions may convert the mechanism in Ag and Au
to that for Pt and Pd. The interaction of the H2 molecule with Ag
and Au is by far too small compared to that of Pt and Pd, and it
would be surprising if dispersion were on the order of 0.3�0.4 eV at
short distances.Moreover, in ref 21, it was shown that dispersions do
not play a significant role for water molecules in direct contact with
the surface. In any case, even counting dispersion, the only
difference would be an additional attractive force between the
molecules and themetal and thus more stable chains on the surface.
This actually would strengthen our conclusions about having stable
one-dimensional systems along which the proton can diffuse.
Another important phenomenon that would play a role in the
mechanisms of transport is the delocalization of protons due to their
quantum nature. In a very recent study of relatively small systems of
H2O on different metal surfaces,3,19 it was observed that the
delocalization of the proton is more relevant for metals with smaller
lattice parameters. The effects of delocalization consist of a reduc-
tion in the free energy barrier for the transfer of the proton among
water molecules compared to the case where this effect is not
considered. We have not included quantum effects in our calcula-
tions because the computational costs would be prohibitive for large
systems such as those considered in this work; however, on the basis
of refs 3 and 19, what we may expect is simply that the barriers for
the proton transfer are smaller. This would not change our
conclusions about the mechanism of proton transport.

6. CONCLUSIONS

We have studied the dynamics of protons on water wires
formed on the stepped surface of transition metals. We have
identified two different mechanisms, one occurring on the more
reactive metals (Pt and Pd) and one occurring on coinage metals
(Au and Ag). Taken in perspective, there are potentially relevant
implications for the mechanisms suggested above, at least for Pd
and Pt step surfaces. A one-dimensional water wire represents, for
example, a fascinating technological possibility that can be em-
ployed in disparate fields, for the process of protonation/depro-
tonation of molecules adsorbed on the surface, thus inducing a (at
least partially) controlled functional change, fabrication of micro-
circuits, enhancing conductivity in ice, and several related techno-
logical realizations.26�28 In this context, despite being at a basic
theoretical level, these calculations propose a clear distinction
between different metal species as possible candidates for building
water wires and creating a proton current.
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Figure 2. As in the previous figure, but for Pt and Pd. The first step is the
dissociation of the H3O

+, which donates a proton to the surface. The
remaining chain is no more neutral and is characterized by the presence
of a negative (OH�) defect. The mechanism of traveling of this latter
example happens in the following way: the molecule close to the OH�

releases a proton, and the proton is captured by the OH�, which then
becomes a water molecule. As a consequence, the donating molecule
becomes in turn an OH� ion. This mechanism is repeated along the
chain. The hopping of the proton is characterized by low activation
barriers, which can be overcome by thermal fluctuations.
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ABSTRACT: The lattice energies of the experimental and several hypothetical crystal structures of the RNA base uracil derivative
5-formyluracil are calculated with a range of methods, based either on the electronic structure of the molecule or the lattice. The
explicit modeling of the polarization within the crystal in the model intermolecular potential and the inclusion of an empirical
dispersion correction to the periodic density functional energy (DFT-D2) were the only methods able to calculate the energy
balance between different conformations, hydrogen bonding, and π�π stacking possibilities sufficiently accurately to give the
observed structure as the most stable. Even these two methods underestimated the density of the room temperature structure,
showing the need for improvement in the modeling of organic crystal structures.

The physical properties of organic molecular materials in the
solid state are critically dependent upon the crystal structure

that they adopt. This has led to an explosion of interest in
modeling molecular crystals, driven by relevance to dyes, ex-
plosives, optics, electronics, and particularly to the pharmaceu-
tical industry.1�4 The propensity for a molecule to adopt
multiple crystalline forms both threatens the manufacturer’s
control of the quality of their products5 and provides the ability
to select the solid state properties of a molecule. Accurate
computational modeling of crystal structures and their relative
energetic differences is essential to understanding existing crys-
talline forms and designing new ones.6,7

A wide variety of methods are available for evaluating the zero-
temperature potential energy of crystal structures (lattice en-
ergy), ranging from computationally cheap but highly approx-
imate analytical functions (e.g., atom-centered charges plus
Lennard-Jones interactions)8 through more sophisticated treat-
ments of intermolecular forces (e.g., distributed multipole elec-
trostatic models)9 and density functional theory with analytical
van der Waal’s corrections10�12 to sophisticated ab initio
methods.13�15 Different methods need to be used in a comple-
mentary fashion, according to their relative accuracy and com-
putational cost,16,17 as reliable crystal structure prediction will
require both accurately ranking the energies of many thousands
of plausible crystal structures and the ability to simulate the
transformations that can occur with temperature and pressure.18,19

It is notable that both of the methods that have been generally
successful in the international blind tests of organic crystal
structure prediction20 rely on molecule-specific quantummechan-
ical calculations and the empirical fitting of part of the model to a
range of organic crystal structures. The periodic DFT method has
an empirically fitted damped C6 atom�atom dispersion model.21

The models that use a distributed multipole model of the ab initio
molecular charge density for the electrostatic forces usually
combine thiswith an empirically fitted exp-6 atom�atompotential

for the other contributions to the intermolecular lattice energy.22

Since there has been considerable progress in the performance of
electronic structure calculations for large molecular systems,
it seemed timely to test these density-functional methods for
modeling the balance of interatomic forces in organic crystal
structures.

The chosen test molecule is 5-formyluracil (C5N2O3H4,
Figure 1), a major oxidation product of thymine, which is
fundamental to the investigation of DNA/RNA pairing and
mispairing because it is known to be a major source for transition
mutations.23,24 The crystal structure25 (Figure 2) is determined
by the compromises between different hydrogen bonding, base
stacking, and other intermolecular and intramolecular interac-
tions, as the syn conformer is the only one to have been found in
the crystalline phase, but the anti conformer is more stable in
isolated molecule calculations (Figure 1).

A small set of the most stable hypothetical crystal structures
for syn and anti 5-formyluracil was selected from a group
generated using the program MOLPAK,26 whose intermolecular
lattice energies were within 4 kJ mol�1 of the most stable when
optimized using the IMP model intermolecular potential. This
comprised a distributed multipole27 model (derived from the
optimized MP2 6-31G(d,p) molecular charge density computed
using GAUSSIAN28), for the electrostatic contribution to the
intermolecular lattice energy Uinter, and an empirical exp-6
potential for all other contributions. These, plus the correspond-
ing experimental structure, cover a wide range of crystal packings,
as has been found in the experimental and energetically compe-
titive structures for other 5-substituted uracils.29 The hypothe-
tical 5-formyluracil structures have different hydrogen bonds
(Supporting Information) involving the uracil and formyl groups
from the observed structure (Figure 2).
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Three models based on separate evaluation of intermolecular
and intramolecular energies were used to calculate the lattice
energies of these 5-formyluracil crystal structures. To calculate
the lattice energy, Elatt, of these crystal structures for the
intermolecular potential model used in their derivation (IMP
model), relative to infinitely separated molecules in their lowest
energy conformation, the conformational energy penalty for the
syn conformer, ΔEintra, has to be added to the intermolecular
lattice energy, Uinter, for the syn conformation crystal structures.
The isolated molecule MP2 6-31G(d,p) calculations estimate
ΔEintra as 19.8 kJ mol

�1, so the loss of the O 3 3 3H intramolecular
interactions (Figure 1) significantly destabilizes the observed
crystal structure. An improved lattice energy estimate (IMP+
WSM) includes the intermolecular induction energy evaluated
with an explicit polarization model, using distributed anisotropic
dipole�dipole polarizabilities calculated using the Williams�
Stone�Misquitta (WSM) scheme,30�32 as implemented in the
CamCASP suite of programs,33 with the induced dipoles iterated
to consistency using DMACRYS.34 A more approximate method
of simulating the average polarization of the molecule within the
crystal structure35 is to calculate the distributed multipoles and
relative conformational energies using the polarized continuum
model (PCM)36 implemented in GAUSSIAN with ε = 3, a value
typical of organic crystals. This model (IMP+PCM) provides a

polarization effect that is not specific to the crystal structure,
though the effect of the change in the charge distribution on the
lattice energy minimized structure could be determined. Thus,
these three models for the lattice energy which are based on ab
initio calculations on a single molecule (to parametrize the
electrostatic (and induction for WSM), model intermolecular
potential, and provide the conformational energy difference
(ΔEintra)) differ fundamentally in the treatment of the polariza-
tion of the molecule within the crystal structure.

Periodic electronic structure calculations have the advantage of
not requiring separation into intermolecular and intramolecular
interactions. The crystal structures were relaxed using periodic
GGA-PW91 density functional theory (DFT) with the addition
of an empirical dispersion correction, implemented using Grimme’s
method37 (DFT-D2), within the QUANTUM ESPRESSO pro-
gram package.38 Problems of convergence of three of the structures
led us to investigate the effect of annealing by DFT molecular
dynamics. For three of the structures, theDFT-MDannealing led to
a qualitative difference in the structures (shown in the Supporting
Information) in terms of the atoms involved in hydrogen bonds and
other close contacts, with the layers in one structure separating. The
failure of MD using DFT without a dispersion correction to
maintain the density of these structures is consistent with the
considerable body of evidence pointing to the inadequate handling
of long-range dispersion interactions by DFT.39,40 The excessive
expansion in DFT annealing allowed sufficient reorientation of the
molecules in two cases to simulate a hypothetical phase transition to
an alternative low energy structure.

The remaining six structures, two anti and four syn (including
the experimental structure), did have a DFT minimum suffi-
ciently close to the original [judged by the capacity to overlay a
cluster of 15 nearest-neighbor molecules from the two structures
to within distance tolerances of 20% and angle tolerances of 20�,
as determined in the Crystal Packing Similarity module of
Mercury41 2.4] for a meaningful comparison of lattice energies
for all five computational methods (details in the Supporting
Information, Table S1). The lattice energies relative to the

Figure 1. 5-Formyluracil in (a) the syn conformation found in the
crystal structure and (b) the anti conformation showing the stabilizing
intramolecular O 3 3 3H close contacts.

Figure 3. Lattice energies of the test set of four syn conformer structures
(black) and two anti conformer structures (red) relative to the experi-
mental structure. IMP = initial intermolecular potential model; IMP
+WSM = intermolecular potential model with the addition of the
induction energy; IMP+PCM = relaxed structures with average polar-
ization from the PCM polarization model. DFT and DFT-D2 are the
density functional theory relaxations without and with a dispersion
correction. Some tie lines have been added to show significant changes in
relative energy ordering between crystal structures with the same
molecular conformation.

Figure 2. Layered experimental crystal structure of 5-formyluracil25

(Cambridge Structural Database code GIMREA), showing the hydro-
gen-bonded network of the top layer with the molecules outside the
conventional unit cell in wireframe. Hydrogen bonds are shown in
light blue.
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experimental structure, which can be reasonably assumed to be
the most stable (Figure 3), show qualitative differences in the
relative ordering and lattice energy differences in excess of the
few kilojoules per mole usually associated with the experimental
energy differences between polymorphs. The difference in the
isolated molecule conformational energies results in the anti
structures being considerably more stable than the syn structures
with the initial intermolecular potential model (IMP), showing
that this model does not balance the inter- and intramolecular
interactions to give reasonable relative energies, despite giving the
best match to the experimental structure. The PCM model
reduces the difference between the two conformers considerably
but, otherwise, results in little change in the energetic rankings of
structures with the same conformer. It is perhaps not surprising
that the redistribution of the isolatedmolecule charge densities as a
response to an averaged electrostatic background does not accu-
rately model the differences produced by the different hydrogen
bonds in the crystalline environment. In contrast, lattice energies
calculated using theWSMmodel yield a significant reranking, such
that the most stable structures are those of the syn conformer, and
the experimental crystal structure is themost stable overall. Hence,
an intermolecular potential that includes the induction energy,
representing how the charge density of the molecule adjusts to the
specific crystalline environment (illustrated in the Supporting
Information, Figure S1.3), is a considerable improvement over
the initial model, which assumes that the isolated molecule
electron density is undistorted in the crystal.

Following relaxation with DFT, the syn structures are the most
stable overall, but the experimental structure is still less stable
than another syn structure. With the inclusion of the empirical
dispersion correction (DFT-D2), however, the experimental
structure becomes the most stable. This can be related
(Figure 4) to the dispersion correction having a significant effect
on the interlayer distance in the lattice energy optimized experi-
mental structure. However, the DFT-D2 method still signifi-
cantly underestimates the density of the 298 K experimental
structure, whereas the neglect of thermal expansion in all lattice
energy models should result in an overestimate of the density by
a few percent. Indeed, the density of all structures increases
(Supporting Information, Table S1) in the order DFT, DFT-D2,
IMP, IMP+PCM, (experiment), suggesting that improvements
in the quality of the molecular or crystal charge density and the
other approximations made in representing the intra- and inter-
molecular forces are needed before the neglect of thermal
expansion becomes the dominant error.

Even without the dispersion correction, DFT resolves the
apparent paradox of the syn conformer appearing in the solid
state, whereas the anti conformer is the more stable in the gas
phase. This is consistent with such methods treating all nuclei
and electrons on the same footing, so that intra- and intermo-
lecular polarization are both modeled well. This is in contrast to
the intermolecular potential models when the polarization within
the crystal is not modeled, although some average effect is
absorbed in the empirically fitted exp-6 potential. Explicit mod-
eling of the differential polarizations in the different intermole-
cular hydrogen bonds is needed, through using a distributed
polarizability model, for the observed structure to be calculated
as the most stable. The stability of the anti conformer in the gas
phase is partially the result of the close internal contacts between
the carbonyl oxygens and hydrogen atoms (see Figure 1), which
could be viewed as weak intramolecular hydrogen bonds. Thus,
this study reinforces the finding42 that the lattice energy differ-
ences between polymorphs of oxalyl dihydrazide and o-acetami-
dobenzamide, which differ in the number of intra- and
intermolecular hydrogen bonds, were only plausible when the
induction energy was explicitly modeled, or when a dispersion
corrected periodic electronic structure method was used.

The crystal structure of 5-formyluracil is not unique in having
a molecular conformation that is a high energy conformer for the
isolated molecule, and in having alternative crystal structures
with different hydrogen bonds that are close in energy. Thus,
these structures of 5-formyluracil and the conformational poly-
morphs of oxalyl dihydrazide and o-acetamidobenzamide form a
particularly stringent test of the ability to model condensed
phases and complexes of uracils and peptides, respectively. The
crystal structures of other uracils29 and amino acids43 have been
successfully predicted, demonstrating the specificity of the
challenge to the range of energetically competitive crystal
structures. This study has demonstrated that the relative energies
of conformational polymorphs can require modeling of both the
polarization and dispersion interactions, which are often inade-
quately represented by readily evaluated model intermolecular
potentials and periodic DFT calculations, respectively. The use
of distributed polarizability models to improve the model inter-
molecular potentials, or the addition of dispersion to periodic
DFT methods, appears to have the potential for systematically
improving modeling of the balance between inter- and intramo-
lecular forces in these challenging organic systems.

’ASSOCIATED CONTENT
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of molecules in the known crystal, diagrams of the 5-formyluracil
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Figure 4. Overlay of three layers of the experimental structure, relaxed
using uncorrected DFT (gray) and DFT-D2 (green). The closer
interlayer spacing is more realistic for DFT-D2 but still overestimates
the cell parameter in the stacking direction (a, Figure 2) by 9%,
providing further evidence of deficiencies for π stacking.11,13
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ABSTRACT: Multicomponent density functional theory enables the quantum mechanical treatment of electrons and selected
hydrogen nuclei. An electron�proton correlation functional is derived from the electron�proton pair density associated with a
recently proposed ansatz for the explicitly correlated nuclear�electronic wave function. This ansatz allows the retention of all terms
in the pair density, and the resulting functional is expected to scale properly and to be computationally efficient. Applications to
model systems illustrate that it provides accurate nuclear densities.

Conventional density functional theory (DFT) relies on the
Born�Oppenheimer separation of electrons and nuclei, and

typically the nuclei move classically on adiabatic electronic
surfaces. Nuclear quantum effects have been shown to be
important for a broad range of systems, particularly those
involving hydrogen bonding and hydrogen transfer.1�3 In some
cases, such as proton-coupled electron transfer reactions, non-
adiabatic effects between the electrons and transferring protons
have been shown to be significant.4�6 Multicomponent DFT is a
computationally practical method for incorporating these types of
nuclear quantum effects into electronic structure calculations.7�13

In the implementation of multicomponent DFT within the frame-
work of the nuclear�electronic orbital (NEO) approach,11,12,14

electrons and selected hydrogen nuclei are treated quantummech-
anically without the Born�Oppeneheimer approximation. This
NEO-DFT approach is designed for systems in which at least two
nuclei are treated classically, eliminating difficulties associated with
translations and rotations. Moreover, typically only a relatively
small number of hydrogen nuclei, such as those involved in hydro-
gen bonding or hydrogen transfer, are treated quantum mecha-
nically.

A major challenge of this approach is the development of
electron�proton density functionals that accurately describe
electron�proton correlation, which is highly significant because
of the attractive interaction between the electron and proton and
the disparity in the masses.15,16 Previously, we devised a strategy
for the development of electron�proton density functionals using
the electron�proton pair density from an explicitly correlated
nuclear�electronic wave function.11 The initial electron�proton
density functional developed with this strategy required the
neglect of a large number of terms in the explicitly correlated
electron�proton pair density. The objective of the present work is
to derive an electron�proton density functional with a different
ansatz for the explicitly correlated nuclear�electronic wave func-
tion, thereby enabling us to retain all of the terms in the electron�
proton pair density. The resulting electron�proton functional has
a similar form to that of the previous functional but is expected to
be more reliable in terms of scaling with respect to the number of

electrons and quantum protons. The application of this new
functional to model systems illustrates that it provides accurate
hydrogen nuclear densities. Moreover, the form of this functional
is computationally practical for larger molecular systems.

We consider a multicomponent system comprised of Ne

electrons and Np protons that are treated quantum mechanically
in a field of Nc fixed classical nuclei. Within the framework of
multicomponent DFT, the ground state energy is the minimum
of the energy functional

E½Fe, Fp� ¼
Z

dre1 F
eðre1Þ vðre1Þ �

Z
drp1 F

pðrp1Þ vðrp1Þ

þ F½Fe, Fp� ð1Þ
subject to the constraints

R
dr1

e Fe(r1e) = Ne and
R
dr1

pFp(r1p) = Np.
Here re and rp denote the collective spatial coordinates of the
electrons and quantum protons, respectively, Fe(r1e) and Fp(r1p)
denote the one-particle electron and proton densities, respec-
tively, and v(r1) is the Coulomb interaction between the electron or
proton and the classical nuclei, as defined in ref 12. Analogous
to electronic DFT, we define a noninteracting reference system
in which all quantum particles (i.e., electrons and quantum pro-
tons) do not interact with each other. The ground state nuclear�
electronic wave function of this noninteracting reference system
is given by the product of electronic and nuclear Slater deter-
minants.

Following the Kohn�Sham procedure,17,18 the universal
functional F[Fe,Fp] for the interacting system can be expressed
as11,12

F½Fe, Fp� ¼ Ts½Fe, Fp� þ Jep½Fe, Fp� þ Eepc½Fe, Fp�
þ Jee½Fe� þ Eexc½Fe� þ Jpp½Fp�
þ Epxc½Fp� ð2Þ

where Ts[Fe,Fp] is the total kinetic energy for the noninterac-
ting system. The classical parts of the electron�proton and
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electron�electron Coulomb interactions are given by

Jep½Fe, Fp� ¼ �
Z Z

dre1 dr
p
1
Feðre1Þ Fpðrp1Þ
jre1 � rp1j

ð3Þ

and

Jee½Fe� ¼ 1
2

Z Z
dre1 dr

e
2
Feðre1Þ Feðre2Þ
jre1 � re2j

ð4Þ

and the proton�proton Coulomb interaction Jpp[F
p] is defined

analogously.
The terms Eepc[Fe,Fp], Eexc[Fe], and Epxc[Fp] are the

electron�proton correlation functional, the electron exchange-
correlation functional, and the proton exchange-correlation
functional, respectively. In this formulation,11,12 the definition
of the electron exchange-correlation functional, Eexc[Fe], is
consistent with that from standard electronic DFT.17�19 Thus,
the traditional, well-established electron exchange-correlation
functionals can be used, although these electronic functionals
have been parametrized without the inclusion of nuclear
quantum effects and electron�proton correlation. Further-
more, the contribution from the proton exchange-correlation
functional, Epxc[Fp], is assumed to be negligible due to the
localized nature of protons in typical molecular systems with
only selected hydrogen nuclei treated quantum mechanically.
For systems with multiple quantum nuclei, the quantum
protons may be treated with a generalized Hartree�Fock
approach, in which each proton can occupy a different localized
spatial orbital, and the proton exchange-correlation functional
may be chosen to be the diagonal proton exchange interaction
terms to eliminate the self-interaction terms.20 The pre-
sent paper focuses on the development of a suitable electron�
proton correlation functional, Eepc[F

e,Fp].
Following the strategy devised in ref 11, we define the

electron�proton correlation functional in terms of the
electron�proton pair density, Fep(r1e,r1p), as

Eepc½Fe, Fp� ¼ �
Z Z

dre1 dr
p
1
Fepðre1, rp1Þ
jre1 � rp1j

� Jep½Fe, Fp�

ð5Þ

In ref 11, the electron�proton pair density was obtained from an
explicitly correlated nuclear�electronic wave function defined as
Ψgem = (1 + G)ΦeΦp,15 where Φe and Φp are electronic and
nuclear Slater determinants, respectively, and

Gðre, rpÞ ¼ ∑
Ne

i¼ 1
∑
Np

i0 ¼ 1

gðrei , rpi0 Þ ð6Þ

gðrei , rpi0 Þ ¼ ∑
Ngem

k¼ 1
bk e

�γkjrei � rp
i0 j

2 ð7Þ

Here, Ngem is the number of Gaussian type geminal functions
used in the expansion, and bk and γk are parameters that define
these functions. Gaussian type geminal functions are used to
ensure the tractable calculation of integrals over Gaussian basis
functions.

In the present paper, we determine the electron�proton pair
density from the alternative explicitly correlated nuclear�electronic

wave function defined as21

Ψgem ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ G

p
ΦeΦp ð8Þ

The significant advantage of this alternative nuclear�electronic
wave function ansatz over the previous ansatz is that all terms
quadratic in the geminal functions are eliminated from the
electron�proton pair density. Note that this alternative ansatz
retains the important characteristics of a mixed nuclear�electronic
wave function: it is antisymmetric with respect to the exchange of
electrons or quantum protons, approaches the Hartree�Fock wave
function at large electron�proton distances, and has the numerical
flexibility to describe the correct linear behavior at small electron�
proton distances. As a result of this alternative ansatz, in conjunction
with a physically reasonable approximation for the two-particle
electron and proton densities, all terms in the electron�proton pair
density can be retained in the present treatment, compared to the
neglect of 24 out of 26 terms in the electron�proton pair density in
the previous treatment.11,22 The remainder of this Letter presents the
derivation of the new electron�proton density functional and an
initial application to a model system.

Prior to the derivation, we define the geminal reduced
densities, which are associated with the geminal wave function,
and the auxiliary reduced densities, which are associated with the
Slater determinants. The geminal one-particle and two-particle
electron densities are defined as

Fe1ðre1Þ ¼ Ne

ÆΨgemjΨgemæ
ÆΨgemjΨgemæ�e1 ð9Þ

Fe2ðre1, re2Þ ¼ NeðNe � 1Þ
2ÆΨgemjΨgemæ

ÆΨgemjΨgemæ�e1e2 ð10Þ

and the one-particle and two-particle proton densities are defined
analogously. The geminal electron�protonpair density is defined as

Fepðre1, rp1Þ ¼ NeNp

ÆΨgemjΨgemæ
ÆΨgemjΨgemæ�e1p1

ð11Þ

In these expressions and those that follow, angular brackets without
subscripts indicate integration over all coordinates, angular brackets
with subscripts indicate the spatial coordinates of integration (i.e.,
Æ 3 3 3 æe1 indicates integration over r1

e), and angular brackets with
subscripts preceded by a minus sign denote integration over all
coordinates except the specified spatial coordinate(s) (i.e., Æ 3 3 3 æ�e1

indicates integration over all coordinates except r1
e). The

auxiliary one-particle and two-particle electron densities, ~F1e(r1e)
and ~F2

e(r1
e,r2

e), are defined by substituting Φe for Ψgem in eqs 9
and 10, and the auxiliary proton densities are defined analo-
gously withΦp. Note that the Slater determinants,Φe andΦp,
are normalized because they are constructed with orthonormal
spin orbitals, but the geminal wave function,Ψgem, is not normal-
ized due to the geminal factor in eq 8.

The geminal electron�proton pair density corresponding to
the ansatz given in eq 8 can be expressed in terms of the auxiliary
densities as follows:

Fepðre1, rp1Þ ¼ 1

1 þ Æ~Fe1ðre1Þ ~Fp1ðrp1Þ gðre1, rp1Þæe1p1
½~Fe1ðre1Þ ~Fp1ðrp1Þ

�f1 þ gðre1, rp1Þg þ 2~Fp1ðrp1ÞÆ~Fe2ðre1, re2Þ gðre2, rp1Þæe2
þ 2~Fe1ðre1ÞÆ~Fp2ðrp1, rp2Þ gðre1, rp2Þæp2
þ 4Æ~Fe2ðre1, re2Þ ~Fp2ðrp1, rp2Þ gðre2, rp2Þæe2p2 � ð12Þ
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For comparison, the electron�proton pair density correspond-
ing to the previous wave function ansatz, with the geminal factor
of (1+G) rather than (1 + G)1/2, was comprised of 26 terms, as
given by eq 32 in ref 22. Thus, the present electron�proton pair
density is much simpler. In the previous derivation,11 the geminal
electron�proton pair density was truncated in a manner that
eliminated all terms of order g2 and all terms that included
densities other than one-particle densities. As a result, the
electron�proton pair density included only the first two terms,
~F1e~F1p(1 + g), in eq 12. This truncation required the renormalization
of the electron�proton pair density so that ÆFep(r1e,r1p)æe1p1 =NeNp,
leading to an additional factor of (NeNp)

�1 in the second term of
the denominator. In the present approach, the electron�proton
pair density in eq 12 is already normalized properly because no
terms have been eliminated. Note that the wave function ansatz
with the geminal factor of (1 + G)1/2 does not lead to any terms of
order g2 in the electron�proton pair density, and the terms
including two-particle densities have been retained in eq 12.

To develop an effective electron�proton density functional,
the electron�proton pair density given in eq 12 should
depend on only one-particle densities. For this purpose, we
assume that the auxiliary two-particle electron density can be
approximated as

~Fe2ðre1, re2Þ≈
1
2
Ne � 1
Ne

~Fe1ðre1Þ ~Fe1ðre2Þ ð13Þ

This independent particle approximation is based on the assump-
tion that the direct electron�electron exchange contributions
included in the electron exchange-correlation functional, as
defined in eq 2, are significantly greater than the indirect
electron�electron exchange contributions in the electron�
proton correlation functional. As a result, the indirect
electron�electron exchange effects arising from the dependence
of the electron�proton pair density on the two-particle electron
density are neglected. We invoke the analogous approximation
for the auxiliary two-particle proton density. These two-particle
density terms were completely neglected in the previous
treatment.11

Substituting these approximate auxiliary two-particle electron
and proton densities into eq 12 leads to

Fepðre1, rp1Þ ¼ ~Fe~Fp

1 þ Æ~Fe~Fpgæep

�
1 þ g þ Ne � 1

Ne
Æ~Fegæe

þNp � 1

Np
Æ~Fpgæp þ

ðNe � 1ÞðNp � 1Þ
NeNp

Æ~Fe~Fpgæep

�
ð14Þ

For notational convenience, we have dropped the dependence of
the reduced densities on the coordinates, defined g � g(r1

e,r1
p),

dropped the subscript on the one-particle densities, and simpli-
fied the subscripts on the brackets to denote the electron and/or
proton spatial coordinates in the integrand. The analogous
procedure for the geminal one-particle electron and proton
densities leads to

Feðre1Þ ¼ ~Fe

1 þ Æ~Fe~Fpgæep
1 þ Æ~Fpgæp þ Ne � 1

Ne
Æ~Fe~Fpgæep

� �
ð15Þ

Fpðrp1Þ ¼ ~Fp

1 þ Æ~Fe~Fpgæep
1 þ Æ~Fegæe þ Np � 1

Np
Æ~Fe~Fpgæep

" #

ð16Þ
Note that these densities satisfy the sum rules, Fe(r1

e) =
Np
�1ÆFep(r1e,r1p)æp and Fp(r1

p) = Ne
�1ÆFep(r1e,r1p)æe.

The next step is to express the electron�proton pair density in
eq 14 in terms of the one-particle densities given in eqs 15 and 16
by eliminating the auxiliary densities. To achieve this goal,
expressions for the auxiliary one-particle densities in terms of
the geminal one-particle densities must be determined. In
principle, eqs 15 and 16 could be inverted to determine these
expressions, but the exact analytical solution is not known.
Instead, we follow the approximate procedure of ref 11 and
replace ~Fe(r1

e) with Fe(r1
e) and ~Fp(r1

p) with Fp(r1
p) whenever they

are multiplied by the geminal factor g in eqs 14, 15, and 16. These
substitutions lead to the following expressions for the approx-
imate geminal densities:

Fepðre1, rp1Þ ¼ 1
1 þ ÆFeFpgæep

�
~Fe~Fp þ FeFpg

þNe � 1
Ne

FeFpÆFegæe þ Np � 1

Np
FeFpÆFpgæp

þ ðNe � 1ÞðNp � 1Þ
NeNp

FeFpÆFeFpgæep

�
ð17Þ

Feðre1Þ ¼ 1
1 þ ÆFeFpgæep

~Fe þ FeÆFpgæp þ Ne � 1
Ne

FeÆFeFpgæep

� �

ð18Þ

Fpðrp1Þ ¼ 1
1 þ ÆFeFpgæep

~Fp þ FpÆFegæe þ Np � 1

Np
FpÆFeFpgæep

" #

ð19Þ
Note that these reduced densities still satisfy the sum rules given
above and retain the property that limrepf∞Fep = ~Fe~Fp = FeFp.

Substituting the expressions for the auxiliary one-particle
electron and proton densities obtained from eqs 18 and 19 into
the electron�proton pair density given in eq 17 leads to the final
expression for the approximate pair density in terms of the one-
particle densities:

Fepðre1, rp1Þ ¼ FeFp
�
1 þ ÆN�1

e N�1
p FeFpgæep

� ÆN�1
e Fegæe � ÆN�1

p Fpgæp þ
g þ ÆFegæeÆFpgæp
1 þ ÆFeFpgæep

�
ð20Þ

Equation 20 represents an approximate pair density derived from
the explicitly correlated nuclear�electronic wave function given
in eq 8 and defines an electron�proton correlation functional
when substituted into eq 5. This expression is identical to the
previous expression11 derived from a different explicitly corre-
lated nuclear�electronic wave function, except the last term,
which differs by a factor of NeNp in the second term of both the
numerator and denominator. These differences arise from the
truncation of the electron�proton pair density and the subse-
quent renormalization in the previous treatment. Since the
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present derivation includes all terms of the electron�proton pair
density, whereas the previous derivation neglected a large
number of terms, we expect the present functional to be more
reliable in terms of scaling with respect to the number of
electrons and protons. The computational cost is identical for
the two functionals.

We applied the NEO-DFT approach with this electron�pro-
ton density functional to the model system, [He�H�He]+, and
the isotopomers [He�D�He]+ and [He�T�He]+. The two
helium nuclei were treated classically at a fixed distance, and the
central nucleus and four electrons were treated quantum me-
chanically. We studied these systems with the cc-pVDZ and cc-
pVTZ electronic basis sets,23,24 where the electronic basis func-
tions corresponding to the central nucleus were placed at the
midpoint between the two helium nuclei. The nuclear basis set
was comprised of a single 1s nuclear basis function placed at the
midpoint between the two helium nuclei, and the exponent was
optimized variationally during the NEO-DFT calculation. Two
Gaussian type geminal functions were used with geminal para-
meters obtained variationally with the wave function ansatz in
eq 8 for a one-electron/one-proton model system.21 To account
for differences between the NEO-DFT and variational wave
function approach, the geminal functions were scaled by a single
constant factor to reproduce the hydrogen vibrational stretching
frequency of [He�H�He]+ with the cc-pVDZ electronic basis
set. For all other systems and basis sets, these geminal parameters
were fixed during the NEO-DFT calculations. Moreover, in this
Letter, the electron exchange-correlation functional was chosen
to be the Hartree�Fock exchange. Future studies will examine
the effects of combining this electron�proton correlation func-
tional with various electron exchange-correlation functionals.
All calculations were performed with a modified version of the
GAMESS program.25

The objective of this application is to provide evidence that
this electron�proton functional can provide accurate hydrogen
nuclear densities. The hydrogen vibrational stretching frequen-
cies were determined from a Gaussian fit of the nuclear density
along the He�He axis. These frequencies are compared to the
corresponding splitting for the three-dimensional hydrogen
vibrational states calculated with the Fourier grid Hamiltonian
(FGH) method.26 Since the nuclear basis set contains only a
single 1s nuclear basis function, it is incapable of reproducing
both the stretching and bending hydrogen vibrational frequen-
cies. For these calculations, we determined the He�He distances
at which the stretching and bending frequencies calculated with
the FGH method are qualitatively similar. The resulting He�He
distances for the cc-pVDZ and cc-pVTZ electronic basis sets
were determined to be 1.955 and 1.945 Å, respectively. Future
work will focus on studies with larger electronic and nuclear
basis sets that will enable the calculation of bending as well as
stretching frequencies.

The results of these calculations are provided in Table 1. The
NEO-HF (Hartree�Fock) frequencies are much higher than the
NEO-DFT frequencies, which are in qualitative agreement with
the FGH frequencies. These values illustrate the importance of
electron�proton correlation. In addition, these results indicate
that the geminal parameters are reasonably transferable to larger
electronic basis sets and to other isotopes of hydrogen for this
model system. From a physical perspective, the geminal para-
meters are expected to be transferable because these terms are
significant only at small electron�proton distances and should
be relatively independent of the external chemical environment.

Future work will focus on optimizing the geminal parameters for
applications to a wide range of chemical systems.

Qualitatively similar results are obtained for this model system
with the previously derived electron�proton functional11 using
different geminal parameters, as given in the Supporting Infor-
mation. Note that this previous functional may be derived from
the ansatz given in eq 8 if the two-particle densities are neglected.
The two electron�proton functionals will exhibit different
scaling behaviors with respect to the number of electrons and
protons, however, and the present functional is expected to be
more reliable because fewer approximations were invoked in the
derivation. Investigation of these scaling properties will require
the study of systems with a larger number of quantum particles
and is a direction for future research.

In this Letter, we derived an electron�proton density func-
tional for use in multicomponent DFT calculations, where
electrons and selected hydrogen nuclei are treated quantum
mechanically. This functional was derived directly from the
electron�proton pair density associated with a recently pro-
posed ansatz for the explicitly correlated nuclear�electronic
wave function. The advantage of this functional over the pre-
viously derived functional is that the new wave function ansatz,
combined with the independent particle approximation for the
auxiliary two-particle electron and proton densities, enabled us to
retain all of the terms in the electron�proton pair density, whereas
the previous derivation neglected a large number of terms. Thus, the
present functional is based on a more rigorous derivation and
therefore may be more robust, although further studies are required
to assess both functionals. In particular, future workwill focus on the
further development of these types of electron�proton functionals
with larger electronic and nuclear basis sets in conjunction with
standard electron exchange-correlation functionals.
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Table 1. Vibrational Frequencies in cm�1 Corresponding to
the Hydrogen Vibrational Stretching Motion Calculated with
the NEO-HF, NEO-DFT, and FGH Methods for the
[He�X�He]+ Systems with X = H, D, or Ta

cc-pVDZ cc-pVTZ

isotope NEO-HF NEO-DFT FGH NEO-HF NEO-DFT FGH

H 3098 1191 1191 3122 1103 1111

D 2284 820 801 2330 782 740

T 1903 660 633 1954 646 581
aThe cc-pVDZ or cc-pVTZ electronic basis set was used as indicated.
The NEO-HF and NEO-DFT calculations were performed using a
single 1s nuclear basis function with a variationally optimized exponent,
and the NEO-DFT calculations were performed using two geminals
with parameters (b1,γ1) = (0.3969,0.34) and (b2,γ2) = (0.8912,2.47) for
the electron�proton functional presented in this paper. Values of γk
given in bohr�2.
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ABSTRACT: Nonadiabatic ONIOM(CASSCF:AMBER) and CASSCF simulations elucidated different photodynamics of an all-
trans retinal protonated Schiff base (RPSB) in bacteriorhodopsin and methanol as well as without an environment. The bR protein
matrix holds RPSB tight via specific interactions and promotes bond-specific (along the C13dC14 bond), unidirectional, and
ultrafast photoisomerization with a high quantum yield. In contrast, in methanol and for the twisted bare RPSB, photoisomerization
is not bond-specific (mainly along the C11dC12 bond), is nonunidirectional, and is ineffective. Therefore, bR efficiently “catalyzes”
photoisomerization and stores enough energy to promote the subsequent proton pumping and protein conformational changes.

Bacteriorhodopsin (bR) is a transmembrane protein in the
purple membrane of Halobacterium salinarium.1 An all-trans

retinal protonated Schiff base (RPSB) is covalently linked to the
Lys216of the protein in the light-adaptedbR.Absorption of a photon
by RPSB can trigger a photocycle with several photostationary states
(Scheme1).Thefirst step of this photocycle is photoisomerizationof
all-trans RPSB to give the 13-cis form in an ultrafast and efficient
manner (quantum yield: ∼0.6�0.7),2 which prompts vectorial
proton transfer and protein conformational changes. Transient spec-
troscopic studies showed that, after photoexcitation in the Franck�
Condon (FC) region, photoisomerization of RPSB was observed to
rapidly give a twisted configuration in S1 (>200 fs).

3

In comparison, in a homogeneous methanol solution, photo-
isomerization of RPSB is slower, nonspecific, and inefficient, to give a
mixture of different isomers, the 9-cis (0.02), 11-cis (0.14), and 13-cis
(0.01) forms.4 Also, the reaction time of photoisomerization is much
slower in solutions (on the picosecond time scale).5 The different
reaction mechanisms and photodynamics of RPSB in bR and
solutions are of great importance but still remain unclear. In this
study, we report nonadiabatic (NA) ONIOM(CASSCF:AMBER)
and CASSCF molecular dynamics (MD) simulations (mainly on S1
and S0 surfaces) to elucidate the effects of different environments on
the photodynamics of RPSB. To our knowledge, it is the first NA
CASSCF/AMBERMD simulation including allπ bonds of RPSB as
the QM part in bR as well as the first comparison of photodynamics
in bR and in methanol.6

ONIOM(B3LYP/6-31G:AMBER) MD simulations with an
electronic embedding (EE) schemewas performed to equilibrate the
systems and then sample ground-state structures at 298K. Afterward,
ONIOM(CASSCF(12e,12o)/6-31G:AMBER) MD simulations in
the constant energy ensemblewere carried out. For the simulations in
bR and methanol, around FC and fluorescent state regions, the
ONIOM(CASSCF:AMBER)-EE method gives a wrong order of
the covalent Ag-like excited state (S2) and ionic Bu-like excited state
(S1).

6n This problem can be remedied by using the computationally
unaffordable MS-CASPT2 or MRCI method. To remedy this unrea-
listic situation, themechanical embedding (ME) schemewas first used,
and then the EE schemewas adoptedwhenΔES1�S0 <∼35 kcal/mol.

As shown in Tables S1 and S3 (Supporting Information), time to
access the crossing region is similar, when eitherwe used theONIOM-
MEmethodonly inS1orwe switched touse theONIOM-EEmethod.
Therefore, the overall qualitative conclusions should not be affected by
switching to the ONIOM-EE method.7a

In bR, as shown in Figures 1a,c and S1 (Supporting Infor-
mation) and Table 1, photoexcited RPSB underwent ultrafast radia-
tionless decay (S1fS0) exclusively via a torsional change along ϕ13
(Scheme1).Themeanexcited-state (S1) lifetime is about 114�162 fs
(ranging from 75 to 334 fs) via nonadiabatic crossing (NC) and
crossing seam (CS),7b which is shorter than the experimental values
(>200 fs).3 It is partly attributed to the over-repulsive potential of the
CASSCFmethod.8 Photoisomerization giving the 13-cis form is very
efficient with a quantum yield (Φphotoiso) of 0.69�0.86, which is in
good agreement with the experiments (∼0.6�0.7).2 Moreover,
photoisomerization in bR is always unidirectional (increasing ϕ13,
see also Figure S2, Supporting Information).

Additional CASSCF MD simulations for bare RPSB, with the
same initial conditions but removing the protein matrix, were further
performed. Notably, the equilibrium structure of RPSB in bR in S0 is
slightly twisted at ϕ13 (X-ray and ONIOM-optimized ones: ϕ13 =
203�).9 Although the chromophore is pretwisted, the unidirectional and
bond-specific photoisomerization is lost in the absence of the protein
matrix. The rotations can take place in both directions (Figure S4,
Supporting Information) and along the following torsions: ϕ9
(6.25%), ϕ9+ϕ11 (6.25%), ϕ11 (56.25%), and ϕ13 (31.25%). Also,
compared to bR, this twisted bare retinalmodel takes a longer time to
access the crossing region (Table S1, Supporting Information).
Therefore, the protein matrix is vital to efficiently channelling RPSB
to the unique rotation (intramolecular vibrational redistribution)
during the photoisomerization process. Comparatively, the protein
matrix in rhodopsin (Rh) is not critical for the photoisomerization of
the 11-cis retinal, which is partly driven by a steric repulsion between
the C10�H and C13�Me moieties of the 11-cis retinal.6ln
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The bond-specific and unidirectional photoisomerization in bR is
controlled by stereospecific chromophore�protein interactions.
Namely, nearby residues (Trp86, Thr90, Met118, Ile119, Trp182,
and Tyr185) sandwich RPSB except the C14C15N part (Figure 2a).
Therefore, rotations around other bonds are suppressed by these
residues, and the protein matrix specifically facilitates the rotation
around the C13dC14 bond in a small preset cavity. The C14HC15-
HNHpart has the largest displacement at the crossings relative to the
FC structure (Figure 2b). In contrast, photoisomerization of all-trans
RPSB in bathorhodopsin (bathoRh) leads to the 11-cis form, pre-
sumably due to a lack of steric hindrance around theC11dC12 bond
(Figure S5, Supporting Information).10 In addition, C14H of RPSB
in bR is in close contact with Trp86 (Figure 2a), which results in a
pretwisted C13dC14 bond in S0. Thus, photoisomerization occurs
only toward one direction to avoid the repulsion with Trp86.6b,c It
should be noted that the active sites of other microbial rhodopsin
homologues (e.g., SRII and HR) are similar to bR (Figure S6,
Supporting Information).Webelievemicrobial rhodopsinsmay use a
similar mechanism to control photoisomerization.

Inmethanol (compared to bR), the nearly planar RPSB takes a
longer time to decay via one of three torsional changes: ϕ9, ϕ11, or ϕ13
(Scheme 1, Table 1, Figures 1b,c and S1, S3, and S7, Supporting
Information). The mean S1 lifetime is about 748 and 817 fs (ranging
from 208 to 2488 fs) via NC or CS,7b respectively. Also, Φphotoiso

giving the 11-cis form is about 0.11 for NC, while that leading to the
11-cis, 9,11-di-cis, and 13-cis forms is 0.33, 0.07, and0.07 forCS, respec-
tively. It is qualitatively consistent with a smaller observedΦphotoiso.

4

Moreover, the rotation is not unidirectional in methanol (Figure 1b).
Also, displacements of RPSB and nearby methanol molecules are
larger at the crossing (Figure 2c), due to amoreflexible solution cavity.
Thus, solvent reorganization and a lack of the pretwisted RPSB
(reactant destabilization) should increase the S1 lifetime.

For most cases in bR, the twisting along ϕ13 and ϕ15 takes place
in the opposite directions (Figure 3a). At the S1fS0 crossings, the
former motion (average: ∼+61�) is more profound than the latter
(∼�32�; Figures 1a and S2, S8, and S9, Supporting Information).
These large torsional motions come mainly from motions of the
C14H�C15Hpart, in particular, hydrogen atoms due to their lowest
mass and size. Once the twisted system in S1 makes the transition to
S0 and gives the 13-cis photoproduct, ϕ15 generally continues to twist
until a maximum is reached and then turns back to the trans position
(Figure 3a). Such an asynchronous crankshaft motion,6h,i,k which
allows the rotation of the C13�C14�C15�Nmoiety in the limited
protein cavity (Figures S8�S9, Supporting Information), is themain
space-saving decay pathway in bR.

In methanol, torsions along ϕ9 (average: ∼+36�) and ϕ11
(∼�74�) bonds are mostly twisted in the opposite directions at

the S1�S0 crossings (Figures 1b and S3, S8, and S9, Supporting
Information). The twisting along ϕ13 (∼+18�) is much smaller,
except one case that led to the 13-cis form. Moreover, from the

Scheme 1. bR Protein, Key Events in the Photocycle, Retinal
Protonated Schiff Base (QM Part in Bold), and Definition of
the Key Torsions

Figure 1. Changes of the rotating dihedral in S1 until CS (ref 7b): (a) ϕ13 in
bR and (b) ϕ11 in methanol (also see Figure S3, Supporting Information).
(c) Excited-state population for photoisomerization in bR and methanol.

Table 1. The Mean S1 Lifetime τ (fs) and Quantum Yield
Φphotoiso (Photoproducts) for Photoisomerization in bR and
Methanol

τNC
a Φphotoiso,NC

b τCS
c Φphotoiso,CS

b

bR 114 0.86(13C) 162 0.69(13C)

Methanol 817 0.11(11C) 748 0.33(11C)d

aNonadiabatic crossing (ref 7b). b 13-cis (13C) and 11-cis (11C) forms.
cCrossing seam (ref 7b). dThe formation of one 9,11-di-cis form and one
13-cis form was observed.
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twisted form in S1 to the 11-cis photoproduct in S0, ϕ9 continues
to twist to a maximum and then turns back (Figure 3b).11 Again,
the crankshaft motion is the main pathway for the decay in
methanol. Overall, the crankshaft motion is the major pathway for
the decay and photoisomerization of RPSB in bR, Rh, methanol,
and the gas phase6h,k�n and could also operate in the other retinal
proteins or solutions, although rotations at different angles/bonds
can be involved.

At all S1�S0 crossings, the largest twist involves hydro-
gen atoms, i.e., ϕ13H (average: ∼81�) in bR and ϕ11H (∼88�) in
methanol (Scheme 1 and Figure S8, Supporting Information). A
hydrogen-out-of-plane (HOOP) mode, the difference between
ϕ13H and ϕ13 torsions in bR or between ϕ11H and ϕ11 torsions in
methanol, oscillates around zero in S1 (Figure S10, Supporting
Information), indicating a small pyramidalization at these carbons.
Pyramidalization, however, becomes important in some crossing
regions, especially in bR.6c Just after the S1fS0 transition, ϕ13H and
ϕ11H torsions generally move most rapidly (Figure S11, Supporting
Information), due to the light-mass hydrogen atom. Interestingly,
the larger and faster ϕ13H torsional change can control the stereo-
chemistry of the photoproduct.6h,k In comparison, a large-amplitude
oscillation of the HOOP mode was found in the whole photo-
isomerization of highly twisted RPSB in bathoRh.6h The faster
dynamics of torsions with hydrogen atom(s) was also observed in
Dronpa and rhodopsin (Rh)6h,12 and may operate in other photo-
isomerization systems.

Photoisomerization of RPSB generally follows a two-state,
two-mode mechanism (Figure 4). However, an Ag-like (S2) state
occasionally mixes with the Bu-like S1 state just after photoex-
citation,13 where ΔES2�S1(MS-CASPT2:MM-EE) is small (∼1�8
kcal/mol), due to electrostatic and polarization interaction of the
QM part with the protein and solvent (Figure S12, Supporting
Information). This has been found in a few trajectories in bR and
methanol. Before reaching the S1fS0 crossing, ΔES2�S1

oscillates around ∼20 kcal/mol, and the oscillation strength
for S1fS2 is non-negligible. This is consistent with the

Figure 2. (a) ONIOM-optimized active-site structure of bR. The C14
and C15 are highlighted by a yellow color, and the close contacts between
HC14 and Trp86 are given in Ångstroms. Superimposition of FC (green)
and crossing (pink) structures in (b) bR and (c) methanol.

Figure 3. An example of the evolution of dihedrals for photoisomerizations
of (a) all-transf13-cis in bR and (b) all-transf11-cis in a methanol solution.

Figure 4. Dynamic changes of rotating torsions versus the bond length
for photoisomerizations of (a) all-transf13-cis in bR and (b) all-
transf11-cis in a methanol solution.
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recently observed near-IR absorption.5b At the S1f S0 cross-
ings in bR, large electrostatic and polarization interactions
with the protein, mainly from Asp85 and Asp212,14 can help
reduce the energy gap by ∼16 kcal/mol; this interaction is
much smaller (∼2�3 kcal/mol) in methanol.

Hydrogen bonding between the NH of RPSB and its nearby
water molecule w402 in bR is weakened in the S1fS0 crossing
region and is furthermore reduced during the trans-cis isomeriza-
tion in S0 (Figures 2a and S13, Supporting Information), due to
translocation of the positive charge of RPSB and w402 being
tightly held by Asp85 and Asp212. Notably, such a weaker
hydrogen bond partly contributes to energy storage.6d How-
ever, in methanol solution, hydrogen bonding between RPSB
and the nearby methanol molecule is not necessarily wea-
kened during the trans�cis photoisomerization. In some
trajectories, when the methanol molecule loses the hydro-
gen bond with RPSB, another (or two) nearby methanol
molecule(s) can come and form new hydrogen bond(s) with
RPSB (Figure S14, Supporting Information). Interestingly,
multiple hydrogen bonds were suggested to promote the
decay of GFP and PYP chromophores in water by preferen-
tially stabilizing S1 at the crossings (Scheme 2).12,15 The
weaker solvent effect at the crossings for RPSB in methanol
is partly attributed to the existence of only one hydrogen bond
with RPSB (Scheme 2).

In summary, our simulation has shown that the bR protein
matrix is essential for catalyzing bond-specific, unidirectional,
and efficient photoisomerization of RPSB. The protein environ-
ments specifically hold the chromophore tight for the controlled
reaction. Bond specificity, unidirectionality, and efficiency are
all lost for RPSB in methanol or for the twisted bare RPSB.
The two-state, two-mode mechanism generally operates in bR
and methanol, but an Ag-like state can occasionally mix with
the Bu-like state in S1 just after photoexcitation. Transition
from S1 to close-lying S2 may account for the recently
observed near-IR absorption in solution.5b The crankshaft
motion is the dominant pathway that leads to internal con-
version and isomerization (S1fS0). The hydrogen bond
between RPSB and the nearby water molecule is weakened
during the photoisomerization process in bR, but it is not
necessarily weakened in methanol. Furthermore, at the cross-
ings, there are strong electrostatic and polarization interac-
tions on RPSB by the protein, but this is much smaller in
methanol. These features tailored for bR are vital to efficiently
converting the solar energy to drive proton transfer and protein
conformational changes.
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ABSTRACT: A method to simulate a dual-resolution ensemble for molecular systems is introduced. The dual-resolution system is
characterized by an atomistic Hamiltonian and coarse coordinates connected by linear springs to this atomistic system. A ‘dragging’
update scheme based on an idea of Neal (Neal, R. M. Taking Bigger Metropolis Steps by Dragging Fast Variables; Technical Report;
University of Toronto: Toronto, Canada, October, 2004; http://arxiv.org/PS_cache/math/pdf/0502/0502099v1.pdf) is pro-
posed. It is theoretically proven that the scheme correctly samples the dual ensemble. As a proof-of-principle we show that in an one-
dimensional barrier crossing simulation, the relaxation speeds up by a factor 80. In an asymmetric two-dimensional barrier crossing
problem, the speedup is a factor 20. The application to molecular simulations is discussed.

1. INTRODUCTION

In this paper we consider the sampling of an equilibrium
distribution of a molecular system. Computational methods,
such as Monte Carlo sampling or molecular dynamics, can be
inefficient due to the roughness of the energy landscape. A
systemmight get stuck for a long time in a local energyminimum.
A way to reduce the problem is to consider a coarse-grained
description where many degrees of freedom are replaced by a
single one.

An example of coarse graining is the use of united atoms
instead of a fully atomistic description.2 More progressive coarse
grainings, i.e., beyond the united atommodel, are also commonly
applied nowadays (see, e.g., Marrink et al., ref 3). In the coarse-
grained simulation the energy landscape will be much smoother
as compared to the fine-grained one, and thus barriers can be
more easily crossed. Besides this, there are less degrees of
freedom to be simulated. All-in-all the process of equilibration
in such a model will be much faster.

Accurate coarse-grained descriptions are hard to obtain. The
results of a coarse-grain simulation will deviate from the under-
lying, fine grain, results. The loss of fine-grain information can be
problematic if one is interested in the details. A strategy to
overcome these drawback is to reintroduce fine-grain informa-
tion into the coarse model. This reintroduction in turn induces its
own set of problems. The problems are of two kinds, namely,
efficiency and accuracy. One wants to spend as little as possible
computational resources on the reintroduction. Ideally the state
after the fine-graining procedure, i.e., the reintroduction, should
be an equilibrium state. If the state is far from equilibrium, then
computation time is spent on equilibrating the fine-grained
system.

Reintroduction of the fine-grained information in molecular
simulations is being actively researched.4 Here we will highlight a
recently proposed class of methods closely related to our method
in what it aims to achieve. The first suchmethod was named dual-
resolution replica exchange.5 Somewhat later a more efficient

method called resolution exchange (ResEx) was proposed.6 At
present, the term ‘ResEx’ is used for a family of similar methods.7

ResEx methods consider an extended ensemble. In the dual
case there are two subsystems, namely, the coarse-grain system
characterized by an approximate coarse-grainedHamiltonian and
the fine-grain atomistic model. The extended system exists of
both the coarse- and fine-grain systems combined. The equilib-
rium distribution of the combined system is the product of the
distributions of the coarse- and fine-grain systems. This means
the different levels of description are considered as statistically
independent.

The general idea of exchange simulations is to exchange values
for variables between the subsystems in such a way that the
equilibriumdistribution of the extended system remains invariant.
A well-known example of such a method is parallel tempering8 in
which the different subensembles have different temperatures and
the positions of the particles are exchanged between the sub-
systems in equilibrium at different temperatures. For this ap-
proach Monte Carlo moves are accepted using a Metropolis rule.

In the case of ResEx the fine-grain coordinates are decomposed
into coarse coordinates and high-resolution ones. TheMonte Carlo
move consists of exchanging the coarse part of the coordinates in the
fine-grain system with the coordinates in the coarse-grained system.
The method has some obvious difficulties associated with it.

Coarse coordinates are straightforward to define, e.g., as
center-of-mass position of groups of atoms, while the high-
resolution (fine-grain) coordinates relative to a center-of-mass
are difficult to parametrize. The difficulty lies in defining them in
such a way that, after exchange of the coarse-grained coordinates,
the reconstructed fine-grain conformation is still a likely equilib-
rium conformation.

For the dual-resolution method5 improvements of the reintro-
duction of fine-grain information can be found in Liu and Voth9
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and Liu et al.7 When the high-resolution coordinates are not
relaxed, the conformation formed by an exchange will be far from
equilibrium and will have a prohibitively low acceptance prob-
ability. A strategy to increase acceptance rates in ResEx is a
construction of a ladder of intermediate systems.10 Each sub-
system is only a partial coarse graining of the level below. This
means that the extended system is much expanded.

Motivated by the difficulties of exchanging the high-resolution
degrees of freedom in ResEx, we propose an alternative ap-
proach.We will alsomake use of an extended ensemble. The fine-
grain system is again determined by the atom positions. The
coarse-grain beads are connected by means of linear springs to
the atoms. This means that the total Hamiltonian of the extended
system is the atomistic Hamiltonian, containing fine-grain vari-
ables only, plus a linear spring contribution coupling the fine-
grain variables to the coarse-grain ones. Different from exchange
ensembles, the systems are not statistically independent. How-
ever, after integration over the coarse-grain variables, the ato-
mistic equilibrium distribution is recovered.

Instead of an exchange mechanism we will adopt a dragging
scheme as proposed byNeal.1Wewill let the coarse-grained system
evolve according to an approximate coarse-grain Hamiltonian. The
fine-grain system is initially connected by linear springs to the
old positions of the coarse system. Next, a set of springs is also
connected to the new coarse coordinates. Initially these springs
are of strength zero. The springs connecting the system to the
old positions will be loosened, and the springs connecting it to
the new positions tightened. The springs combined with the
atomistic Hamiltonian drive the dynamics. Having created a
new fine-grain configuration, we will accept it or not. Using the
recipe of Neal this acceptance probability can be chosen such
that detailed balance is obeyed, and the correct ensemble is
sampled.

The paper is organized as follows. First our dual-resolution
ensemble is introduced. Next, we provide the recipe for the
dragging scheme and the proof it obeys detailed balance condi-
tions. As a proof-of-principle, we will provide simulations on a
simple one- and two-dimensional system. We will finalize with
a discussion and an outlook on application to molecular
simulations.

2. THEORY AND METHOD

The goal is to efficiently sample a canonical ensemble asso-
ciated with a fine-grain, molecular system. This density asso-
ciated with the fine-grain canonical ensemble is given by

FðΓÞ ¼ f ðΓÞ
Z

, where

f ðΓÞ ¼ exp½�βHðΓÞ� and Z ¼
Z

f ðΓÞdΓ ð1Þ

with the conventional β = 1/kT.
We will consider two levels of description, namely, a fine grain

one indicated by Γ and a coarse-grain one indicated by X. In a
typical molecular simulation Γ indicates positions of all atoms
and possibly their momenta. A coarse graining consists of
associating a lower dimensional state X to every Γ via a function
X(Γ). If the coarse graining consists of grouping atoms into
effective particles, then X indicates, for example, the center-of-
mass of these groups (and possibly the center-of-mass
momenta).

A coarse-grained distribution is defined as

FcgðXÞ ¼ fcgðXÞ
Z

, where

¼
Z

δ½XðΓÞ � X� exp½�βHðΓÞ�dΓ
fcgðXÞ � exp½�βHcgðXÞ� ð2Þ

This gives an expression for the effective coarse-grained
HamiltonianHcg. IfHcg(X) is known, all kinds of thermodynamic
quantities can be computed using this coarse-grained Hamilto-
nian, since the Helmholtz free energy is given by

exp � F
kT

� �
¼ Z ¼

Z
fcgðXÞdX

¼
Z

exp½�βHcgðXÞ�dX ð3Þ

One of the methods of computing the quantities is by using
coarse-grain simulations where the HamiltonianHcg provides the
forces or the Monte Carlo weights.

Usually the microscopic Hamiltonian H(Γ) is a relatively
simple expression, e.g., kinetic energy plus a sum of pair
potentials. The nature of Hcg(X) is much more complicated.
Therefore an analytic expression for Hcg is usually not available.
In most coarse-graining procedures that are used in practice,
an approximate Hamiltonian Happrox,cg is constructed that is
close to Hcg but easier to handle. A common approach is to
take Happrox,cg to consist of a kinetic energy and a pair potential
part. A popular way to construct this pair potential is the
inverse Boltzmann method,11 but other approaches are also
possible.12

The introduction of an approximate coarse-grainedHamiltonian
gives rise to deviations. Furthermore one might be interested in
quantities that depend on the fine-grain information. Therefore
one would like to have the fine-grain system available, next to the
coarse one. For this purpose we propose to sample a dual-
resolution ensemble:

FdualðΓ,XÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβ=2πÞddet K0

q
Z

fdualðΓ,XÞ, where

fdualðΓ,XÞ ¼ exp �β HðΓÞ þ 1
2
ðX � XðΓÞÞT 3K0 3 ðX � XðΓÞÞ

� �� �

ð4Þ
with Z the partition sum as defined in eq 1. The coarse degrees of
freedomX are connected to X(Γ) by means of linear springs with
spring constants K0. Note that integration over X gives the fine-
grain canonical distribution:

FðΓÞ ¼
Z

FdualðΓ,XÞdX ð5Þ

Integration of the dual distribution over the fine-grained coordi-
nates gives

FðK0Þ
cg ðXÞ ¼

Z
FdualðΓ,XÞdΓ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβ=2πÞddet K0

q Z
FcgðYÞ exp � 1

2
βðX � YÞT 3K0 3 ðX � YÞ

� �
dY

ð6Þ
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The distribution is a convolution of the coarse-grained distribu-
tion Fcg, given by eq 2, with a Gaussian with variance (matrix)
(βK0)

�1. An effective Hamiltonian can now be defined by

exp½�βHðK0Þ
cg ðXÞ�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβ=2πÞddet K0

q Z
exp �β HcgðYÞ

��
þ 1
2
ðX � YÞT 3K0 3 ðX � YÞÞ�dY ð7Þ

For infinitely stiff springs, i.e.,K0f∞, Fcg
(∞) = Fcg andHcg

(∞) =Hcg.
The procedure we propose to sample the dual-resolution

ensemble is to use an approximate model to generate new
coarse-grain variables X* from the old ones X. Next, the fine-
grain variables are dragged from an initial state Γ to a final state
Γ*. This is established by connecting the fine-grain state by
means of springs to both X and X* and changing the spring
constants gradually. The configuration is dragged fromX toX* by
loosening the springs connecting the fine-grain coordinates to X
and tightening those connected to X*. Finally the new dual-
resolution state (Γ*,X*) is accepted or not. The acceptance rule
should be such that the density described by eq 4 is sampled. The
idea of dragging the fine-grained structure is borrowed from
Neal.1 The new elements in our approach are the addition of the
extra variables X and the linear springs. A cartoon of this
procedure is depicted in Figure 1.

In our computational method first X* is generated from the
previous position X. The new X* is sampled by means of the
conditional probability distribution w(X*|X). The equilibrium X
needs to sample the Boltzmann distribution corresponding to the
approximate coarse-grain Hamiltonian Happrox,cg:

Fapprox, cgðXÞ ¼ fapprox, cgðXÞ
Zapprox, cg

, where

fapprox, cgðXÞ ¼ exp½�βHapprox, cgðXÞ� ð8Þ
Therefore the detailed balance condition for w(X*|X) becomes

wðX�jXÞFapprox, cgðXÞ ¼ wðXjX�ÞFapprox, cgðX�Þ ð9Þ
We will assume that X is generated using some Markovian
simulation method [a Monte Carlo (MC) method, molecular
dynamics (MD), or Brownian dyamics (BD)] that obeys this
relation.

Having generated the final X* we can start dragging the fine-
grain model from X to X*. During the dragging, the microscopic
system evolves according to the Hamiltonian:

HdragðΓ, λÞ ¼ HðΓÞ

þ 1
2
KðλÞ : ðXðΓÞ � XÞ2

þ 1
2
K�ðλÞ : ðXðΓÞ � X�Þ2 ð10Þ

where the parameter λ is used to parametrize the magnitude of
the spring constants. It is changed from 0 to 1 during the dragging
procedure. We will take

Kð0Þ ¼ K0, Kð1Þ ¼ 0, and

K�ðλÞ ¼ Kð1� λÞ ð11Þ
This means that for λ = 0, the fine-grain state is coupled bymeans
of linear springs to the initial coarse-grain state X, while for λ = 1

the fine-grain state is coupled to the final coarse-grain state X*
and not connected to X anymore. The relation betweenK* andK
is such that the scheme can easily made to obey detailed balance.

At intermediate states where λ 6¼ 0,1, we define

FðΓjX�,X , λÞ ¼ cðX�,X , λÞf ðΓ,X�,X , λÞ with
f ðΓ,X�,X , λÞ ¼ exp½�βHdragðΓ, λÞ� ð12Þ

where c(X*,X,λ) is the normalization constant. This is the
equilibrium distribution for the microscopic state Γ, for the case
that the system would evolve according to the Hamiltonian with
the value of λ fixed. In the scheme, however, the value of λ is
changed from 0 to 1. Depending on the rate that λ changes, the
distribution of Γ is close to F(Γ|X*,X,λ) or not. The fact that
during the dragging the intermediate states are not in local
equilibrium does not influence the validity of the scheme as will
be discussed below.

Figure 1. A cartoon of the dragging scheme. The fine-grain state Γ is
depicted as a molecule. The coarse-grain state X is depicted as the larger
(red) beads. These beads are connected bymeans of linear springs to the
center-of-masses of groups of atoms (in this case carbon with its
hydrogens). (a) The initial dual-resolution state consists of the atomistic
model and the coarse beads connected to it. (b) The first step in the
updating scheme is to move X to the new state X* by using some
approximate Hamiltonian. (c) Next the atomistic model is connected to
both the old state X and the new state X*. Each center-of-mass is
connected to one bead in the old coarse-grain stateX and one bead in the
new coarse-grain state X*. The magnitude of the spring constants is
parametrized by a variable λ. Initially, for λ near to zero, the springs
connecting the molecule to X are much stronger than the springs
connected it to X*. (d) Gradually λ is increased from 0 to 1. Simulta-
neously the molecule performs its natural dynamics. It is influenced by
intra- and intermolecular forces as well as by the spring forces. Because
the springs connected to X loosen and those connected to X* become
stiffer, the molecule will move toward X*. (e) For λ near to 1 the
molecule will be close to X*. (f) The final dual-state is characterized by
Γ* and X* and should be accepted or rejected according to the
appropriate Metropolis rule.
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The variable λ is changed in discrete steps i = 1, ..., n from
0 to 1,

λi ¼ i=ðn þ 1Þ ð13Þ
The microstate Γi is generated from the previous one at i� 1 by
the transition probability T(Γi|Γi�1,X*,X,λi). Here Γ0 = Γ, and
Γ* = Γn. For each λ we take care that the conditional transition
probability T(Γ0|,X*,X,λ), to go from state Γ to state Γ0, obeys
the detailed balance condition:

TðΓ0jΓ,X�,X , λÞFðΓjX�,X , λÞ
¼ TðΓjΓ0,X�,X , λÞFðΓ0jX�,X , λÞ ð14Þ

This means that the transition probabilities can be generated
using conventional simulation techniques, such as MC, MD, or
BD using the Hamiltonian eq 10 with the appropriate value of λ
for each step.

Finally, the path from initial state (Γ0 = Γ,X) to final state
(Γ* = Γn,X*) is accepted with a probability: acc(Γn, ..., Γ1,X*|Γ0,
X). The total probability density of this process becomes

FðΓn , ..., Γ0,X�,XÞ
¼ accðΓn, :::,Γ1,X�jΓ0,XÞ

�wðX�jXÞ
Yn
i¼ 1

TðΓijΓi�1,X�,X , λiÞFdualðΓ0,XÞ ð15Þ

By requiring that a detailed balance condition for the acceptance
of the path is obeyed, we find that

accðΓn , ..., Γ1,X�jΓ0,XÞ
accðΓ0 , ..., Γn�1,XjΓn,X�Þ

¼ wðXjX�Þ
wðX�jXÞ

Yn
i¼ 1

TðΓi�1jΓi,X�,X , λiÞ
TðΓijΓi�1,X�,X , λiÞ

FdualðΓn,X�Þ
FdualðΓ0,XÞ ð16Þ

Inserting the detailed balance conditions for the individual
transition probabilities, eqs 14 and 9, results in

accðΓn , ..., Γ1,X�jΓ0,XÞ
accðΓ0 , ..., Γn�1,XjΓn,X�Þ

¼ Fapprox, cgðXÞ
Fapprox, cgðX�Þ

Yn
i¼ 1

FðΓi�1jX�,X , λiÞ
FðΓijX�,X , λiÞ

FdualðΓn,X�Þ
FdualðΓ0,XÞ

¼ fapprox, cgðXÞ
fapprox, cgðX�Þ

Yn
i¼ 0

f ðΓi,X�,X , λiþ1Þ
f ðΓi,X�,X , λiÞ

¼ exp β Happrox, cgðX�Þ �Happrox, cgðXÞ
	h

� 1
2 ∑

n

i¼ 0
ððKðλiþ1Þ � KðλiÞÞ : ðXðΓiÞ � XÞ2

þ ðK�ðλiþ1Þ � K�ðλiÞÞ : ðXðΓiÞ � X�Þ2Þ
i ð17Þ
This ratio of acceptance probabilities is used in a Metropolis rule
by choosing the acceptance probability of the generated path as

accðΓn , ..., Γ1,X�jΓ0,XÞ
� min 1,

accðΓn , ..., Γ1,X�jΓ0,XÞ
accðΓ0 , ..., Γn�1,XjΓn,X�Þ

� �
ð18Þ

This might seem a circular definition, but it is not. Clearly if one
computes the ratio of these acceptance probabilities for the two
paths, it will equal the ratio in the right-hand side, so the

definition is consistent. It is, however, a further specification of
the acceptance probability which is now, by construction,
guaranteed to lie between 0 and 1. For the ratio appearing at
the right-hand side, eq 17 needs to be substituted thus giving a
closed definition for computing the acceptance probability.

The final result of the scheme is the generation of a path with
probability density F(Γn, ..., Γ0,X*,X), that gives rise the desired
dual-resolution distribution for Γ* and X*, eq 4:

FdualðΓ�,X�Þ ¼
Z

FðΓ�, ..., Γ0,X�,XÞdΓn�1, ..., dΓ0dX

ð19Þ

A derivation of the main result eq 16 is given in the Appendix A.
The derivation is based on the work of Neal.1

It is probably worthwhile to point out some of the subtleties
that might be overlooked otherwise. In the scheme, the index, i,
on λi runs from 0 to n + 1 (including end points), while the index
on Γi runs from 0 to n. If this were not the case, then the ratio of
transition probabilities in eq 16 and the ratio of probability
distributions in eq 17 normalization constants would not cancel.
This means that for the transitionΓ to Γ1, the springs connecting
Γ to X* are already turned on by a small amount. Likewise for the
last step Γn�1 to Γ*, the springs connecting Γ to X are still weakly
turned on. These details are important for implementing the
scheme, especially if n is not large.

In a dynamic simulation the time interval corresponding to a
change of λ does not have to correspond to an integration time step
of the equation of motion. One is allowed to divide a constant λi
interval into more subintervals. Such a subdivision might be needed
because the time step for integrating the equations of motion needs
to be sufficiently small. When subdividing the constant λ intervals,
some care has to be taken so that eq 35 remains valid.

Although eq 17 is expressed in terms of equilibrium distributions
forΓ, this equilibrium does not have to be reached. The dragging is
allowed to be performed out of equilibrium. The intermediate
distributions in the expressions only arise because of eq 14. This
gives a large flexibility to designing possible dragging schemes.

Equation 16 is amore generally valid expression than eq 17 since
it can be used even if eq 14 is not valid. In many dynamical
simulation methods, such as MD and BD, eq 14 is not exactly
obeyed due to time discretization errors. In the BD simulation
method the transition probabilities can often be exactly determined.
In this case one can use eq 16 and prevent time discretization errors.

3. ANALYSIS OF METHOD AND SIMULATION RESULTS

In the previous section we gave a theoretical derivation of the
dragging scheme. It remains to be proven that the scheme is
useful in practice. We will consider some simple systems to
provide a prove of principle. Besides this we want to develop an
intuition for choosing the parameters of the scheme.

When the dragging has been performed, the newly generated
state is accepted or rejected. For the scheme to be useful
in practice, the acceptance probability should be reasonable. In
Appendix B we consider the case of very slow dragging. If
the number of subdivisions n is large enough and if also the
approximate coarse-grain Hamiltonian (Happrox,cg) is close to the
real smoothed one (Hcg

(K0)), the acceptance ratio approaches 1.
The situation described in Appendix B is the optimal case. If

the approximate Hamiltonian is not a good approximation or if
the dragging is not slow, then the acceptance probabilities will
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most likely drop. This is numerically investigated in the next two
subsections. In both subsections a barrier crossing problem is
considered. We think this is the archetypal situation where the
dragging scheme can be useful. The barrier is so high that
crossing it becomes a rare event when using conventional
methods to simulate the dynamics.

The approximate Hamiltonian in the dragging scheme will be
chosen such that the coarse-grain variable can relatively easily cross
the barrier. By making the springs that connect the fine-grain
variables to the coarse-grain ones stiff enough, the fine-grain
variables can be pulled over the barrier. The hope is that parameters
of the dragging scheme can be chosen in such a way that the
acceptance probability is reasonable. If this is the case, then itmeans
that barriers are crossedmore easily. Since the barrier crossing is the
rate-determining step, the system will equilibrate faster.

In both problems BD is used for generating the positions.13,14

In BD only the particle positions are considered, not the
momenta. The displacements of a particle have a fluctuating
(stochastic) part that is characterized by the diffusion coefficient
and a deterministic part that is driven by a potential U. Only the
configurational part of the canonical distribution is relevant for
BD. Therefore the potential U will play the same role as the
Hamiltonian used in the general derivation of the previous
section. This would also be the case for MC simulation. We
choose BD, and not MC, because there is a natural time scale
which makes it more straightforward to quantify the speedup of
the dragging scheme.
3.1. TheDouble-Well Problem.The simplest barrier crossing

problem is the one-dimensional double-well problem. We use
the potential:

βUhðxÞ ¼ x2ðh 3 ð2x2 � 3Þx2 � 2ð1� x2Þ2Þ ð20Þ

Here h is the barrier height expressed in units kT. The rationale
for the functional form chosen is that the barrier height is exactly
h, the wells are located at x =�1, a x = 1 irrespective of the barrier
height and the curvature at the barrier is independent of h. In
Figure 2 the potential is drawn for h = 10, which is the case
studied. In the lower graph of the same figure we show the
corresponding canonical equilibrium distribution. Also a simula-
tion result obtained using the dragging scheme is shown.
In the one-dimensional case there is no real coarse-graining

taking place. We do, however, introduce an approximate coarse-
grain potential that has the same functional form as the fine-grain
one, eq 20, butwith a different barrier height. Values of h= 1�4 are
considered. The reason is that now the coarse-grain positionXwill
quite frequently cross its barrier. The starting and final coarse-grain
positions, X and X*, are connected to the fine-grain position, x, by
means of two linear springs. The hope is that xwill be dragged over
the barrier and that the new configuration is accepted.
For the presented results both the units of length and time are

taken to be 1. The energy scale is kT. The BD simulations of both
x and X are performed with a diffusion coefficient of 1. The new
position X* is taken at a timeΔt = 5 from the starting position X.
The λ’s are updated in n = 100 discrete steps during this time
interval (see eq 13). The spring constants are varied linearly as
K(λ) = K0 3 (1 � λ). The time step used to integrate the
equations within the BD algorithm is a fraction of 0.05 such that
discretization errors are negligible.
3.1.1. The Stuck Problem. In the upper graph of Figure 3, a

typical time series of the dragging scheme is shown. A point is
plotted once so many time steps. Initially the coarse-grain

variable frequently hops from the X = �1 to the X = 1 position.
The fine-grain variable x follows along. Quite often in the time
series the positions X and x get stuck for a long time at a certain
position. Such a position is typically far from the potential
minimum. The simulation gets stuck because the acceptance
ratio, eq 17, drops to nearly zero. The cause is the presence of the
factor exp[β(Happrox,cg(X*)] in the acceptance ratio. This factor
is included to cancel the influence of the approximate coarse-
grained dynamics on the final statistics.
In the Supporting Information a document is included in

which this problem is analyzed. It turns out that the factor:

exp½βðHapprox, cgðX�Þ �HcgðX�ÞÞ� ð21Þ

determines the observed stuck behavior. If for large X* this factor
becomes very large, then this means that the approximate
dynamics under samples this state compared to the real dy-
namics. To compensate for the fact that such a state is very rarely
visited, the residence time, once the state is visited, should
become very large. This means the simulation is stuck for a very
long time. This gives rise to an ergodicity problem. The simula-
tion time should be long compared to the time states are stuck.
This time can be prohibitively long.
There is a simple remedy for this problem. An alternative way

to sample the dual-resolution ensemble, eq 4, is to generate fine-
grain states Γ (i.e., x for the system under consideration) and
then connect the coarse-grain states X to it by means of drawing a
Gaussian distributed displacement with a variance (βK0)

�1. The
sampling of Γ can straightforwardly be done by letting this state
evolve according to its dynamics. If we apply this ‘move’
subsequent to a ‘dragging move’, then the coarse-grain position

Figure 2. The upper graph shows the used double-well potential with a
barrier height of 10kT. The lower graph shows the corresponding
canonical distribution. The symbols are the histogram found by means
of the dragging scheme.
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X will relax. Therefore the next application of the dragging
scheme will not get stuck. The second graph in Figure 3 displays
a time series generated by this method showing that configura-
tions are no longer stuck, but both sides of the barrier are evenly
sampled. The histogram shown in Figure 2 corresponds to this
simulation.
In the example depicted in Figure 3 the approximate coarse-

grained dynamics was generated with the potential eq 20 (with a
low barrier). For largeX, this potential diverges asUapprox,cg(X)�
X6. For the dual-resolution ensemble, eq 4, we expect that Γ is
near one of the wells and that X is fluctuating in a Gaussian cloud
around this position. Therefore we expect Ucg(X) � X2. Clearly
the factor given by eq 21 is very divergent in this case. This
explains why the pure dragging simulation gets stuck. According
to the reasoning this stuck problem can also be resolved by
choosing Uapprox,cg(X) in such a way that eq 21 is well behaved.
To test this, we also performed simulations with an approximate
coarse-grained potential of the form:

βUapprox, cgðXÞ

¼ � ln exp �
~K
2
ðX þ 1Þ2

" #
þ exp �

~K
2
ðX � 1Þ2

" # 

þ Cerfc

ffiffiffiffi
~K
2

s
ð � X � 1Þ

2
64

3
75 erfc

ffiffiffiffi
~K
2

s
ðX � 1Þ

2
64

3
75
1
CA ð22Þ

Here ~K determines the curvature at the potential well. The error
functions part can be used to lower the barrier by tuning the
constant C. This potential increases as X2 for large X. We indeed
found that by using this potential for the approximate coarse-
grained dynamics, the stuck problem does not occur (see below).
3.1.2. Tuning Parameters. One of the main parameters to be

chosen when implementing the dragging scheme is the spring
constantK0. In the upper graph of Figure 4 the average probability
of crossings is plotted as function ofK0. This is the probability that
x and x* lay on different sides of the barrier subsequent to a
dragging move. The reason for considering this probability is that
the barrier crossing is the rate-determining step for equilibration.
The acceptance probabilities will be such that the dual-

resolution distribution, eq 4, is sampled. This means that if K0

is large enough, then x lays almost always on the same side of the
barrier as X. The probability that x crosses the barrier equals the
probability that X crosses the barrier times the probability that x
follows. This last probability is the acceptance probability, eq 18.
In the case that X and the new position X* are statistically
independent, the probability that X crosses the barrier equals 0.5.
Therefore 0.5 is an upper bound for the probability of crossing.
The acceptance probability can be of a reasonable magnitude

only if K0 is so large that x can be dragged over the barrier. This
means that, approximately, 1/2 3K0 3 1 > 10, so

K0 > 20 ð23Þ

Figure 4. In the upper graph, crossing probabilities as a function of the
spring constantK0 are plotted. The crossing probability is the probability that
the final positions, x, are at the other side of the 10kT barrier. The potentials
used to generate coarse-grain position, i.e., eq 20, are labeled by their potential
barrier height, h (in units kT). The lower graph shows the time autocorrela-
tionof position, x. For the normalBrownianmotion thedecay is slowbecause
a barrier of height 10kT needs to be crossed. For a dragged simulation, with
well chosen parameters, the decay is much faster. Both the optimized
potentials of functional forms eqs 20 and 22 give the same fast decay.

Figure 3. Time series of fine-grain positions x and coarse-grain posi-
tionsX. The upper graph shows a time series generated by only using the
dragging scheme. Configurations have the tendency to get stuck. In the
lower graph, the dragging scheme and ordinary dynamics (with recon-
struction of the coarse variables) are alternated. In this case configura-
tions do not get stuck. The histogram in Figure 2 corresponds with this
time series.
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We also expect that the dragging scheme works best if the
potential that is used to sample X (i.e., eq 20 with, e.g., h = 2)
resembles the smoothed coarse-grained potential of X, eq 6. In
Appendix B we show that in the limit of slow dragging, the
acceptance ratio approaches zero if the approximate Hamiltonian
is close to the smoothed one. For the minimum of the local well,
eq 20, we can approximate the region around a minimum by a
harmonic potential. A spring constant Kwell(h) = 8 3 (3h � 2)
corresponds to this harmonic potential. The smoothed coarse-
grain potential,Ucg

(K0), can be locally approximated by a harmonic
potential with spring constant Kcg,well

(K0 ). This smoothed potential
is obtained by coupling a spring to position x. The strength of the
effective linear springs then follows as

1

KðK0Þ
cg, well

¼ 1
Kwellð10Þ þ 1

K0
ð24Þ

By equating this spring constant to the one associated with the
potential used to generate positions X, i.e., Kwell(h), an estimate
for the optimal value of K0 can be computed. For varying values
of h we find: h = 1f K0 = 8.3, h = 2f K0 = 37.3, h = 3f K0 =
74.7, and h = 4 f K0 = 124.4.
The probability for X crossing the barrier is larger if its barrier

is lower. For low values of h, however, the optimal value of K0

computed with eq 24 is too small to drag x over the barrier (see
eq 23). Therefore the optimal value of h is expected to be a value
that is just large enough such that the optimal K0 can drag the
fine-grain variable over the barrier.
In the lower graph of Figure 4, we find an optimal value of K0

≈ 40 and a barrier of height of 2kT for the approximate dynamics
of X using the potential eq 20. The probability for crossing is
about pcross = 0.26. The dragging of x from X to X* is performed
in a time Δt = 50. Slow dragging improves the acceptance
probability. For very slow dragging, we find that the crossing
probability increases to 0.31. For quicker dragging, Δt = 10, we
have pcross = 0.17, and Δt = 5 gives pcross = 0.11.
The speedup in the computation due to the dragging scheme

can be determined by comparing the CPU time needed for a
conventional simulation and for a dragging simulation to ap-
proach equilibrium. In ‘real’molecular simulations, the overhead
due to the coarse-grain dynamics will be negligible. Also the extra
spring forces will contribute little. Therefore the CPU time
needed to equilibrate a system will be proportional to the
simulated physical time of the fine-grain dynamics.
For determining the speedup in the equilibration due to

dragging, we compare the time autocorrelation of the position
x. The time plotted on the x-axis of the lower graph in Figure 4 is
the physical time of the fine-grain dynamics. Time runs on
irrespective of whether moves are accepted or not. The time
autocorrelation of the normal BD is governed by the barrier
crossing. Because the barrier height is 10kT, this is a highly
activated process. For the normal dynamics, we find a decay rate
of 6.4 � 10�4, while for the dragged simulation, with dragging
timeΔt = 5, the decay rate is 5.2� 10�2, so the speedup factor is
81. Note that the decay rate is expected to be proportional to
pcross/Δt. Since pcross decreases with decreasing Δt, there is an
optimal value for Δt. We found this value to be around Δt = 5.
When using eq 22 we see the same fast decaying behavior

when we use K0 = 40, ~K = 20, and C = 0.04 (potential barrier of
about 1.9kT). This shows that the behavior is quite robust. It
does not seem to depend much on the details of the coarse-
grained potential (except for the occurrence of the stuck

problem). When independently varying K0 between 25 and 60,
~K between 10 and 50, and C between 0.01 and 0.25, we found
essentially the same fast decaying behavior as depicted in
Figure 4. The spring strength K0 could be increased up to 120
if we simultaneously adapted ~K such that eq 24 was obeyed. For
parameters that deviated more, a noticeable deviation from the
fastest possible decay was observed but still the dynamics was
much faster than the nondragged case.
3.2. A Two-dimensional Case. In this section we will provide

a proof-of-principle for a simple two-dimensional case. We will
use the example also used in refs of Lyman and Zuckerman10 and
Liu and Voth9 for proofs-of-principle. Compared to the one-
dimensional example above, there are some additional features:
In this case there will be a genuine coarse graining, namely, from
two- to one-dimensional. This two-dimensional example has an
asymmetric fine-grain potential and a symmetric approximate
coarse-grain potential Uapprox,cg.
The system considered is the canonical equilibrium corre-

sponding to the potential energy:

βUðx, yÞ ¼ 10ðx2 � 1Þ2

þ y2

1 þ 250ðtanhð10xÞ þ 1Þ ð25Þ

In this potential there are two local minima, namely at (x,y) =
(�1,0) and (x,y) = (1,0). At (x,y) = (0,0) there is a saddle point.
The height of the potential barrier to go from oneminimum to the
other one is 10kT. Due to the presence of the ‘tanh’, the basin
centered around (1,0) is much more extended in the y-direction
than the one centered around (�1,0). The combination Γ = (x,y)
signifies the fine-grain state. The coarse graining is simply defined
by X(Γ) = x. The coarse-grained potential, using eq 2, becomes

βUcgðXÞ ¼ 10ðX2 � 1Þ2

� 1
2
lnð1 þ 250ðtanhð10XÞ þ 1ÞÞ � 1

2
ln π ð26Þ

To generate the dynamics forX, we use the same potential as in ref
of Liu and Voth,9 namely,

βUapprox, cgðXÞ ¼ ðX2 � 1Þ2 ð27Þ
This approximate potential does have a barrier that is much lower
than the (smoothed) coarse-grained potential barrier and is
therefore much easier crossed. Graphs of the canonical probability
densities corresponding to the smoothed version ofUcg (withK0 =
10kT) and eq 27 are shown in Figure 6.
As a method of simulation, BD is used with diffusion coeffi-

cients D = 1 for both the coarse- and fine-grain dynamics. The
time interval from X to X* is Δt = 2. The same time interval is
used for the fine-grain dynamics.
For the spring constants we use

βKðλÞ ¼ 10ð1� λÞ þ 60λð1� λÞ ð28Þ
The equilibrium distribution of X is governed by K0 = K(0) =
10kT. This value of K0 broadens the canonical distribution
corresponding to the ‘real’ coarse-grained potential Ucg, eq 26,
such that its peaks have widths comparable to the distribution
associated with eq 27. Application of eq 24 gives a value of K0 =
8.9kT. The value of K0 = 10kT is too small to drag the fine-grain
position over the barrier. By adding the quadratic part we find
that halfwayK(1/2) = 20kT, which is strong enough. Bymeans of
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trial-and-error, we determined that the choice eq 28 is close to
optimal.
The upper graph in Figure 5 shows a sample time-series of

positions x(t). The thin line indicates simulation by conventional
BD for the potential U(x,y) given by eq 25. The initial position is
x = 1 (and y = 0). Within the time interval simulated, the system
does not cross the potential barrier. Only fluctuations around x =
1 are seen. For the dragging scheme, the time series is indicated
by the bold line. This bold line does cross over to the local
minimum around x = �1 several times.
The lower graph shows the time autocorrelation for x(t). For

t = 0, the equilibrium value is Æx2æ = 0.972 according to eq 26. A
small time later, local equilibrium has been established around
x =�1 and 1. The equilibrium probability for x< 0 is PL = 0.0428,
while for x > 0 it is PR = 0.957. For the average position inside the
peak we find ÆxæL = �0.979 and for ÆxæR = 0.979. After local
equilibration around the potential minima this gives

Æxð0Þxð0þÞæ≈ PLÆxæ2L þ PRÆxæ2R ¼ 0:958 ð29Þ

This is indeed the initial value seen in the time-correlation graph
of Figure 5. For very long times, the barrier is crossedmany times,
so

Æxð0Þxð∞Þæ ¼ Æxæ2 ¼ ðPLÆxæL þ PRÆxæRÞ2 ¼ 0:801 ð30Þ

This value is indicated by means of a line in the graph.

For conventional BD, the decay of the time correlation from
0.958 to 0.801 is estimated to be a single exponential with a rate
of 9.405 � 10�4. This value is not fitted but computed by
numerical determination of the lowest nonzero eigenvalue of
the diffusion problem corresponding to the two-dimensional
Brownian motion. The time-correlation graph shows that with
the dragging scheme, decorrelation is about a factor 20 faster.
In Figure 6 the probability distributions for x and X, as

obtained by the simulations, are given. The upper figure shows
the histogram for x. The theoretical distribution is the canonical
distribution corresponding to eq 26. Correspondence between
simulation and theory is nearly perfect. The positions X are
generated using the potential eq 27. The canonical probability
distribution corresponding to this potential is also shown in the
lower graph. The coarse variable X is, however, expected to be
distributed according to eq 26 smoothed withK0 = 10kT as given
by eq 6. It is clear that the difference between the ‘generating’
distribution and the sampled one is significant. The simulation
results show that Fcg

(10) is sampled accurately.

4. DISCUSSION AND CONCLUSIONS

We introduced a dual-resolution ensemble and implemented
the Neal dragging idea for this ensemble. The dragging scheme
was shown to significantly increase the efficiency of sampling the
equilibrium distribution in a one- and two-dimensional potential
barrier crossing problem. In the one-dimensional a large speedup
factor of 81 was found, while in the two-dimensional case the
speedup is a factor 20. When the scheme is generalized to

Figure 5. The upper graph shows a time series of the x-coordinate of a
particle in the two-dimensional two-well problem. For conventionalBD(thin
line), the particle fluctuates around x = 1. For the dragging scheme (bold
line), acceptance is lower, and the graph is sometimes flat. The dragging BD
enhances barrier crossings, i.e., jumps to x =�1. The lower graph gives the
autotime correlation for the time series. The simulation results of the
dragging scheme relax much quicker to the long time limit value of 0.801.

Figure 6. The upper graph shows the probability distribution of x as
found in simulations. The dragging scheme samples the canonical
distribution corresponding to Ucg, eq 26, to high accuracy. The lower
graph shows the distribution for X. It samples the distribution correspond-
ing to Ucg

(K0) with K0 = 10 as it should. This distribution significantly
deviates from the canonical distribution, eq 27, used to generate themoves.
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molecular simulations, this might give a significant speedup for
these simulations also.

It was shown theoretically that the dragging scheme is sound,
i.e., that the canonical ensemble remains invariant. This was
achieved by applying the Metropolis rule such that the correct
detailed balance condition for motion along a path is obeyed. In
the two-dimensional example a symmetric Hamiltonian is used
to generate the dynamics of the coarse-grain state. The ‘real’
coarse-grained Hamiltonian found by integrating out the fine-
grain variables from the dual-resolution ensemble, however, is
asymmetric. The corresponding asymmetric ensemble for X is
well sampled by the scheme. This provides a practical example of
the validity of the scheme. As a remark on the side, note that the
smaller speedup factor of 20, as compared to 81, is partly due to
the large mismatch between coarse-grain Hamiltonian used to
generate the X and its true Hamiltonian. The scheme needs to
correct for this mismatch by rejecting some of the moves.
Because the potential generating the dynamics of X was given,
the speedup could not be fully optimized. We used the less than
optimal coarse-grain potential because it was also used proof-of-
principle of ResEx methods.9,10

By means of analysis of the simulations of the simple systems
we identified and also resolved a weakness of the dragging
scheme. The problem is that the simulations get stuck because
acceptance rates drop to zero. An analysis of this problem is
available in the Supporting Information. It occurs if the approx-
imate coarse-grain dynamics very rarely samples a region that
should be sampled much more frequently, according to the real
coarse-grain dynamics. One way to resolve the problem is to
make sure this situation does not arise by choosing a suitable
approximate coarse-grain Hamiltonian. It is not sure if this is
always possible in practice.

A second way to resolve this stuck problem is by equilibrating
the fine-grain system and regenerating the Gaussian springs. In
this case the implementation of the dragging scheme alternates
between two moves. In the dragging move the coarse-grain
variables X move first and by means of dragging guide to fine-
grain state Γ to a new favorable state. The second move is an
equilibration move where the fine-grain system evolves accord-
ing its natural dynamics. The coarse-grain variables are recon-
nected to the fine-grain state at the end. Both moves sample the
dual-resolution ensemble correctly. By combining them, the
system does not get stuck.

An envisioned application is to speedup molecular simula-
tions. The idea is to use mesoscopic scale (coarse-grain) simula-
tions to guide atomistic systems to sample phase space more
efficiently. The mesoscopic system has the essential features of
the molecular system. Configurations are, on a qualitative level,
correct. Interactions are softer, and therefore, the barriers that
determine the rate of equilibration are more easily crossed. A
drawback of the mesoscopic level simulation is its lower accuracy
due to the loss of atomistic detail. By dragging a atomistic model
toward the mesoscopic configuration, it is force to cross the
(higher) potential barriers. This means a speedup compared to
atomistic simulation without dragging. The sampling of atomistic
level means accuracy is high.

In the proof-of-principles and also in Appendix B, we found
that the potentials used to generate the coarse-grain dynamics,
Uapprox,cg, should be close to Ucg

(K0). Most mesoscopic simulation
techniques use approximate Hamiltonians that are aimed to be
close to the real coarse-grained Hamiltonian defined by eq 2
corresponding to K0 f ∞. These are probably not the best

potentials for performing the dragging scheme. Spring constants
will be chosen such that barriers of say 10kT can be crossed. The
conventional mesoscopic potentials are not that soft at all.
They are probably too stiff. When applying the dragging scheme
with these potentials, acceptance probabilities will be low. The
simulation probably will get stuck. Note that in this case,
the equilibration of the atomistic system and the redrawing of
the Gaussian springs do not help. Because of the looseness of the
springs compared to the stiffness of the mesoscopic potentials,
the factor given by eq 21 remains small.

A solution might be to use softer mesoscopic potentials. The
inclusion of a finite K0 softens the coarse-grained potentialUcg

(K0).
This is the potential that should be approximated by the
potential, Uapprox,cg, used mesoscopic simulation. It is, at least
at this moment, not clear what values for the spring constants
should be taken for molecular simulations. It would be best to be
able to generate mesoscopic potentials corresponding to a
chosen K0. Therefore a dual-resolution simulation method for
molecular systems that uses the dragging scheme is best com-
bined with a on-the-fly coarse-graining procedure. In this case K0

can be chosen optimally for the system at hand, and an appro-
priate coarse-grained potential can be generated. This is a topic of
ongoing research.

Besides the factor that depends on the coarse-grained poten-
tial, there is also a second contribution to eq 17 due to the
springs. How this factor scales with the dimensionality of the
system is at present unclear. This factor needs to be kept in
bounds also in the high dimensional case, if the scheme is to be
useful to speedup molecular simulations. Whether this is possible
remains to be seen andwill determine the possible applicability in
this domain. The large speedup factors of 80 for the one-
dimensional case and 20 for the not fully optimized two-dimen-
sional case are encouraging.

In a preliminary molecular study we investigated the dragging
scheme to speedup trans�gauche transitions in butane. Here we
found that the correct ensemble is sampled. Also high acceptance
ratio’s could be found by constructing approximate coarse-
grained potentials that are well matched to the spring strengths
K0. However, to obtain these high acceptances, the dragging had
to be performed so slowly that no effective speedup was achieved.

In the current paper we focused on crossing barriers. As one of
the reviewers did point out, a useful application might lie else-
where. In the coarse-grained dynamics of X, one takes large steps.
This means that when dragging the fine-grain configuration, also
large steps are taken because it is dragged along with X. This
should be compared to local diffusive motion if the configuration
is not dragged. Overall this could constitute a speedup in the
sampling of phase space.

To a certain extent, the outlinedmethod is amethod in need of
a good application. It is not clear yet if this application is the one
envisioned in the current paper. We have good hopes that the
dragging method, or a method derived from it, can be very useful
in the realm of molecular simulations. The reason for these hopes
is that the outlined method is very flexible, and many possible
variants still need to be investigated. One of the flexibilities that is
largely unexplored is the fact that during the dragging (i.e., 0 < λ <
1), the used Hamiltonian Hdrag(Γ,λ) can be freely chosen.
For example, one can choose to slowly turn of some of the
interactions (and turn them on later) or temporarily raise the
temperature. The general recipe given by the second line of
eq 17 can then be used to generate the correct distribution
at λ = 0 or 1.
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’APPENDIX

A. Proof of the Neal Dragging Method. We can write the
probability density to sample a path in fine-grain phase space,
when the initial state obeys the dual-resolution probability
density, as

FðΓn , ..., Γ0,X�,XÞ ¼ wðΓn , ..., Γ1,X�jΓ0,X , fλigÞFdualðΓ0,XÞ
ð31Þ

Because all intermediate steps are Markovian processes, the
conditional probability for the path can be decomposed as

wðΓn , ..., Γ1,X�jΓ0,X , fλigÞ
¼ accðΓn , ..., Γ1,X�jΓ0,XÞ

�wðX�jXÞ
Yn
i¼ 1

TðΓijΓi�1,X�,X , λiÞ ð32Þ

Here we used the transition probabilities as introduced in eqs 9
and 14.
A detailed balance condition can be used to make sure that Γn

(when averaging over initial and intermediate states) also obeys
Fdual. This detailed balance condition is

wðΓn , ..., Γ1,X�jΓ0,X , fλigÞFdualðΓ0,XÞ
¼ wðΓ0 , ..., Γn�1,XjΓn,X�, fλigÞFdualðΓn,X�Þ ð33Þ

Here the states Γj are reversed, but the sequence of the λi’s
remains unchanged. Inserting eq 32 into this detailed balance
condition gives

accðΓn , ..., Γ1,X�jΓ0,XÞ
accðΓ0 , ..., Γn�1,XjΓn,X�Þ

¼ wðXjX�Þ
wðX�jXÞ

Yn
i¼ 1

TðΓn�ijΓn�iþ1,X ,X�, λiÞ
TðΓijΓi�1,X�,X , λiÞ

FdualðΓn,X�Þ
FdualðΓ0,XÞ

¼ wðXjX�Þ
wðX�jXÞ

Yn
i¼ 1

TðΓi�1jΓi,X ,X�, λn�iþ1Þ
TðΓijΓi�1,X�,X , λiÞ

FdualðΓn,X�Þ
FdualðΓ0,XÞ

ð34Þ
The last line is obtained from the previous one by relabeling if
n� i + 1 for the T( 3 3 3 | 3 3 3 )’s in the enumerator. This is not the
same as the relation in eq 16. The relation of eq 16 is preferred
because by means of eq 14, it allows for the transition of eqs 16 to
17. When making the transition to probability densities for the
general relation, the normalization constants do not cancel. We
want the normalization constants to cancel because these are
unknown.
To obtain eq 16 we require that

TðΓ0jΓ,X�,X , λn�iþ1Þ ¼ TðΓ0jΓ,X ,X�, λiÞ ð35Þ
In the simulation we generate the transitions from one Γ to Γ0
using the Hamiltonian eq 10. The coarse-grain states X and X*
and the λ’s appear through the spring forces. The requirement
eq 35 therefore gives that

Kðλn�iþ1Þ ¼ K�ðλiÞ ð36Þ
Since λ only provides a parametrization of K, we can take it to
increase linearly from 0 to 1. Taking it in accordance with eq 13,
we have λn�i+1 = 1 � λi and thus obtain the requirement eq 11.

B. The Slow Dragging Limit. In this appendix we analyze the
dragging scheme for the case that dragging is performed
(infinitely) slowly with (infinitesimally) small increments Δλ.
In this case we can approximate the ratio of acceptance prob-
abilities defined by eq 17 as

fapprox, cgðXÞ
fapprox, cgðX�Þ

Yn
i¼ 0

f ðΓi,X�,X , λiþ1Þ
f ðΓi,X�,X , λiÞ

¼ exp½βΔHapprox, cg�
Yn
i¼0

exp

�
� βðHdragðΓi, λiþ1Þ �HdragðΓi, λiÞÞ

�

≈ exp½βΔHapprox, cg�
Yn
i¼ 0

exp � βΔλ
∂HdragðΓi, λiÞ

∂λi

" #
ð37Þ

Because the dragging occurs so slowly, every Γi can be assumed
to be statistically independent. For large n, many subsequent Γi’s
are sampled for a small increase in λ; this has an averaging effect:

exp½βΔHapprox, cg�
Yn
i¼ 0

exp � βΔλ
∂HdragðΓi, λiÞ

∂λi

" #

≈ exp½βΔHapprox, cg�
Yn
i¼ 0

exp � βΔλ
∂HdragðΓi, λiÞ

∂λi

" #* +

≈ exp½βΔHapprox, cg�
Yn
i¼ 0

1� βΔλ
∂HdragðΓi, λiÞ

∂λi

� �" #

≈ exp½βΔHapprox, cg�
Yn
i¼ 0

1 þ Δλ
∂ ln Zλi

∂λi

� �

≈ exp½βΔHapprox, cg�
Yn
i¼ 0

exp Δλ
∂ ln Zλi

∂λi

� �

≈ exp½βΔHapprox, cg� exp ∑
n

i¼ 0
Δλ

∂ ln Zλi

∂λi

" #

≈ exp½βΔHapprox, cg� exp
Z 1

0
dλ
∂ ln Zλ

∂λ

" #

¼ exp½βΔHapprox, cg� exp½ln Z1 � ln Z0�
¼ exp½βΔðHapprox, cg �HðK0Þ

cg Þ� ð38Þ
For every i, the expectation value is according to the canonical
equilibrium distribution associated with Hdrag(Γ,λi). The corre-
sponding partition sum, Zλ, can be used to compute this
expectation value. The Hamiltonian Hdrag depends on X and
X* according to eq 10. For λ = 0, the system is only connected to
X only and for λ = 1 only to X*. In this the partitions sums are
given by eq 7 (up to the prefactor which cancels in the
computation above).
The final result indicates that, in the slow dragging limit,

acceptance ratio’s approach 1 when the approximate Hamiltonian
used to generate the dynamics of X, i.e., Happrox,cg is close to the
real effective HamiltonianHcg

(K0). The most severe approximation
used in the derivation above is the ‘slowness’. At every instance
the equilibrium distribution correspondig to λ needs to be
sampled. Clearly we want to use the dragging scheme to
speed-up computation and therefore not perform the dragging
too slowly; hence in practical computations, the acceptance ratio
is expected to deviate significantly from the optimal 100%
acceptance case.
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ABSTRACT: Nonequilibrium experiments of single biomolecules such as force-induced unfolding reveal details about a few
degrees of freedom of a complex system. Molecular dynamics simulations can provide complementary information, but exploration
of the space of possible configurations is often hindered by large barriers in phase space that separate metastable regions. To solve
this problem, enhanced sampling methods have been developed that divide a phase space into regions and integrate trajectory
segments in each region. These methods boost the probability of passage over barriers and facilitate parallelization since integration
of the trajectory segments does not require communication, aside from their initialization and termination. Here, we present a
parallel version of an enhanced sampling method suitable for systems driven far from equilibrium: nonequilibrium umbrella
sampling (NEUS). We apply this method to a coarse-grained model of a 262-nucleotide RNA molecule that unfolds and refolds in
an explicit flow fieldmodeled with stochastic rotation dynamics. UsingNEUS, we are able to observe extremely rare unfolding events
that have mean first passage times as long as 45 s (1.1� 1015 dynamics steps). We examine the unfolding process for a range of flow
rates of the medium, and we describe two competing pathways in which different intramolecular contacts are broken.

I. INTRODUCTION

Nonequilibrium measurements on biological macromole-
cules, such as mechanical force-induced unfolding1 and flow-
based analogs,2 have emerged as a powerful complement to
equilibrium studies. Indeed, it is now possible to follow the
evolution of distances through fluorescence resonance energy
transfer (FRET) simultaneously with forces through optical
traps.3 While these measurements provide unprecedented ex-
perimental data on the stochastic dynamics of individual mol-
ecules, they still only probe at most a few degrees of freedom
among many. Molecular dynamics simulations, which provide
complete information about the positions of all participating
particles subject to the assumptions of the model, have proven to
be a valuable tool for interpreting these data.4 However, the time
scales for conformational change are often long compared with
elementary fluctuations, which makes waiting for the events of
interest to occur spontaneously under conditions representative
of experimental ones prohibitively computationally costly. To
accelerate convergence, many simulation studies employ unrea-
listically extreme nonequilibrium conditions (see discussion in
Hu et al.5).

Alternatively, enhanced sampling methods can be used to
improve exploration of phase space and focus computational
effort on low probability regions of mechanistic importance, such
as transition states. The most widespread such methods6�8 rely
on the fact that the statistics of equilibrium systems are known

a priori, which prevents the applicability of such methods to
nonequilibrium situations. However, there now exist methods
that can enhance the sampling of low probability regions without
relying on equilibrium properties of the system.9�20 Although
these methods differ in detail, the essential idea in all of them is to
harvest segments of unbiased dynamics trajectories such as to
achieve relatively uniform sampling of different regions of a space
of physically relevant degrees of freedom (order parameters).
The acceleration of convergence follows from the fact that each
trajectory segment need only traverse a small portion of the space
of order parameters, across which the probability is relatively
uniform.

We have been developing one such method: nonequilibrium
umbrella sampling (NEUS).13�16 In this paper, we present a
streamlined version of the algorithm with improved convergence
properties. The most significant change is the explicit association
of a weight with each saved copy of the system, motivated by the
weighted ensemble method.17�20 The fact that many trajectory
segments are integrated independently makes the method highly
parallelizable, and we detail and implement a strategy that can
provide excellent scaling to large numbers of processors.

We use the method to simulate partial unfolding and refolding
of a coarse-grained model of a 262-nucleotide RNA molecule in
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the presence of a flow field. Our interest in this system comes
from single-molecule studies of FRET between probes on the
L18 loop and 30 terminus of the catalytic domain of the RNase
P RNA from Bacillus stearothermophilus.22�24 In these studies,
the molecule was tethered in a microfluidic channel to enable
relatively rapid changes in magnesium ion concentration, and
this led to the question of whether flow contributed to the
dynamics observed.24 Specifically, we wondered whether there
were dynamics like the quasi-periodic folding and unfolding
observed in previous simulations of a homopolymer in a laminar
flow field.25 Here, we show that in the RNA under flow system
there are two competing unfolding pathways, the likelihoods of
which depend on the rate of flow of the solution. We compare
these results with reversible unfolding simulations (without a net
flow).

II. METHODS

II.A. Algorithm.Aswe show, the slowest degrees of freedom in
the system examined here have relaxation times on the order of
milliseconds to seconds, while straightforward simulations of the
coarse-grained model are limited to tens of microseconds. Thus,
enhanced sampling is needed. Here, we describe the version of
nonequilibrium umbrella sampling (NEUS)13�16 used in the
present study. To this end, we summarize the overall strategy,
and then we describe the phases of the simulation and paralle-
lization; differences from earlier versions of the algorithm and
competing methods are noted.
II.A.1. Overall Strategy. The sampling is guided by a set of

physically relevant variables (“order parameters”). Ideally, these
order parameters describe the slow dynamics in the system, and
the remaining degrees of freedom relax relatively fast. In this
work, we employ a single order-parameter that quantifies the
total number of intramolecular contacts (section II.B). However,
we explicitly separate the “forward” (unfolding) and “backward”
(refolding) transition path ensembles as in Dickson et al.15 This
allows the sampling of the orthogonal degrees of freedom to
differ between the two ensembles (i.e., allows for nonoverlapping
unfolding and refolding transition path ensembles), and it
enables the calculation of transition rates between basins.
For the simulations, we divide the space of order parameters

into regions, which need not be uniform in size. Each region
contains one or more copies of the system (walkers) that evolve
independently according to the natural dynamics of the system,
and we associate with that walker a weight for contributing to
averages. When a walker of the system attempts to leave its
region, the configuration is saved to a list of entry points for the
neighboring region, along with the weight of the walker. When a
neighboring list is full, the oldest saved configuration is over-
written, and its weight is distributed over the remaining points in
the list in a manner that does not affect their relative probabilities
of being chosen. The walker is then restarted from a saved
configuration, i, which is chosen from one of its region’s lists with
a likelihood proportional to its weight (wi). The weight of this
point is then partitioned between the walker and the saved entry
point: γwi (γ ∈ (0,1]) is given to the walker, and the rest,
(1 � γ)wi, remains associated with the saved entry point. Note
that γ = 1 results in straightforward dynamics, or a single,
continuous trajectory. Here, we use γ = 0.9. The incorporation
of this feature in the NEUS algorithm is motivated by the (equal)
partitioning of the probability when a trajectory branches in the
weighted ensemble (WE) method;17 it ensures conservation of

the starting probability and suppresses artificial amplification of
the probability of particular trajectories. As a result, we are able to
obtain converged results with only one set (lattice) of regions in
the extended space as opposed to two, as in previous work.13�15

II.A.2. Initialization. A common situation is that one is inter-
ested in studying a transition between two ormore states, but one
knows the configuration of the system in only one of the stable
states. This situation applies here to the RNA-under-flow system,
since we know the folded configuration but not the most likely
unfolded configurations. Although in principle one could start
the simulation in each region using any configuration consistent
with the allowed order parameter values, in practice, it is best to
start with a distribution of structures that is as consistent as
possible with the physically weighted dynamics to avoid introdu-
cing unnecessary errors that take time to be corrected. To this
end, we progressively activate the regions in a manner similar to
forward flux sampling (FFS)12 as follows.
We start by running an unconstrained simulation that is

initialized in the known stable configuration. During this simula-
tion, we record the configuration each time the system crosses a
boundary of a region but do not reset the configuration. These
configurations serve as the initial entry (i.e., resetting) points for
the regions visited, and all such configurations are assigned equal
weight. Following the unconstrained simulation, we begin the
umbrella sampling simulation starting from saved entry points in
each region that has at least one such point, employing and
updating the copy weights as described above. Regions that were
not visited previously are activated once entry points for them are
obtained. As the simulations proceed, regions of lower and lower
probability are activated by their neighbors, and trajectories
emerge from the original stable state. Once all of the regions
are activated, we are able to concurrently sample the entire order
parameter space of interest, using only points that resulted
directly from the starting distribution.
In the present study, the progressive initialization of regions

accounts for about 2% of the total simulation time. The sampling
procedure employed here further differs from FFS in that it does
not explicitly require a notion of forward progress and thus can
be used with sampling regions that are defined by an arbitrary
number of order parameters. By the same token, trajectories are
terminated when they cross any boundary, not only a forward
one. This distinction is of practical importance when the
dynamics do not lead rapidly back to the starting basin (see
Dickson et al.16 for further discussion).
II.A.3. Weight Redistribution. The algorithm as described is in

principle complete. Indeed, it is very similar to the WE method
except that (i) it permits strict control of the number of copies in
a region (including only limiting it to one) and (ii) differs in the
details of weight partitioning when resetting (branching) and
redistributing when overwriting (pruning). However, the trans-
fer of weight between regions of high probability can be very slow
when the weight must pass through a bottleneck region of low
probability. This is because a very large number of low probability
walkers are required to add up to a significant change of weight in
a high probability region. This convergence issue arises despite
the fact that the time for initial exploration of the space decreases
with an increasing number of regions, as in any umbrella
sampling procedure.8,26

To accelerate convergence after the initialization phase, we
periodically use the interface-to-interface crossing statistics to
predict statistical weights for each region ({Wi}) and scale the
weights of the entry points in each region, i, such that their sum is
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equal to Wi. Here, the weights are obtained from a modified
version of the scheme in Vanden-Eijnden and Venturoli,27 where
the total flux into a region is set equal to the total flux out of a
region. To this end, we accumulate a transition matrix, T: each
off-diagonal element tij is the number of transitions observed
from region j to region i in the last weight update period, and each
diagonal element tii =�∑j6¼itji. We then solve the equationTW = 0
for the weight vectorW by using singular value decomposition to
compute the nullspace of T, which is the single nontrivial
solution W. Here, we perform this operation periodically
throughout the simulation, as in previous NEUS studies;15,27

this contrasts with the study by Bhatt et al.19 in which a single
such step is used to precondition the simulation and then flux
balance is used to check convergence.
II.A.4. Parallelization. The simulations of the copies of the

system require only limited communication. As such, NEUS and
methods like it lend themselves well to parallelization. However,
we find that they benefit from careful implementation on high
performance computers. All simulations for the present study are
run on parallel architectures using the Global Arrays toolkit,28

which implements a global address space programming model in
which processes can access remote data using one-sided com-
munication. One-sided communication is particularly useful in this
case, since the timing of boundary crossing events is not predictable.
The global address space also enables one to distribute the storage of
a large set of region entry points across the memory of many
compute nodes. The entry points for each region, the region
weights, boundary crossing statistics, and sampling histogram
data are all stored as global arrays. These arrays can be modified
by any process using “put” functions and “get” functions, where
locks are used to enable atomic updates of global data (modifica-
tions of the entry point lists, for instance) that prevent processes
from concurrently accessing the same region of a global array.
Although the dynamics of the copies are simulated essentially

without communication once they are initialized, NEUS still
periodically requires some collective operations, such as weight
updates, and the computation of rates and probability distribu-
tions. To allow for such operations, we break down the simula-
tion into “cycles” of computation, at the end of which all
processes are synchronized. Within the cycles, the work is
distributed among the processes as follows. When a process is

finished running a trajectory segment, it queries how many steps
have been run in each region k so far this cycle (Nk), and it uses
the results to decide in which region to run the next trajectory
segment. Specifically, it chooses to start a trajectory in region j
with probability

Pj ¼
Nsteps �Nj

∑
k
ðNsteps �NkÞ ð1Þ

where Nsteps is the number of steps to be run in each region per
cycle. A trajectory is terminated if the counter in its region reaches
Nsteps (upon which the current configuration of the system is
saved to the entry point list as a simple means of maintaining it),
and a computational cycle ends when all counters reach Nsteps.
Here, Nsteps is set to 2000.
Figure 1 shows preliminary scaling results obtained on two

parallel architectures: Intrepid, a Blue Gene/P supercomputer,
and Beagle, a Cray XE6 supercomputer. Each scaling test con-
sisted of running 10 cycles (as defined above), and the wall-clock
time elapsed between the beginning of the first cycle and the end
of the last cycle was used to compute the number of dynamics
steps per unit time. In each test, we use the RNA under flow
system presented below, but we check for boundary crossings
every 50 dynamics steps, as opposed to every five in the rest of the
work presented here. Longer periods between boundary crossing
checks results in better scaling since there is more time between
communication events. On the Blue Gene/P, scaling tests are run
on groups of 64, 128, 256, and 512 processes. In this case, each
process is composed of four cores but acted as a single process in
the NEUS algorithm, where three of the cores are used as
OpenMP threads and one is used exclusively for communication.
Figure 1a shows reasonable scaling up to 512 processes, but
Figure 1b clearly reveals a loss in efficiency as the number of
processes is increased. On Beagle, scaling tests were run on
groups of 48, 96, 192, 384, 768, and 1200 processes. In this case,
each process is composed of a single core; no OpenMP theading
was used. Excellent scaling is observed for these numbers of
processes, as seen in Figure 1, where the number of dynamics
steps per unit time per process is roughly flat. The slight variation
in Figure 1b reflects the specific compute nodes that are selected
to run the job: nodes that are closer together in the machine

Figure 1. Scaling results on two parallel computing architectures: the Intrepid Blue Gene/P and the “Beagle” Cray XE6 supercomputers. Note that the
code was not specifically optimized for performance on either machine. (a) Steps per unit time as a function of the number of processes on both machines.
Perfect scaling on this plot is shownby a straight line with slope equal to 1. (b) Steps per unit time per process. Perfect scaling on this plot would be shown by
a flat line. Note that here a process on the Blue Gene/P is composed of four cores, and a process on the Cray XE6 is composed of a single core.
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result in faster communication, and better scaling overall, which
is expected.
II.B. Model. The system is a model of the catalytic domain of

RNase P RNA from Bacillus stearothermophilus. To make the
simulations tractable, we use a coarse-grained representation that
averages over the atomic structure and dynamics, while taking
into account the secondary and tertiary interactions that stabilize
the native state: the self-organized polymer (SOP) model.29 In
the SOP model, each nucleotide of the RNA is treated as a bead,
and the beads interact through potentials that depend on the
known native structure. The potential defining the model is the
sum of a finitely extensible nonlinear elastic (FENE) potential
that connects adjacent beads30 (VFENE); a Lennard-Jones attrac-
tion between beads that has a minimum at the native structure
distance (Vnb

att); pairwise nonbonded repulsions scaling as r�6, which
locally straighten the chain and mimic steric repulsions between
nucleotides (Vnb

rep); and a Weeks�Chandler�Andersen31 (WCA)
repulsion between each bead and the wall at y = 0 (Vwall). The total
potential function is

VT ¼ VFENE þ V att
nb þ V rep

nb þ Vwall

with

VFENE ¼ � ∑
N � 1

i¼ 1

k
2
R2
0 log 1� ðri, iþ1 � r0i, i þ 1Þ2

R2
0

 !

V att
nb ¼ ∑

N � 3

i¼ 1
∑
N

j¼ i þ 3
εh

r0ij
rij

 !12

� 2
r0ij
rij

 !6
2
4

3
5Δij

V rep
nb ¼ ∑

N � 2

i¼ 1
εl

σ�
ri, iþ2

 !6

þ ∑
N � 3

i¼ 1
∑
N

j¼ i þ 3
εl

σ

rij

 !6

ð1�ΔijÞ

Vwall ¼ ∑
N

i¼ 1
Hð21=6σWCA � yiÞ � 4εl

σWCA

yi

� �12

� σWCA

yi

� �6
" #

ð2Þ
where rij is the distance between residues i and j, and rij

0 is their
distance in the native structure. We set the parameters in eq 2 to
those in Hyeon and Thirumalai,29 namely, k = 20 kcal/(mol� Å2),
R0 = 2 Å, εh = 0.7 kcal/mol, and εl = 1.0 kcal/mol.We set σ = 7 Å to
ensure noncrossing of the chain, andwe setσ* = 3.5Å to prevent the
flattening of helical structures. In Vwall, σWCA = 2 Å, and H(x) is a
Heaviside function equal to 0 for x<0 and 1 for x>0.The size of the
box was chosen such that the residues would interact only with the
y = 0 surface. Consequently, repulsive potentials were not needed
for the other walls of the box, and no collisions of the residues
with those walls were observed in our simulations. The equation
of motion for the polymer is integrated with the Velocity�
Verlet algorithm with time step δt = 40 fs.
The native, folded structure was constructed from the crystal

structure for the full RNase P RNA.32 The coordinates of the
catalytic domain (262 residues) were isolated from the full
structure (417 residues), and coarse-graining into beads was
carried out by replacing the coordinates of each residue with its
center of mass. Unstructured residues, which did not have crystal
structure coordinates (in Figure 2, residues 161�181 in P1,
15�20 in P15, 64�73 in P18, and 106�125 in P19), were added
by introducing the appropriate number of beads into the
sequence, separated by the average bead�bead distance (about
5 Å); these unstructured residues have no contacts. The structure
was allowed to relax to its minimum energy by integrating
without solvent so that the added unstructured residues form

simple loops. Using this structure, we consider a native contact to
exist (Δij = 1) between all pairs of residues i and j with
|i � j| > 2 and a distance less than RC = 14 Å in the native
structure; for all other pairs, Δij = 0.
The solvent in the simulation is modeled using the stochastic

rotation dynamics method,33�36 in which the solvent is repre-
sented by a large number (here, 503 200) of infinitesimal
particles that are grouped into cubic “interaction cells”. Each
step of the algorithm comprises two parts: (1) free streaming,
in which the position of particle i (ri) is updated according to
ri(t + Δt) = ri(t) + vi(t)Δt, where vi is the velocity at time t and
Δt = 150δt is the solvent time step, and (2) “collision”, in which
vi(t +Δt) = vcell(t) +Ω[vi(t)� vcell(t)], where vcell is the average
velocity of particles in the cell containing i and Ω is a stochastic
rotation matrix which rotates vectors around a random axis by
(R, a fixed angle, with equal likelihood. Here, we useR = 0.243π,
which in combination with the other parameters used here for
the solvent gives a viscosity of 0.8 g/m/s, which is approximately
the viscosity of liquid water at our simulation temperature
(300 K). The viscosity was calculated using eqs 10 and 14 of
Kikuchi et al.37

We allow the solvent to influence the RNA by including the
polymer beads in the collisions, as in Webster and Yeomans.38

This is done using

vcellðtÞ ¼
∑

solv ∈ cell
mviðtÞ þ ∑

res ∈ cell
MViðtÞ

Nsolv
cell ðtÞm þ Npoly

cell ðtÞM
ð3Þ

where m = 32 amu is the mass of the solvent particles (chosen to
make a solvent mass density of 1 g/mL) andM = 300 amu is the
mass of the residues, compared with a range in mass for RNA
nucleotides of 320�360 amu. Vi(t) is the velocity vector for
residue i, and the sums on the left and right are over all the solvent
particles in the cell and all the residues in the cell, respectively.

Figure 2. Secondary structure of the RNA molecule. In the simulation,
the 50 end of the molecule is attached to a tether (black sphere) that
prevents the molecule from moving along with the flow. The index of
every tenth residue is shown.
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Ncell
solv(t) and Ncell

poly(t) are the number of solvent particles and
residues in the cell, respectively, at time t. We then include the
polymer beads in the collision step using Vi(t + Δt) = vcell(t) +
Ω[Vi(t)� vcell(t)] whereΩ is the same rotation matrix used for
the solvent particles in the interaction cell.
We use periodic boundary conditions in the x and z directions

and walls that reflect all components of the velocity of the solvent
particles upon collision at y = 0 and y = Ly. We then drive the
solvent to flow in the positive x direction (Figure 3). The
dimensions of the box are Lx = Lz = 384 Å and Ly = 192 Å.
The interaction cells are cubic with a side length of 8 Å, which was
chosen to be comparable with the average distance traveled by a
solvent particle in a time Δt. Following previous work, we shift
the lattice periodically to avoid artifacts34 and employ the
generalized bounce back rule for partially filled cells along the
y = 0 and y = Ly edges.

35 An extra FENE interaction is added
between the 50 terminus and the tether point, located at (120, 25,
192 Å) to prevent the molecule frommoving along with the flow.
The flow is introduced by accelerating each solvent particle

that is not in the y = 0 or y = Ly interaction cells in the x direction

after every rotation step according to vx
i f vx

i + ηΔt, where η is an
acceleration parameter. The η values used here range from η0 to
5η0, where η0 = 625 Å/fs2. Figure 4 shows average flow profiles,
obtained without the polymer. The P�eclet number is the ratio of
advective motion to thermal diffusive motion, given by

Pe ¼ Lv̅x
D

ð4Þ

whereL = 8Å is the characteristic length, vx is the average velocity
of the solvent in the x direction, and D is the self-diffusion
constant of a single residue calculated in zero flow. Here, Pe
ranges from 7.5� 10�3 to 3.9� 10�2, indicating that at all values
of η we examined, thermal motion was much stronger than
advective motion (i.e., Pe, 1). Prior to the start of the umbrella
sampling simulation, the solvent was equilibrated without the
polymer until the flow profiles converged; this required 40 ns,
which corresponds to roughly 6700 streaming steps.
II.C. Order Parameter. The order parameter that we use here

to distinguish between the folded and unfolded states is an
estimate of the number of native contacts that are made in a given
configuration:

NcðtÞ ¼ ∑
N

i¼ 1
∑
N

j 6¼i

Δij ϕðrijðtÞÞ ð5Þ

where rij(t) is the distance between the two residues at time t, ϕ(rij)
is a function that is equal to 1when the contact is satisfied (rij< af rij

0),
is 0 when the contact is not satisfied (rij> 2af rij

0), and varies between
0 and 1 for intermediate values according to (af rij

0/rij)
8, where the

exponent was chosen to make the jump at rij = 2af rij
0 small, while

being efficient to compute. The constant af = 2.0 was used here; we
found that it provided a good balance between limiting sensitivity to
fluctuations within stable states (large af) and detecting early
unfolding activity (small af). A plot of ϕ(rij) is shown in Figure 5.
We use this order parameter to define “folded” and “unfolded”

basins asNcgNfold andNceNunfold, respectively. The choice of
Nfold and Nunfold is discussed in section III. We separate the
transition path ensemble into two subensembles: the unfolding
ensemble and the refolding ensemble. The unfolding ensemble is
composed of all trajectories that originate in the folded basin
(regardless of whether they reach the unfolded basin or return
to the folded one), and the refolding ensemble is composed of all
trajectories that originate in the unfolded basin (regardless of
whether they reach the folded basin or return to the unfolded one).

Figure 3. The simulation cell. The boundaries at y = 0 and y = Ly have
reflective boundary conditions, while the others are periodic. The tether
point is shown as a green sphere, and the RNAmolecule is in blue. A total
of 5000 of the 503 200 solvent molecules are shown here. A flow is
induced in the positive x direction by applying a constant acceleration to
the solvent particles, which in turn causes extension of the RNA
molecule in that direction.

Figure 4. Flow velocity profiles. For each flow rate examined here, we
plot the average velocity of solvent molecules in the x direction as a
function of y. These were obtained without the polymer. The profiles are
parabolic, due to the presence of reflective walls at y = 0 and y = Ly.

Figure 5. The function ϕ(rij) that is used to calculate the order
parameter Nc.
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In other words, the ensembles are defined by the histories rather
than futures of walkers. Each ensemble has its own set of regions
that span the order parameter space. As shown inDickson et al.,15

the two sets of regions can be seen as a single set of nonover-
lapping regions in an extended space, and transition rates
between the basins can be obtained by calculating fluxes in this
extended space.
II.D. Simulation Details. In the simulations presented here,

the saved entry point lists for each region are divided into two
lists of 250 points each. One list is dedicated to points coming
from the right (higher Nc) and the other to points coming from
the left (lower Nc). This helps ensure that the left and right
ensembles are both well described. An element of a list consists
of the positions and velocities of all the residues of the molecule,
as well as forces from the previous step of the Velocity�
Verlet algorithm. Along with these data, we store the weight of
the trajectory and a time counter that is used to determine when
to perform solvent streaming steps. We found it unnecessary to
store the coordinates of the solvent along with the flux input
point, since the solvent relaxes almost instantaneously to the
presence of the polymer (data not shown), as there are no steric
interactions between the polymer and solvent.
In the work below, 2000 RNA time steps in each active sampling

region constitute a cycle. We allow 3000 cycles for progressive
initialization (phase II) and another 3000 cycles with global
weight updates (phase III). We perform a global weight update at
the beginning of phase III and again every 600 cycles after that. As
will be discussed below, the number of sampling regions used
depends on the pathway observed and is either 40 or 84 in each

direction, for a total of either 80 or 168 regions in the extended
space. The total number of sampling steps depends on how fast
regions are initialized in phase II, but it is less than 9.6 � 108 in
the 40 region case and less than 2.02� 109 in the 84 region case.

III. RESULTS

The RNA-under-flow system was examined at five different
flow accelerations: η = η0, 2η0, 3η0, 4η0, and 5η0. These
correspond to P�eclet numbers of 7.5 � 10�3, 1.5 � 10�2,

Figure 6. Nc histograms for both pathways. (a,b) The unfolding and refolding ensembles of path M, respectively. The histograms for all flow pressures
are shown and share a similar shape. (c,d) The unfolding and refolding ensembles of path E, respectively. Flow pressures η/η0 = 4 and 5 are shown. In all
panels, the histograms are normalized such that the sum of the 200 points in each curve is equal to 1.

Figure 7. The contact map that is representative of the folded state for
all flow rates examined here. This map was obtained using structures
from entry points for the region in the unfolding ensemble with the
highest value of Nc, at the end of a η = 2η0 simulation.
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2.3 � 10�2, 3.0 � 10�2, and 3.9 � 10�2, respectively. These
numbers indicate that thermal motion is much more important
than advective motion (i.e., Pe , 1), but as we show, there are
significant flow effects. We also examine the equilibrium case:
η = 0. For each flow rate, we obtained folding and unfolding
rates, probability distributions for the numbers of native con-
tacts, and sets of input structures to each umbrella sampling
region, from which we can reconstruct folding and unfolding
pathways. As detailed below, the folded and unfolded basins were
defined by our measure of the number of native contacts,
Nc (section II.C).
III.A. Competing Unfolding Pathways. Interestingly, we

found two competing reaction pathways for the molecule. One
pathway (“path M”) occurred by breaking contacts in the middle
of the molecule, in and around the P1 loop (residues 150�190,
see Figure 2), while the other (“path E”) occurred by breaking
contacts in and around the P5 region (residues 1�5 and
234�238), which is near the tethered end. We obtained path-
ways in duplicate for each value of η and found a dependence of
the pathway on the flow pressure. For ηe 3η0, we observed path
M in both trials. For η = 5η0, we observed path E in both trials.
And, for η = 4η0, we observed path M and path E each once,
which suggests that path E is more probable for higher flow rates,

and that η = 4η0 is close to a transition point where the relative
probabilities of the two pathways cross over.
The folded basin for both pathways was located at Nc g 960,

and the unfolded basin was placed at the first metastable
unfolded structure we encountered along each unfolding path-
way. Although these structures could be intermediates to further
unfolded states, we will call these structures “unfolded” and their
corresponding basins “unfolded basins”. For path M, we set the
unfolded basin to Nc e 900, and for path E we set the unfolded
basin toNce 834. In both pathways, we define the regions inNc

with an even spacing of ΔNc = 1.5, giving us 40 regions for the
unfolding pathway in path M and 84 regions for the unfolding
pathway in path E. There are an equal number of regions in the
refolding pathways in both cases, giving us a total of 80 and 168
regions in paths M and E, respectively.
III.B. Pathway Analysis. Probability distribution functions of

the order parameterNc are shown in Figure 6, for both pathways,
and for both the unfolding and refolding ensembles. Histograms
were saved every 50 cycles, and each curve shown in Figure 6 is
an average of the last 20 histograms. For path M, we show
histograms for η e 4η0. In the unfolding ensemble (Figure 6a),
there is a strong peak atNc = 960 for all flow rates, corresponding
to the native state. In the refolding ensemble (Figure 6b), there is

Figure 8. Analysis of path M. (a) Contact difference map obtained by subtracting the contact map of the unfolded state from the contact map of the
folded state. This reveals the contacts which are broken along the pathway. The colored circles show the division of these contacts into subgroups. Note
that although the contact map is symmetric, the colored circles are only shown in the lower right triangle for clarity. (b) The number of contacts in each
subgroup is plotted as a function of the total number of contacts averaged over the η = 2η0 ensemble of structures. These curves are computed using
structures in the saved entry point lists for every region in both the unfolding and refolding ensembles, at many times throughout phase III of the
simulation. The vertical line shows the metastable states along the refolding pathway. In the text, the subgroups are numbered 1 to 4, starting at the top.
(c) Representative contacts from each group are shown on the RNA molecule for the folded and unfolded states.
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a peak atNc = 907 corresponding to the first metastable unfolded
state and an intermediate unfolded state at Nc = 942. For path E,
we show histograms for η = 4η0 and 5η0. Here, the refolding
ensemble (Figure 6d) shows that there are two metastable states
near the unfolded basin with peaks at Nc = 820 and Nc = 838, as
well as an intermediate at Nc = 875.
To characterize structures along the pathways, we construct

contact difference maps by subtracting average contact maps for
the unfolded states from that for the folded state shown in
Figure 7. The contact maps for the unfolded states are computed
using the structures from the saved entry point lists for the
regions in the refolding ensembles with the lowest values of Nc,
and similarly a contact map for the folded state is computed using
structures from the saved entry point list for the region in the
unfolding ensemble with the highest value of Nc. The contact
difference maps are shown in Figures 8a and 9a along with
characteristic structures of the folded and unfolded states
(Figures 8c and 9c). On the basis of their kinetic behavior, we

divide the contacts into groups and track the population of each
group as a function of Nc (Figures 8b and 9b).
The vertical lines in Figures 8b and 9b show the metastable

states along the refolding pathway. For path M, the local
maximum at Nc = 942 is associated with the reformation of
contacts in the P1 loop (subgroup 3, the third from the top in
Figure 8b). For path E, the local maximum at Nc = 875 is
associated with the reformation of contacts in the P15 loop
(subgroups 2 and 4). For path M, we observe that the unfolding
and refolding ensembles do not overlap. Specifically, contacts
between the end points of the molecule (P5�P5.1 contacts)
break and reform along the unfolding pathway but remain intact
during the refolding pathway. In this regard, it is important to
keep in mind that the unfolding ensemble, as defined in section
II.C contains both folded-to-unfolded trajectories and folded-to-
folded trajectories. The fact that the feature in question appears
in analogous calculations for the reversible system (η = 0), where
there can be no hysteresis, suggests that the P5�P5.1 contacts

Figure 9. Analysis of path E. See descriptions of panels in Figure 8. (a) Contact difference map. The green and yellow circles define subgroups of
secondary and tertiary contacts within the region, respectively. Although the contact map is symmetric, the colored circles are only shown in the lower
right triangle for clarity. (b) Note in this pathway that there is a strong overlap between the unfolding and refolding ensembles.
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are broken along folded-to-folded trajectories and that this
process is not a causal part of the path M unfolding mechanism.
There are variations in the contact subgroup projections

between the η = 2η0 ensemble (shown in Figure 8b) and the
η = 0 and η = η0 ensembles (not shown). Specifically, at Nc =
930, contacts in subgroup 4 are still mostly intact for η = 2η0 but
are mostly broken in the η = 0 and η = η0 ensembles. This
difference in the pathway coincides with the difference in shape
of the unfoldingNc histograms shown in Figure 6a. For η = 0 and
η = η0, the major drop in probability has already occurred atNc =
930 (going from right to left), where for the others, the
probability continues to drop significantly for Nc < 930.
III.C. Transition Rates. The mean first passage times of the

unfolding processes are given in Tables 1 and 2 for paths M and
E, respectively. These range from 0.60 to 3200ms for pathM and
0.6 to 45 s for path E. As each dynamics step is 40 fs, these
correspond to numbers of dynamics steps between 1.6 � 1010

and 1.1 � 1015. The unfolding and refolding MFPTs are shown
as functions of flow pressure in Figure 10.
Although we are only able to obtain unfolding rates for a small

number of η values, the data suggests counterintuitive behavior
for path M. For small flow rates, the MFPT decreases with
increasing flow, which is intuitive, since one would expect the
flow field to destabilize folded structures. However, for η > η0,
the MFPT increases with the flow rate; unfolding becomes more
difficult as greater flow is applied to the system. Such behavior
could be caused by larger flow gradients at the y = 0 boundary,
causing nucleotides in the P1 loop to be pushed together rather
than pulled apart. The difference in pathways between the ηe η0
flow rates and the ηg 2η0 flow rates described above could also
explain the nonmonotonic rate behavior seen here, since the
different pathways could involve different interactions with the
flowing medium. Further sampling at intermediate flow rates, as
well as isolated studies of the different intermediates, would be
helpful to confirm this trend. For the two data points obtained for
path E, theMFPT for unfolding decreases with increasing flow rate.

We note that the MFPTs for path M and path E are not directly
comparable, since the former measures the average amount of time
to go from 960 to 900 contacts, and the latter measures the average
amount of time to go from 960 to 834 contacts.
The rates of refolding are also given in Tables 1 and 2. They are

much faster, which makes comparisons with straightforward
trajectories possible. We use the umbrella sampling saved entry
point lists to generate an initial unfolded ensemble for each flow
rate, since umbrella sampling is our only access to physically
weighted unfolded states. We compare refolding rates for both
pathways and all flow pressures, which agree to within an order of
magnitude. For pathM, the refoldingMFPT is short (∼1 ns) and
relatively constant with varying flow rate. For path E, the
refolding MFPTs are longer, since the unfolded state is more
stable, and increase with increasing flow rate: 0.76 μs for η = 4η0
and 4.9 μs for η = 5η0. The behavior suggests that, in this regime,
higher flow fields stabilize the unfolded state.
To illustrate the importance of the enhanced sampling algo-

rithm for the unfolding simulations, we computed 16 independent
trajectories of 16 μs (4 � 108 dynamics steps) starting from
structures taken from the folded basin. These trajectories were run
using η = 5η0, and “unfolding” was defined as reaching 900
contacts instead of the usual 834 for path E, in order to increase the
probability of observing an unfolding event. Using NEUS, we
found theMFPT for this process was 0.21ms,making the length of

Figure 10. (a) Mean first passage times for unfolding events, as
predicted by NEUS. For path M, this is the average number of steps
required to go from Nc = 960 to Nc = 900, and for path E, this is the
average number of steps to go fromNc = 960 toNc = 834. (b) Mean first
passage times for refolding events, comparing umbrella sampling
(UMB) and straightforward trajectories (SF). These agree to within
an order of magnitude.

Table 1. Unfolding and Refolding Mean First Passage Times
for Path M, Obtained for η = 0, η0, 2η0, 3η0, and 4η0

a

η/η0

unfolding

(NEUS), in ms

refolding

(NEUS), in ns refolding (SF), in ns

0 29 1.4 1.7

1 0.60 1.4 0.8

2 140 0.40 1.4

3 170 0.48 0.6

4 3200 0.99 0.5
a For refolding pathways, the MFPTs from umbrella sampling (NEUS)
and straightforward sampling (SF) are shown.

Table 2. Unfolding and Refolding Mean First Passage Times
for Path E, Obtained for η = 4η0 and 5η0

a

η/η0

unfolding

(NEUS), in ms

refolding

(NEUS), in μs

refolding

(SF), in μs

4 45000 0.76 0.08

5 670 4.9 1.2
a For refolding pathways, the MFPTs from umbrella sampling (NEUS)
and straightforward sampling (SF) are shown.
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the straightforward trajectories 12.5% of the predictedMFPT, and
no unfolding events were observed. These simulations required
30 days of computation on 16 2.5GHz Intel Xeon processors. This
also emphasizes the computational benefit of parallelization, as the
∼2� 109 steps for the largest umbrella sampling simulations were
completed in ∼30 h of computation on 64 processors. However,
even if a similar parallelization scheme using 64 processors was
employed for straightforward trajectories, we predict that it would
still take an average of ∼1900 years to observe a single path E
unfolding trajectory forη = 4η0, andmany times that to observe an
ensemble of unfolding events.

IV. CONCLUSION

Here, we have presented a parallel version of NEUS and
applied it to a coarse-grained macromolecular system driven far
from equilibrium by flow. We obtained folding and unfolding
rates and mechanisms for a range of flow speeds. This range was
chosen to be physically reasonable yet result in significant flow
effects. It is large compared to 1.6 � 10�5, the P�eclet number of
the flow used to change the magnesium ion concentrations in the
RNase P RNA singlemolecule experiments ofQu et al.,23 and our
simulations suggest that flow did not contribute to the dynamics
discussed in refs 23 and 24, at least at moderately high magne-
sium ion concentrations, which strongly favor the folded state. A
lack of knowledge of the structure of the RNA at low magnesium
ion concentrations prevents us from assessing that situation.

Due to the stability of the native state, unfolding transitions
were extremely slow, occurring as slowly as once in every 1.1 �
1015 dynamics steps, or every 45 s in real time. We observed two
different unfolding pathways, one where secondary contacts were
broken in the P1 loop, and another where contacts were broken
in and around the P5 loop, which is near the tethered end point.
We defined unfolded and folded states using an order parameter
that measures the number of native contacts. If one were to use
more than one order parameter, sampling could be enforced
separately along these two pathways. This would allow for a more
precise description of the competition between the two pathways
for a given flow rate, and a description of the transition between the
pathways of maximum probability as the flow rate changes. Work
is currently underway to achieve this goal. The parallelization
strategy presented here for piecewise sampling methods will
enable treatment of increasingly complex order parameter spaces
as large-scale computational architectures continue to grow in size.
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ABSTRACT: Alchemical free energy calculations play a very important role in the field of molecular modeling. Efforts have been
made to improve the accuracy and precision of those calculations. One of the efforts is to employ a Hamiltonian replica exchange
molecular dynamics (H-REMD) method to enhance conformational sampling. In this paper, we demonstrated that the H-REMD
method not only improves convergence in alchemical free energy calculations but also can be used to compute free energy
differences directly via the Free Energy Perturbation (FEP) algorithm. We show a direct mapping between the H-REMD and the
usual FEP equations, which are then used directly to compute free energies. The H-REMD alchemical free energy calculation
(replica exchange free energy perturbation, REFEP) was tested on predicting the pKa value of the buried Asp26 in thioredoxin. We
compare the results of REFEP with TI and regular FEP simulations. REFEP calculations converged faster than those from TI and
regular FEP simulations. The final predicted pKa value from the H-REMD simulation was also very accurate, only 0.4 pKa units
above the experimental value. Utilizing the REFEP algorithm significantly improves conformational sampling, and this in turn
improves the convergence of alchemical free energy simulations.

’ INTRODUCTION

Free energy, especially the free energy difference between
two states, is a crucial quantity in the study of chemical and bio-
logical systems.1 Knowledge of the free energy differences can
help us understand the behaviors of such systems. For example,
the free energy of binding is one of the criteria used to evaluate
the performance of drugs.2 Therefore, one important aspect of
molecular modeling is to yield accurate free energy differences
efficiently. Many free energy calculation methodologies (such as
free energy perturbation,3 thermodynamic integration,4 umbrella
sampling,5�7 and Jarzynski’s equality8) as well as analysis tech-
niques (such as the weighted histogram analysis method9 and
Bennett acceptance ratio method10,11) have been developed to
achieve this goal. In general, free energy calculations could be
divided into alchemical free energy and conformational free
energy calculations. The alchemical free energy calculations are
often employed when studying the free energy differences of
processes that involve changes in noncovalent interactions. In an
alchemical free energy simulation, a nonphysical reaction co-
ordinate λ is generally adopted in order to connect the initial and
final states. This reaction coordinate is usually expressed as an
interpolation of the initial and final states. Thus, an alchemical
process is achieved through a series of intermediate states
having no direct physical meaning. Since the free energy differ-
ence between two states is a state function, the actual choice
of coordinate cannot, in the limit of infinite sampling, affect qthe
results. Free energy perturbation (FEP) and thermodynam-
ic integration (TI) are two common methodologies that are
utilized in alchemical free energy computations.

One important issue in alchemical free energy calculations is
the convergence of the free energy difference versus computa-
tional cost. The convergence is particularly difficult in systems

involving slow structural transition or large environmental
reorganization as λ changes.12�14 Therefore, conformational
sampling is crucial in alchemical free energy calculations.
Enhanced sampling methods, such as replica exchange mo-
lecular dynamics (REMD),15 orthogonal space random walk
(OSRW),14 and accelerated molecular dynamics (AMD)16

have been applied to free energy simulations in order to
accelerate conformational sampling and, in turn, to yield
accurate and converged free energy differences. Among the
enhanced sampling methodologies, the REMD method is of
particular interest because the weight of each state is a priori
known (Boltzmann factor). The REMD algorithm was initially
introduced by Sugita and Okamoto in 1999. In their REMD
algorithm, N noninteracting copies (replicas) of a system are
simulated atN different temperatures (one each). Regular MD
is performed, and periodically an exchange of configurations
between two (usually adjacent) temperatures is attempted.
Many variants of the original REMD method have been
developed. One of them is the so-called “Hamiltonian REMD
(H-REMD)”.17�20 In the H-REMD algorithms, replicas differ
in their potential energies but (usually) have the same
temperature. In practice, different ways of assigning the
potential energy function to replicas have been developed.
For example, Fukunishi et al.17 scaled hydrophobic interac-
tions and van der Waals interactions. Protein�water as well as
water�water interactions are scaled in the replica exchange
with solute tempering (REST) algorithm.18 Coarse-grained
potential energy functions (low resolution) are combined with

Received: March 3, 2011
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all-atom force fields (high resolution) in the resolution REMD
algorithm.19�21

Both temperature-based and Hamiltonian-based REMD have
been applied to alchemical free energy calculations. Woods
et al.13,22 and Rick23 have combined the temperature-based
REMD with TI calculation. A temperature-based REMD simula-
tion is conducted at each state along the reaction coordinate.
Woods et al.13,22 have also applied the H-REMDmethodology to
FEP and TI calculations. Each replica in theH-REMD simulation
represents a state along the reaction coordinate λ, and a periodic
swap in λ is attempted. Relative solvation free energy of water
and methane as well as the relative binding free energies of
halides to calis[4]pyrrole have been calculated in this way.22 The
Yang group has developed a dual-topology alchemical H-REMD
(DTA-HREM) method.24 Their method was tested on the
free energy of mutating an asparagine amino acid (with two
ends blocked) to leucine. More recently, the Roux group coupled
the FEP methodology with the distributed replica technique
(REPDSTR).25,26 An additional acceleration in the sampling
of the side-chain dihedral angle was also incorporated when
Jiang and Roux utilized the FEP/H-REMD method to study
the absolute binding free energy of p-xylene to the T4 lyso-
zyme L99A mutant.26 In all of those studies, the conformational
sampling and convergence of free energy computations showed
significant improvement when the REMD method was applied.
The protocol presented here accelerates convergence but, of
course, does not solve know problems in the field related to
enhanced sampling of coordinates orthogonal to λ space, which
would hamper many of the current methods.

In this paper, we will demonstrate that FEP is actually already
incorporated in the H-REMD method in an elegant and formal
way. The REFEP method is shown to be not only an enhanced
samplingmethod but also a free energy calculation algorithm.We
will apply the REFEP method to the pKa prediction of thior-
edoxin Asp26. The experimental pKa value of 7.5 has been shown
to be one of the largest shifted from the intrinsic pKa value

27,28

and, hence, makes it an interesting case to be studied theoreti-
cally. TI and FEP (regular molecular dynamics for conforma-
tional sampling) alchemical free energy simulations have been
conducted in order to compare with REFEP simulations. A very
accurate theoretical pKa value is obtained from REFEP simula-
tions. The convergence of the free energy difference and pKa

value is achieved in REFEP simulations much faster than that in
the FEP and TI simulations. The advantage and simplicity of
using the H-REMD simulation to compute the alchemical free
energy difference is clearly shown.

’THEORY AND METHOD

Free Energy Perturbation (FEP). The FEP method, which
was initially introduced by Zwanzig in 1954,3 is a well established
method and is considered the most frequently employed meth-
odology in alchemical free energy calculations.12 The details of the
FEP, as well as the TI, methodology and its applications have been
extensively reviewed.12,29�32 Therefore, only a very brief description
of the FEP and TI methods will be given here. Consider two states
(1 and 2) of a system in the canonical (NVT) ensemble, and their
corresponding Helmholtz free energies A1 and A2. The Helmholtz
free energy difference between two states can be expressed as

ΔA1 f 2 ¼ � kBT lnÆe�½U2ðqÞ � U1ðqÞ�=kBTæ1 ð1Þ

Here, kB is the Boltzmann constant, T is the temperature, and q is
the molecular structure. U1 and U2 are the potential energies of
states 1 and 2, respectively. The bracket with subscript 1 stands
for the average calculated over the structural ensemble gener-
ated by state 1. In order to compute ΔA1f2, one simulation of
state 1 is performed. Once a configuration q is taken, the potential
energy difference at configuration q is computed. The en-
semble average, which is Æe�[U2(q)�U1(q)]/kBTæ1, can be calcu-
lated easily, and hence, ΔA1f2 is obtained. Although the
Helmholtz free energies are utilized here, eq 1 can be extended
to an isothermal�isobaric (NPT) ensemble and to the Gibbs
free energy in the same manner.
When the fluctuations in ΔU in eq 1 are too large, FEP

calculations are notoriously hard to converge. The conver-
gence of the FEP calculation will be poor if the overlap in
phase space between the two states is small. In order to
compute the free energy difference between two states that
are very different, intermediate states mixing the two end
points are adopted in such a way that the differences between
neighbors can be treated as perturbations. A frequently
employed method to generate intermediate states is to
interpolate potential energy functions linearly, as shown in
eq 2. In eq 2, U1 and U2 are the potential energy functions of
states 1 and 2, respectively. Free energy differences between
neighboring states are then computed. The sum of individual
free energy differences will be the targeted free energy
difference between states 1 and 2 (eq 3). There are many
ways of executing FEP calculations involving intermediate
states. The double-ended, double-wide,30,33 and overlap
sampling algorithms34 are among the most popular ones. A
thorough description of different algorithms and their per-
formance can be found in a recent review by Jorgensen and
Thomas.30

UðλÞ ¼ ð1� λÞU1 þ λU2 ð2Þ

ΔA1 f 2 ¼ � kBT∑
i
lnÆe�ðUðλiþ1Þ � UðλiÞÞ=kBTæi ð3Þ

In practice, computingΔA1f2 (forward free energy difference) is
equally easy (or hard) as computing ΔA2f1 (backward free
energy difference), and one is exactly the opposite of the other in
principle. Evaluation of forward and backward free energy
differences provides an indication of convergence. Furthermore,
the potential energy differences generated from both directions
can be utilized to reduce statistical error. The Bennett acceptance
ratio (BAR)method is a frequently employed scheme to improve
the precision of a free energy estimator.10�12

Thermodynamic Integration (TI).Another way of writing the
free energy difference between two states 1 and 2 is

ΔA1 f 2 ¼
Z 1

0

∂A
∂λ

� �
dλ ¼

Z 1

0

∂U
∂λ

� �
λ

dλ ð4Þ

Here, λ is a reaction coordinate connecting states 1 and 2, and U
is the potential energy of a state along the reaction coordinate.
The bracket represents an ensemble average generated at a value
of λ. The integration is often evaluated numerically via trapezoi-
dal rule or Gaussian quadrature. IfU(λ) is constructed as in eq 2,
the derivative of U(λ) with respect to λ is

∂UðλÞ
∂λ

¼ U2 �U1 ð5Þ
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And the free energy difference between states 1 and 2 can be
expressed as

ΔA1 f 2 ¼
Z 1

0
ÆU2 �U1æλ dλ ð6Þ

Hence, the ensemble average of potential energy gap between
states 1 and 2 at each λ value is needed in a TI calculation. In
this manuscript, we use the term TI to refer to constrained TI,
in which the value of λ is not allowed to change at each window.
Hamiltonian Replica Exchange Molecular Dynamics (H-

REMD). The original REMD method utilizes replicas having
different temperatures (T-REMD). Replicas at high tempera-
tures overcome potential energy barriers more easily than those
at low temperatures. Another way to overcome potential energy
barriers is simply to change the potential energy surface to
reduce potential energy barriers. In the H-REMD algorithm,
replicas differ in their Hamiltonians but have the same tempera-
ture. Regular MD is performed, and an exchange of configura-
tions between two neighboring replicas is attempted periodically.
Figure 1 demonstrates the H-REMD algorithm and the free

energy computation in an H-REMD simulation. Let us consider
two replicas 1 and 2 with corresponding potential energies U1

and U2. By employing the detailed balance condition and
Boltzmann weight of each molecular structure, the transition
probability can be written as

wðq1 f q2Þ ¼ minf1, e�½ðU1ðq2Þ þ U2ðq1Þ � U1ðq1Þ � U2ðq2ÞÞ=kBT�g
ð7Þ

where q1 and q2 are the molecular structures of replicas 1 and 2
before an exchange attempt, respectively. A Monte Carlo�
Metropolis criterion35 is used to evaluate whether the attempted
swap of structures between two replicas should be accepted
or not.
Equation 7 can be regrouped as

wðq1 f q2Þ ¼ minf1, e�½ðU2ðq1Þ � U1ðq1Þ þ U1ðq2Þ � U2ðq2ÞÞ=kBT�g
ð8Þ

When comparing the exponential terms in eqs 1 and 8, it is clear
that eq 8 incorporates all information necessary for a FEP
calculation. U2(q1) � U1(q1) is the potential energy difference
computed on the basis of the structural ensemble generated by
U1, while U1(q2) � U2(q2) is the potential energy difference
computed on the basis of the structural ensembles generated by
U2. Every time the transition probability is computed, those
potential energy differences can be utilized to compute the
ensemble average shown in eq 1. Therefore, ΔA1f2 and
ΔA2f1 can be computed on-the-fly utilizing the double-ended
scheme. The ensemble average in eq 1 is computed regardless of
whether an exchange attempt is accepted or rejected. When
employing the H-REMD method to improve conformational
sampling in the study of alchemical changes, H-REMD simula-
tions are able to not only enhance conformational sampling but
also yield the free energy difference directly. In fact, a regular FEP
calculation can be thought of as an H-REMD calculation where
no exchanges are allowed between replicas.
In practice, as shown in Figure 1, there are two free energy

difference calculations (ΔAup and ΔAdown) continuosly asso-
ciated with each replica. Take replica 1 as an example: ΔAup =
ΔA1f2 while ΔAdown = ΔA1f0. In principle, when converged,
ΔA1,up should be equal to the negative of ΔA2,down:

ΔA1, up ¼ � kBT lnÆe�ðU2 � U1Þ=kBTæ1 ¼ �ΔA2, down

¼ kBT lnÆe�ðU1 � U2Þ=kBTæ2 ð9Þ

Any difference (except for the sign) between the two is an
indication of error or lack of convergence.
Convergence was gauged also by the time dependence of the

predicted free energy differences, computing ΔG versus simula-
tion length. This provides an asymptotically unbiased estimator
for ΔG, and all methods presented here must eventually reach

Figure 1. Diagrams displaying the H-REMD exchange algorithm and
free energy calculation. (A) Exchange attempt orders. Replicas con-
nected by a curve are neighbors, and attempts are made to exchange
molecular configurations (q). (B) Free energy calculations in the
H-REMD method. Each replica has two free energy differences: ΔAup

andΔAdown from its attempting neighbor form a pair and are computed
simultaneously, while ΔAdown and ΔAup from its attempting neighbor
form the other pair. In exchange attempts (regardless if the attempts are
accepted or rejected), two pairs of free energy differences are computed
in an alternating fashion utilizing eq 1.

Figure 2. Thermodynamic cycle used to compute the pKa shift. Both
acid dissociation reactions occur in aqueous solution. The “protein-AH”
represents the ionizable residue in a protein environment. The “AH”
represents the model compound which is usually the same ionizable
residue with capped terminii. In practice, a proton does not disappear
but instead becomes a dummy atom. The proton still has its position and
velocity. The bonded interactions involving the proton are still effective.
However, there are no nonbonded interactions for that proton. The
change in the ionization state is reflected by changes of partial charges in
the ionizable residue.
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the same final value (within error bars). REFEP is presented in
this article as showing faster convergence toward the final value.
Simulation Details. Accurately determining the pKa values of

ionizable residues, especially those with large shifts from intrinsic
pKa values, is of great interest both experimentally and
computationally.27,28,36 In this paper, the pKa calculation of
Asp26 in thioredoxin has been selected as a test case in order
to compare the performance of alchemical free energy simula-
tions. Asp26 has been found deeply buried in thioredoxin and

possesses one of the largest pKa shifts among protein carboxylic
groups.27,28 Following the protocol employed in the paper of
Simonson et al.,36 the thermodynamic cycle utilized to compute
the pKa value of an ionizable residue is given in Figure 2. As can
be seen in Figure 2, the use of a model compound as an auxiliary
leg in the thermodynamic cycle makes ΔG3 (proton to proton)
equal to zero. Essentially, the pKa shift relative to the intrinsic
value (pKa,model) is computed as

pKaðproteinÞ ¼ pKaðmodelÞ

þ 1
2:303kBT

½ΔGðproteinAH f proteinA�Þ
�ΔGðAH f A�Þ� ð10Þ

where ΔG(proteinAH f proteinA�) and ΔG(AH f A�) are
the free energy differences between protonated and deproto-
nated aspartic acid in the protein environment and in aqueous
solution, respectively. Alchemical free energy simulations were
performed in order to yield those two terms. In eq 10, the Gibbs
free energy differences are used because experiments determin-
ing pKa values are generally conducted under an isobaric�
isothermal condition.
Aspartic acid dipeptide in implicit water solvent was taken as

the model compound with a pKa value taken as 4.0.37 The
oxidized form of thioredoxin (PDB code 2TRX)38 in implicit
water was used in our simulation. Changes in ionization were
represented by changes in the partial charges of the aspartic acid
side chain (ASHfASP in the AMBER terminology). Since the
van derWaals radius of the proton in aspartic acid is zero for both
protonated and deprotonated species, the free energy difference
only contains the electrostatic interactions.
Three types of free energy simulations have been performed

for both the model compound and the protein: TI (forward and
backward), H-REMD-FEP (REFEP), and regular FEP simula-
tions. Our regular FEP simulations were carried out viaH-REMD
simulations but with all exchange attempts rejected. Compar-
ing the pKa prediction and free energy convergence from FEP
and REFEP simulations will directly indicate the effect of the

Figure 3. (A) Cumulative average free energy differences between protonated and deprotonated aspartic acid in the model compound
(ΔG(AHfA�)). (B) The differences between forward and backward ΔG(AHfA�). (C) Cumulative average free energy differences between
protonated and deprotonated Asp26 in thioredoxin (ΔG(proteinAH f proteinA�)). (D) The differences between forward and backward(G-
(proteinAH f proteinA�).

Table 1. Free Energy Difference between Protonated and
Deprotonated Aspartic Acids Obtained from TI, REFEP, and
FEP Alchemical Free Energy Simulationsa

TI REFEP FEP

ASP model

compound

forward �59.43 (0.06) �59.69 (0.05) �59.84 (0.06)

backward �59.56 (0.06) �59.66 (0.05) �59.72 (0.06)

average �59.50 (0.08) �59.68 (0.08) �59.78 (0.08)

Asp26 in

thioredoxin

forward �54.35 (0.61) �54.29 (0.17) �54.23 (0.56)

backward - 55.82 (0.39) �54.24 (0.14) �53.84 (0.56)

average �55.09 (0.72) �54.27 (0.22) �54.04 (0.79)

forward 5.08 (0.61) 5.40 (0.18) 5.61 (0.56)

ΔG difference backward 3.74 (0.39) 5.42 (0.15) 5.88 (0.56)

average 4.41 (0.72) 5.41 (0.23) 5.74 (0.79)

predicted forward 7.7 (0.4) 7.9 (0.1) 8.1 (0.4)

pKa,protein backward 6.7 (0.3) 7.9 (0.1) 8.3 (0.4)

average 7.2 (0.5) 7.9 (0.2) 8.2 (0.6)
a Free energy differences were calculated by utilizing all data points from
a simulation (5 ns for the model compound and 4 ns for Asp26). The
ΔG difference is given by ΔG(proteinAHf proteinA�)� ΔG(AHf
A�). All backward free energy differences have positive signs and hence
are multiplied by�1. Then, the average values of forward and backward
free energy differences were computed and reported here. All free
energies have units of kcal/mol. The numbers in parentheses are error
bars. The error bars for forward and backward free energy differences of
“model compound” and “Asp26 in thioredoxin” were calculated via
block averages (a simulation was truncated into five blocks). The rest
were obtained by error propagations.
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enhanced conformational sampling due to the exchanges. Linear
interpolation of point charges was carried out in order to assign
side chain charges for intermediate states. A seven-point Gauss-
ian quadrature has been selected to compute total free energy
difference for TI calculations. Therefore, eight λ values (one end
point is needed in either direction) were utilized in the TI
simulation. Due to the implementation of the TI algorithm in
AMBER, 16 replicas were utilized to ensure the same amount of
simulation time for all free energy simulations. A simulation time
of 5 ns was used for each λ value and for each replica in the study
of themodel compound, while for thioredoxin, we used 4 ns runs.
Structural swaps between neighboring replicas were attempted
every 2 ps (1000 MD steps). No particular attempt was made in
this work to optimize the number or location of the replicas, nor
the exchange attempt frequency. Work in this area is in progress.
All simulations were done using the AMBER 10 molecular

simulation suite,39 locally modified to add H-REMD/REFEP
capabilities. The AMBER ff99SB force field40 was utilized in all of
the simulations. The SHAKE algorithm41 was used to constrain
the bonds connecting hydrogen atoms with heavy atoms in all of
the simulations, which allowed the use of a 2 fs time step. The
OBC (Onufriev, Bashford, and Case) generalized Born implicit
solvent model (igb = 5 in the AMBER terminology)42 was used
to model the water environment in all of our calculations. The
cutoff for nonbonded interaction and the Born radii was set to
99 Å. This value is larger than the dimension of both systems.
Langevin dynamics was employed in order to maintain the
temperature at 300 K, using a friction coefficient of 3.0 ps�1.

’RESULTS AND DISCUSSIONS

Acceptance Ratio of H-REMD Simulations. The accuracy of
FEP depends on the overlaps between phase spaces, which can
be measured as overlaps between potential energy difference
distributions.12 The acceptance ratio in an H-REMD simulation
is an indication of the overlap between two potential energy
difference distributions.24 Therefore, it could be utilized to
monitor the convergence of free energy calculation qualitatively.
In our study, large acceptance ratios were observed in both the
model compound and protein H-REMD simulation. The accep-
tance ratio between two neighbors ranged from 0.7 to 0.9 in all
H-REMD simulations. Those large acceptance ratios indicate
that the overlap in phase space is large.
Aspartic Acid Model Compound Study. The free energy

differences on the right-hand side of eq 10 were calculated as
described in the Theory and Method section. The cumulative
average free energy difference as a function of time is reported
here. Figure 3A shows the ΔG(AHfA�) from TI, H-REMD,
and FEP simulations (as mentioned before, a FEP simulation has
been performed by rejecting all exchange attempts in an
H-REMD simulation). The differences between forward and
backward ΔG(AHfA�) are shown in Figure 3B. A converged
alchemical free energy simulation should generate the same
forward and backward free energy numerically (except for an
opposite sign). Any nonzero value is an indication of free energy
not converged.
For a simple system such as aspartic acid in implicit water, 5 ns

of simulation time was long enough for ΔG(AHfA�) to
stabilize in all three alchemical free energy simulations, as shown
in Figure 3A. The forward and backward ΔG(AHfA�) at the
end of each free energy calculation and the corresponding error
bars are listed in Table 1. The forward and backward free energy

differences are the same (within error bars) for both REFEP and
FEP simulations. However, the TI simulations failed to do that,
although the difference was very small (the difference between
forward and backward ΔG(AHfA�) was only 0.13 kcal/mol).
The average of forward and backward ΔG(AHfA�) was taken
as the final value ofΔG(AHfA�) for the model compound and
is also reported in Table 1. Clearly, as shown in Figure 3B, the
REFEP simulations have converged much faster than the FEP
calculations did.
Study on Asp26 in Thioredoxin. The free energy difference

between protonated and deprotonated Asp26 is shown in
Figure 3C and D. By analogy with the model compound plots,
the cumulative average as a function of time is reported. The
cumulative average was clearly not converged during the TI
simulation, and neither was the difference between forward and
backward ΔG(proteinAHf proteinA�). According to Table 1,
after 4 ns of TI simulation, the difference between forward and
backward free energy was 1.4 kcal/mol, while the uncertainty of
the forward and backward free energy differences was 0.61 and
0.39 kcal/mol, respectively. Data not presented here show that
TI requires roughly 40 ns of dynamics before converging to
results comparable with FEP/REFP. It is worth noting that this
comparison is slightly unfair to TI and deserves further explana-
tion. First, we used eight intermediate states for TI versus 16 for
FEP/REFEP. This setup, when executed within Amber, uses the
same CPU time since the TI implementation is done with dual-
topology methods. In fact, reusing the ensemble generated with
the FEP Hamiltonians and computing TI values on that en-
semble produces very fast-converging results.
For regular FEP free energy calculations, the cumula-

tive averages stabilized after roughly 2.2 ns of simulation, while
the cumulative averages for the REFEP simulation stabilized
much faster (shown in Figure 3C). Furthermore, Figure 3D illus-
trates that the difference between forward and backward ΔG-
(proteinAH f proteinA�) in the REFEP reached a value very
close to zero (∼0.05 kcal/mol) very quickly. As described
previously, the final value of ΔG(proteinAH f proteinA�)
was calculated as the average of forward and backward free
energy differences. Although the final free energy differences

Figure 4. Predicted pKa value of Asp26 in thioredoxin as a function of
time. The (ΔG(AHfA�) values utilized in eq 10 were �59.68 and
�59.78 kcal/mol for REFEP and FEP, respectively. The experimental
value is 7.5.
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computed from 4 ns of simulation were the same for REFEP and
regular FEP, the calculations converged much faster in REFEP
than in FEP simulation. Since theH-REMD and FEP calculations
only differed in whether structures were allowed to be exchanged
or not, the improvement in alchemical free energy convergence
resulted from employing enhanced conformational sampling
technique is significant. Data not presented here show that
the histograms of P1(ΔU) exp(�β(ΔU)) for the calculation of
the free energy difference between replicas 1 and 2 for different
sampling times are slightly different for FEP and REFEP. The
REFEP distributions converge faster with time and sample the
left side of the distribution better. This helps rationalize the
faster convergence of our technique.
pKa Prediction for Asp26 in Thioredoxin. The pKa value of

Asp26 in thioredoxin can be computed by eq 10. The final value
of ΔG(proteinAH f proteinA�) from the REFEP simulation
was �54.3 kcal/mol, with a predicted pKa value of 7.9, which is
only 0.4 pKa units above the experimental value. The predicted
pKa value with respect to time from REFEP simulations was
plotted in Figure 4 in order to demonstrate the convergence of
the pKa prediction. Figure 4 shows that REFEP simulations not
only yielded an accurate predicted pKa value but also achieved
convergence very fast. The regular FEP simulation predicted a
pKa value of 8.2, which is 0.7 pKa units above the experimental
value. The convergence in the regular FEP simulation was also
worse than that in the REFEP simulation.

’CONCLUSIONS

Conformational sampling is crucial in free energy calculations.
In the case of alchemical free energy calculations, H-REMD is
a useful and popular method to enhance the accuracy and
convergence of free energy simulations. In this paper, we have
demonstrated that REFEP not only improves conformational
sampling in free energy calculations but also yields a free energy
difference directly via the FEP algorithm. The implementation of
REFEP is trival, once a H-REMD code is in place. The REFEP
alchemical free energy calculation was tested on predicting the
pKa value of Asp26 in thioredoxin and compared with TI and
regular FEP simulations. Free energy differences from the
REFEP simulation converged faster than those from TI and
regular FEP simulations. The final predicted pKa value from the
REFEP simulation was very accurate, only 0.4 pKa unit above the
experimental value. Utilizing the REFEP algorithm significantly
improves conformational sampling, and this in turn improves the
convergence of alchemical free energy simulations.
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ABSTRACT: Multisite λ dynamics (MSλD) is a new free energy simulation method that is based on λ dynamics. It has been
developed to enable multiple substituents at multiple sites on a common ligand core to be modeled simultaneously and their free
energies assessed. The efficacy of MSλD for estimating relative hydration free energies and relative binding affinties is demonstrated
using three test systems. Model compounds representing multiple identical benzene, dihydroxybenzene, and dimethoxybenzene
molecules show that total combined MSλD trajectory lengths of ∼1.5 ns are sufficient to reliably achieve relative hydration free
energy estimates within 0.2 kcal/mol and are less sensitive to the number of trajectories that are used to generate these estimates for
hybrid ligands that contain up to 10 substituents modeled at a single site or five substituents modeled at each of two sites. Relative
hydration free energies among six benzene derivatives calculated from MSλD simulations are in very good agreement with those
from alchemical free energy simulations (with average unsigned differences of 0.23 kcal/mol and R2 = 0.991) and the experiment
(with average unsigned errors of 1.8 kcal/mol and R2 = 0.959). Estimates of the relative binding affinities among 14 inhibitors of
HIV-1 reverse transcriptase obtained from MSλD simulations are in reasonable agreement with those from traditional free
energy simulations and the experiment (average unsigned errors of 0.9 kcal/mol and R2 = 0.402). For the same level of accuracy
and precision, MSλD simulations are achieved ∼20�50 times faster than traditional free energy simulations and thus with
reliable force field parameters can be used effectively to screen tens to hundreds of compounds in structure-based drug design
applications.

1. INTRODUCTION

Free energy calculations are fundamental to obtaining
accurate theoretical estimates of hydration free energies and
protein�ligand binding affinities.1�5 Traditionally, free en-
ergy differences are calculated from alchemical free energy
simulations, which are analyzed by free energy perturbation,
thermodynamic integration, or Bennett acceptance ratio
methods.6,7 These traditional alchemical simulations mutate
one compound into another in a stepwise fashion using several
unphysical intermediates to compute relative free energies or,
alternatively, grow a compound fromnothing to obtain an absolute
free energy. In practice, however, due to the number of inter-
mediates that must be investigated and the length of the simula-
tions, these methods are generally too computationally intensive
to be used routinely in structure-based drug design or systematic
exploration of chemical modifications of a lead compound.

λ dynamics is an alternative free energy method in which the
transformation coordinate between the end states, the parameter
“λ”, is treated as a dynamic variable in the simulations and is
propagated in a manner that is analogous to changes in the
atomic coordinates.8,9 In this way, instead of performing simula-
tions for fixed λ values, all of the intermediate states are explored
in a single simulation. λ dynamics has been used to compute
hydration free energies9,10 and binding free energies11,12 and
to identify ligand binding modes.13�15 λ-dynamics simulation
methods have stimulated the development of other theoretical
approaches for a variety of applications in which the λ parameter
scales the potential energy and dynamically varies throughout the
course of a simulation. For example, constant pHMD (CPHMD)
simulations account for accurate protonation states of protein

residues,16�18 Abrams et al.’s19 adiabatic free energy dynamics
(AFED) generates free energy profiles along a reaction path, and
Zheng et al.’s orthogonal space randow walk method enhances
free energy simulations20 and conformational sampling.21 Bitetti-
Putzer et al.22 uses λ as a self-regulating sampling variable to
efficiently traverse high-energy barriers and to thoroughly ex-
plore low-energy basins, and Tivado-Rives et al.’s23 Just Add
Water (JAWS) strategy identifies positions of water mol-
ecules in binding sites of protein�ligand complexes. Still
other simulation methods use dynamic λ variables in dis-
cretized λ space, such as simulated scaling,24 FEP/REMD,25

and BEDAM.5,26

In traditional alchemical free energy calculations, the hybrid
potential energy function is defined by

VðX, fxgÞ ¼ VenvðXÞ þ ð1� λÞ VðX , x1Þ þ λVðX , x2Þ ð1Þ

where X and xi are the atomic coordinates associated with the
environment and ligand i, respectively, Venv is the potential
energy involving the environment atoms only, and V(X,xi) is
the interaction energy computed between ligand i and the
environment. In this formalism, a hybrid ligand can be con-
structed in which all atoms that are common to both ligands are
represented once, while all atoms that are unique to each ligand
are represented explicitly. Atoms in the common ligand core are
then treated as part of the environment, while atoms that are
unique to each ligand are modeled as substituents on this
common core. In λ dynamics, the hybrid molecule is extended
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to N ligands, and the corresponding hybrid potential energy
function is constructed to be

VðX , fxg, fλgÞ ¼ VenvðXÞ þ ∑
N

i¼ 1
λiðVðX , xiÞ � FiÞ ð2Þ

with the constraints

0 e λi e 1 ð3aÞ

∑
N

i¼ 1
λi ¼ 1 ð3bÞ

where λi is the coupling parameter associated with ligand i and
Fi is a precalculated biasing potential that enhances the sam-
pling of each λi ≈ 1 state. The dynamics of the system are
generated from the extended Hamiltonian:

HoðX , fxg, fλgÞ ¼ Tx þ Tλ þ VðX , fxg, fλgÞ ð4Þ
where Tx and Tλ are the kinetic energies of the atomic
coordinates and λ variables, respectively (λ variables are treated
as volumeless particles with mass mλ). A ligand is defined to be
“dominant” over other ligands when its corresponding λ value
approaches 1. The difference in the changes in free energy in a
given environment between ligands i and j is

ΔΔGj f i ¼ � kBT ln
Pðλi ¼ 1, fλm 6¼i ¼ 0gÞ
Pðλj ¼ 1, fλm 6¼j ¼ 0gÞ ð5Þ

where P(λi = 1,{λm 6¼i = 0}) corresponds to the amount of time
ligand i has λi = 1 during the λ-dynamics simulation; in practice,
the amount of time ligand i has λi > 0.8 during the simulation is
counted. The relative binding affinities for each pair of ligands
that are represented in the hybrid molecule can be estimated
directly from simulations in the protein environment where the
{Fi} in eq 2 is assigned to be the relative free energy estimates
for the solvent arm of the thermodynamic cycle. For a more
detailed discussion of λ dynamics, the reader is referred to ref 9.

The original λ-dynamics methodology was implemented for
modeling multiple substituents at a single site on a common
ligand framework. By constrast, many experimental combinatorial
chemistry approaches systematically vary substituents at multiple
sites on a core compound. For example, structure�activity relation-
ship studies often evaluate the efficacy of putative drug molecules
that are chemical variants of a promising lead compound.

Here, we present a new version of λ dynamics that enables
multiple substituents at multiple sites on a common ligand core
to be modeled and demonstrate its usefulness for estimating
series of relative hydration free energies and ligand binding
affinities. With the ability to examine multiple substituents at
multiple sites on a core molecule, this multisite λ-dynamics
(MSλD) method has the potential to evaluate the relative free
energies of many compounds simultaneously and further in-
crease the efficiency of the λ-dynamics approach to free energy
calculations. Furthermore, we have developed a strategy to
implicitly satisfy the holonomic constraints on {λ} that are
defined in eq 3 and thus substantially improve the numerical
stability of these simulations up to timesteps of 2 fs.27

First, using hybrid ligands that represent series of benzene,
dihydroxybenzene, and dimethoxybenzene compounds, we demon-
strate the robustness of MSλD for thorough sampling in vacuum
and solvent environments. Second, we show that relative hydration
free energies of six benzene derivatives that are estimated from

MSλD compare very well with those obtained from traditional
alchemical free energy simuations but at ∼1/20 the computa-
tional cost. Finally, we illustrate how estimates of the compo-
nents of the relative binding affinities of 14 inhibitors of HIV-1
reverse transcriptase are computed about 50 times faster using
MSλD relative to traditional free energy methods and yield
comparable quality results. This study reveals the utility ofMSλD
as an effective sampling strategy in structure-based drug design to
screen through on the order of tens to hundreds of variations of a
lead compound in a reasonable amount of time.

2. METHODS

2.1. Multisite λ-Dynamics (MSλD) Theory. To enable multi-
ple substituents at multiple sites to be sampled during λ dynamics,
we have extended the hybrid potential energy function to be

VðX , fxg, fλgÞ ¼ VenvðXÞ þ ∑
Msites

S¼ 1
∑
NS

i¼ 1
λS, iðVðX , xS, iÞ � FS, iÞ

þ ∑
Msites�1

S¼ 1
∑
NS

i¼ 1
∑
Msites

T¼ S þ 1
∑
NT

j¼ 1
λS, iλT, jðVðxS, i, xT , jÞÞ ð6Þ

with the holonomic constraints:

0 e λR, i e 1 ð7aÞ

∑
NR

i¼ 1
λR, i ¼ 1 ð7bÞ

for each site R. Msites is the total number of sites which contain
multiple substituents, and NS is the number of substituents at site
S on the common ligand framework. The double summation in the
second term of the hybrid potential accounts for the interactions
between the environment and each substituent at each site in the
system. The third term accounts for the interactions between each
substituent and the substituents modeled at all other sites. Note
that substituents at a given site do not “see” each other in these
simulations. In this case, a ligand is now described to be “domi-
nant” or “present”when the λ values associatedwith its constituent
substituents are dominant at the same time. For systems with two
substituent sites, the relative free energies between two distinct
compounds are estimated via

ΔΔG1, i;2, j f 1, k;2, l ¼ � kBT ln
Pðλ1, k ¼ 1, λ2, l ¼ 1Þ
Pðλ1, i ¼ 1, λ2, j ¼ 1Þ

ð8Þ
Instead of using the Lagrange multiplier method to satisfy the
holonomic constraints in eq 7 explicitly, in this new implementation,
we implicitly satisfy the constraints by defining λ’s for the N
substituents at site R to be

λR, i ¼ e5:5sin θR, i

∑
NR

j¼ 1
expð5:5sin θR, jÞ ð9Þ

Using this formalism forMSλD, it is the values ofθ that have fictitious
masses,mθ, and are propagated through the equations ofmotion, not
the λ values directly. Thus, the extended Hamiltonian is defined as

HoðX , fxg, fλðθÞgÞ ¼ Tx þ Tθ þ VðX , fxg, fλðθÞgÞ ð10Þ
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Multisite λ dynamics has been implemented in the CHARMM
macromolecular software package, version c36a4.28,29

2.2. Hybrid Ligands. Parameters and partial charges for the
hybrid ligands were assigned from the recently developed
CHARMM General Force Field (CGenFF).30 Parameters and
partial charge distributions for the TIBO compounds were
optimized in our previous work31 using our in-house parame-
trization tool MATCH32 and quantum mechanical calculations
and are included in that work’s Supporting Information.
2.2.1. Model Compounds. Model hybrid ligands were con-

structed to represent multiple identical benzene, dihydroxyben-
zene, or dimethoxybenzene molecules. Each hybrid benzene
molecule contained a single benzene ring with N distinct pairs
of hydrogen and ipso carbon atoms at one or two sites on the
common ring (see Figure 1A). Similarly, each hybrid dihydrox-
ybenzene molecule consisted of a single benzene ring with N
hydroxy groups and ipso carbon atoms at the para positions on
the common ring, and each hybrid dimethoxybenzene molecule
consisted of a single benzene ring with N methoxy groups and
ipso carbon atoms at the para positions on the common ring (see
Figure 1B). The hybrid molecules are identified in the text by the
names “Nsite1 substituent � Nsite2 substituent” where substitu-
ents “h”, “oh”, and “och3” designate the hydrogen atom, hydroxy,
and methoxy moieties, respectively.
2.2.2. Benzene Derivatives. A hybrid ligand was constructed to

represent six benzene derivatives: benzene, toluene, benzalde-
hyde, phenol, 4-methyl phenol, and 4-hydroxybenzaldehyde. At
site 1, a hydrogen atom and methyl and aldehyde groups along
with their corresponding ipso carbon atoms were modeled; at
site 4, a hydrogen atom and hydoxyl group along with their
corresponding ipso carbon atoms weremodeled (see Figure 1C).

Experimental hydration free energies were compiled fromCabini
et al.;33 the relative hydration free energies for all pairs of these
compounds are listed in Table 2.
2.2.3. TIBO Compounds. Three hybrid TIBO molecules were

constructed to represent a total of 14 unique inhibitors of HIV-1
reverse transcriptase. Figures 1D�F illustrate the hybrid ligands,
and Table 1 summarizes the experimental binding free
energies34,35 of the TIBO compounds that were included in
these calculations. Each hybrid molecule contained both CdO
and CdS variations at the X site as well as variations involving
nonhalides (Figure 1D) or halides (Figure 1E) at the C-8 site or
variations at the C-9 site (Figure 1F). One TIBO pair (XdOfS,
YdH) is represented in each of the three hybrid molecules.
2.3. SimulationDetails. In all MSλD simulations, the leapfrog

Verlet algorithm was used to integrate the equations of motion
and propagate the atomic coordinates and velocities as well as the
θ values and their velocities. A nonbonded cutoff of 15 Å was
used, and van der Waals switching and electrostatic shifting
functions were implemented between 10 Å and 12 Å unless
otherwise specified. Hydrogen bonds were restrained using the
SHAKE36 algorithm, and the time step was 2 fs unless otherwise
specified. Each θiwas assigned a fictious mass of 5 amu 3Å

2, and λ
values were saved every 10 steps. Linear scaling by λ was applied
to all energy terms, except the bond and angle terms which were
treated at full strength regardless of λ value. The threshold value
for assigning λR,i ≈ 1 was λR,i g 0.8 unless otherwise specified.
To enhance transition rates between substituents, restraint
functions were employed to superimpose the ipso carbons on
one another at each site, and variable biases (Fvariable) were added
to the hybrid potential energy function in eq 6 for each λR,i:

FvariableR, i ¼ kðλR, i � 0:8Þ2kcal=mol; if λR, i < 0:8
0; otherwise

(
ð11Þ

with force constants, k, assigned between 0 and 7 kcal/mol. The
temperature was maintained near 310 K by coupling to a Langevin
heat bath using a frictional coefficient of 10 ps�1 for all nonprotein
atoms and 5 ps�1 for each θi. Ten independent simulations using

Figure 1. Schematic representation of three model systems that we
have used to assess the quality of the MSλD implementation in
CHARMM.Hybrid molecules representing multiple benzene molecules
by modeling distinct sets of hydrogen and corresponding ipso carbon
atoms at (A) site 1 and (B) sites 1 and 4 on a common benzene core.
(C) A hybrid molecule representing six benzene derivatives modeled by
three substituents at site 1 and two substituents on site 4 on a common
benzene core. Hybrid TIBO molecules representing 14 inhibitors of
HIV-1 reverse transcriptase containing both CdO and CdS variations
at the X site and (D) variations involving nonhalides at the C-8 site or
(E) halides at the C-8 site or (F) variations at the C-9 site.

Table 1. Molecular Structures and the Corresponding
Experimental IC50 and Binding Free Energies of the TIBO
Analogues

compound X Y IC50
a (μM)

ΔGbind
b

(kcal/mol)

hybrid

molecule

1 S 8-Br 0.0030 �12.09 E

2 S 8-CH3 0.0136 �11.16 D

3 S 8-CCH 0.0296 �10.69 E

4 S H 0.0440 �10.44 D, E, F

5 S 8-I 0.0474 �10.39 E

6 O 8-Br 0.0473 �10.39 E

7 S 8-CN 0.0563 �10.29 D

8 O 8-I 0.0880 �10.01 E

9 O 8-CCH 0.4376 �9.02 D

10 S 9-CF3 0.4850 �8.96 F

11 O 8-CH3 0.9890 �8.52 D

12 O 8-CN 1.1396 �8.43 D

13 O H 3.1550 �7.81 D, E, F

14 O 9-CF3 5.9190 �7.42 F
aRefs 34 and 35. bCalculated from ΔGbind=RT ln IC50 at 310 K.
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different initial seed values of θi were performed unless otherwise
stated, and the resulting averages and standard deviations were
reported. All calculations and analyses were performed using the
new implementation of multisite λ dynamics in the BLOCK
module in CHARMM version c36a4 on dual 2.66 GHz Intel
Quad Core Xeon processors.
In all FEP/BAR calculations, for each pair of compounds, 23 λ

windows (λ = 0, 0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3,
0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.925, 0.95, 0.975, 0.99, and
1.0) were used with soft-core potentials,37 and the resulting
trajectories were analyzed using the Bennett acceptance ratio
(BAR) method.38 Three independent series of simulations were
performed for each pair, and the average and standard deviation
over these three series are reported. All simuations were per-
formed using the BLOCK module in CHARMM, and BAR
analyses were performed using a modified version of pyMBAR.39

2.3.1. Model Compounds. Solvent simulations were per-
formed using 351 TIP3P40 water molecules in a water box of
22 Å3 with periodic boundary conditions. Each θi was assigned a
fictitious mass of 12 amu 3Å

2. Heating and equilibration phases
were 4 and 10 ps, respectively, and production runs were 25 and
3 ns for vacuum and solvation simulations, respectively, unless
otherwise stated. A nonbonded cutoff of 15 Å was used, and van
der Waals switching and electrostatic force shifting functions
were implemented between 10 Å and 12 Å.
2.3.2. Benzene Derivatives. All relative hydration free energies

were computed from the difference between relative free energy
changes evaluated from solvated and vacuum simulations. Solvent
simulations were performed using 351TIP3P40watermolecules in
a water box of 22 Å3 with periodic boundary conditions.
Only one set of MSλD simulations was required to compute

the relative hydration free energies among all pairs of benzene
derivatives. Relative free energies for each pair were averaged over
results obtained from three independent trajectories. Initial biases
{Fi} for the six benzene derivatives were approximated in the
solvent and vacuum simulations by theminimizedGBMV41,42 and
vacuum energies for the individual ligands, respectively. Biases
were optimized iteratively so that the final simulations in a given
environment were projected to yield at least 50 transitions per site
and at least 400 snapshots in which each unique compound was
assigned to be “dominant”, i.e., the substituent at site 1 and
substituent at site 4 that corresponded to the compound had
λi ≈ 1. Heating and equilibration phases were 4 ps each. Produc-
tion runs for the bias optimization stages were 200 and 20 ps for
vacuum and solvent simulations, respectively, while the produc-
tion runs for the final stage were 2 ns.
Nine series of traditional alchemical free energy simulations

were performed for pairs of benzene derivatives that differed
from one another at only one substituent site; from these
simulations, relative hydration free energies for the remaining
six pairs of compounds were inferred. Short heating and equili-
bration phases were performed, and production runs were 1 ns
for both vacuum and solvent environments.
2.3.3. TIBO Compounds. Relative binding free energies were

computed via thermodynamic cycles by performing MSλD
simulations for subsets of TIBO compounds both in a solvent
and while bound to the non-nucleoside reverse transcriptase
inhibitor (NNRTI) binding pocket in HIV-1 RT. The same
simulation parameters were used as was described in ref 31. For
the solvation simulations, the hybrid molecules were solvated in a
20 Å3 box of 244 TIP3P40 water molecules, and periodic
boundary conditions were employed. For the bound simulations,

the PDB structure, 1TVR,43 was truncated so that only residues
within 20 Å of the crystallographic TIBO compound were
retained, and the truncated protein�ligand system was solvated
in a 20 Å sphere of 667 TIP3P40 water molecules. Stochastic
boundary conditions using a solvent boundary potential44 of
22 Å with a 15 Å buffer region were employed. In addition to the
bond and angle terms, the dihedral angle terms of the hybrid
ligand were treated at full strength regardless of λ value.
Three sets ofMSλD simulations were required to compute the

relative binding free energies among the 14 TIBO compounds.
Initial fixed biases {Fi} in the solvent environment were estimated
from the minimized energies of the individual ligands using the
GBMV implicit solvent model41,42 and were optimized iteratively
using simulations of 200 ps in length such that the final simulations
were projected to yield at least 50 transitions per site and 400
snapshots in which each unique ligand was assigned to be “domi-
nant”. Biases {Fi} for the protein simulationswere assigned from the
MSλD-estimatedΔΔGsolv values. Final production runs were 2 and
1 ns for the solvated and bound simulations, respectively. Ligand
populations from six 1 ns MSλD simulation trajectories were
combined to compute relative free energies. The reported averages
and standard deviations for MSλD simulations are calculated from
three independent series of six MSλD trajectories.
Series of alchemical free energy simulations were performed

for all 27 pairs of TIBO compounds, i.e., all pairs within the three
hybrid molecules whose identities varied at only one site. Short
heating and equilibration phases were performed, and produc-
tion runs were 500 and 250 ps for solvent and bound environ-
ments, respectively.
2.4. Model Quality. All MSλD trajectories were analyzed

using new routines that we have implemented in CHARMM.
The fraction physical ligand (FPL) is a metric that describes the
proportion of time that a full or physical ligand, as compared with
only partial or unphysical ligands, is present during the course of a
simulation. Transition rates (τtrans(R)) among substituents on site
R quantify the rate at which the identity of the “dominant”
substituent changes throughout a simulation. The relative free
energy difference for each pair of compounds (ij) in the hybrid
molecules was estimated by averaging over results from multiple
simulation trajectories. Alternatively, ligand populations frommulti-
ple trajectories were combined to compute the relative free energy
difference by

ΔΔGkðijÞ ¼ � kBT ln
∑
M

k¼ 1
Pðλj ¼ 1Þ

∑
M

k¼ 1
Pðλi ¼ 1Þ

ð12Þ

3. RESULTS

A new version of λ dynamics, termed multisite λ dynamics
(MSλD), has been implemented and is capable of simultaneously
evaluating multiple chemical substituents at any number of sites
on a common ligand core. The efficacy of this implementation of
MSλD free energy simulations has been tested in three model
systems. Figure 1 illustrates representative molecular structures
of the alchemical hybrid molecule that are associated with each
of these model systems. The first system includes a series of
benzene, dihydroxybenzene, or dimethoxybenzene molecules in
which multiple hydrogen atoms or hydroxy or methoxy groups



2732 dx.doi.org/10.1021/ct200444f |J. Chem. Theory Comput. 2011, 7, 2728–2739

Journal of Chemical Theory and Computation ARTICLE

and their corresponding ipso carbon atoms are present at either
site 1 or at site 1 and site 4 on a common benzene framework.
The second system represents a series of six benzene derivatives:
benzene, toluene, benzaldehyde, phenol, 4-methyl phenol, and
4-hydroxybenzaldehyde, for which experimental hydration free
energies are available.33 The third system represents a series of
TIBO derivatives whose binding affinities to HIV-1 reverse
transcriptase are known experimentally.34,35 Since each substi-
tuent at each site interacts with each of the substituents at the
other sites, a hybrid molecule with multiple substituents at two
sites represents Nsite1�Nsite2 distinct molecules where NR is the
number of substituents that are modeled at site R.
3.1. Relative Free Energies for Multiple Benzene, 1,

4-Dihydroxybenzeneand1,4-DimethoxybenzeneMolecules.
In previouswork,27we computed relative free energies in a vacuum
and a solvent for pairs of identical benzene molecules that are
represented in the model hybrid ligands. Given that each benzene
molecule is assigned the same force field parameters, relative
free energy differences of exactly 0 kcal/mol should theoretically
be obtained in any environment; thus, any deviations in the
simulation estimates from 0 kcal/mol can be understood as errors
due to limitations in the MSλD sampling specifically. In addition,
we considered the increasingly flexible and therefore more chal-
lenging systems of multiple, identical 1,4-dihydroxybenzene
and 1,4-dimethoxybenzene compounds. For up to 10 substituents
evaluated at a single site and five substituents evaluated at each of two
sites, the average errors are on the order of 0.03 and 0.07 kcal/mol
with maximum deviations of 0.12 and 0.28 kcal/mol for vacuum
(25 ns) and solvent (2.25�3 ns) simulations, respectively.
Here, we characterize the sampling efficiency of MSλD in com-

puting the free energy differences among these different hybrid
ligands. First, the quality of results for the model compounds in
vacuum environments is primarily dependent on the length of the

simulation and is less affected by the complexity of the substituents
which are being sampled, as demonstrated in Figure 2a. For each
model system in a vacuum, the average unsigned error of the relative
free energies estimated for all benzene, dihydroxybenzene, or
dimethoxybenzene pairs that are averaged over 10 simulations each
of length 250 ps are within 0.22 kcal/mol of the exact solution. The
maximumobserved errors for these short trajectory lengths are non-
negligible, however, with deviations of up to 0.9 kcal/mol for any
single ligandpair from simulations of the hybrid ligands representing
10 benzene, 25 benzene, 25 dihydroxybenzene, and 25 dimethox-
ybenzene molecules. However, within 10 ns (∼8 CPU minutes
on a single processor), the average unsigned error over all ligand
pairs is 0.03 kcal/mol, and all ligand pairs have errors of less than
0.15 kcal/mol.
Benzene and dihydroxybenzene hybrid ligands experience similar

transition rates among the “dominant” substituents at each site
relative to one another and in both vacuum and explicit solvent
environments. By contrast, transition rates for the dimethoxyben-
zene hybrid ligands are systematically slower than the benzene and
dihydroxybenzene hybrid ligands and are systematically slower in a
solvent than in a vacuum. This reduction in transition rates results
in longer convergence times for simulations of the more flexible 1,
4-dimethoxybenzene relative to the corresponding benzene and
dihydroxybenzene simulations, as shown in Figure 2b.
Finally, the quality of the relative free energy estimates is

virtually insensitive to the specific threshold value that is used
to define the presence of a “dominant” substituent, i.e., where
λR,i ≈ 1 for the λR,i > threshold. While the actual ligand
populations that are used in eq 8 to compute relative free energies
depend on the threshold value, the ratio of the ligand populations
is stable for threshold values between 0.8 and 0.95. For threshold
values below 0.95, the accuracy of the relative free energies is
primarily dependent on the length of the trajectory. Figure 2c,d

Figure 2. Sensitivity ofMSλD simulations in estimating relative free energy differences based on hybrid ligands representingmultiple, identical benzene
(nh� nh) molecules, 25 dihydroxybenzene (5oh� 5oh) molecules, and 25 methoxybenzene (5och3� 5och3) molecules based on trajectory length in
(A) vacuum and (B) solvent environments. Sensitivity of MSλD simulations for the 25 methoxybenzene (5och3� 5och3) molecules as a function of the
threshold value used to assign λi,R≈ 1 in (C) vacuum and (D) solvent environments. The reported unsigned errors were averaged over all ligand pairs
whose individual relative free energies were obtained from data combined from 10 independentMSλD trajectories. Note: not all ligands were sampled as
the “dominant” ligand in the 100 ps vacuum trajectories with threshold values λi,R >0.95 .
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illustrate the quality of results in vacuum and solvent environ-
ments that are obtained for the dimethoxybenzene hybrid ligand
which contained five substituents at each site as a function of the
specific cutoff or threshold value that is used to define λR,i ≈ 1.
3.2. Relative Hydration Free Energies of Six Benzene

Derivatives. Relative hydration free energies were computed
for six benzene derivatives that differ from one another by the
identity of the substituents in the para positions. To control for
the influence of the force field parameters on the quality of the
simulation results, MSλD results are first compared with those
obtained from the Bennett acceptance ratio method analysis of
traditional alchemical free energy simulations using the same
ligand parameters (FEP/BAR; see Table 2). As shown in
Figure 3a�c, the relative free energies estimated from MSλD
and FEP/BAR agree very well with one another for each arm of
the thermodynamic cycle (with R2 values of 1.00 and 0.999 for
the vacuum and solvent environments, respectively) and for the
overall relative hydration free energies (with an R2 value of 0.990
and slope of 1.0). The average unsigned difference between
relative hydration free energies computed by FEP/BAR and
MSλD for each pair of compounds is 0.29 kcal/mol with a
maximum deviation of 0.56 kcal/mol.
The relative hydration free energies estimated from the MSλD

simulations correlate well with those that were measured experi-
mentally and have an average unsigned error (AUE) of 1.8 kcal/mol
relative to experimental values and an R2 of 0.959 (Figure 3d).
The overall error, however, is dominated by contributions from
pairs that include 4-hydroxybenzaldehyde; specifically, the five
ligand pairs that include 4-hydroxybenzaldehyde have an AUE
of 2.9 kcal/mol while the remaining 10 pairs have an AUE of
1.2 kcal/mol. The FEP/BAR results also yield an overall AUE of
1.8 kcal/mol with errors of 3.2 and 1.1 kcal/mol for pairs that
include and exclude 4-hydroxybenzaldehyde, respectively.

We also explored the impact of averaging relative free energy
changes obtained over multiple trajectories for a hybrid ligand.
When multiple independent simulations initially explore different
regions of phase space, the individual trajectories can be combined
to give reasonable relative free energy estimates in a short amout
of time. For example, ligand populations from10 10-ps simulations
were combined to give relative free energy estimates that are
within 0.3 kcal/mol of the converged values, as shown in Figure 4a.
However, the data from the explicit solvent simulation trajectory
depicted in Figure 4b illustrate that longer trajectories are required
to sufficiently explore the λ phase space. In fact, trajectory lengths
of 100 ps are required for each of the 10 solvent simulations to
sample all six distinct benzene derivatives. These results agree well
with those that would be predicted from transition rates obtained
in the previous section using model compounds. Using estimated
transition rates for the model hybrid dimethoxybenzene com-
pounds of 0.2�1.1 ps�1 that were reported in ref 27 and assuming
that transitions are equally probable among each of the substitu-
ents at each site and that transitions at the two sites are not
correlated, a minimum of 30 transitions or 30�150 ps would be
required to sample each of the six distinct benzene derivatives five
different times during a single trajectory. With total combined
trajectory lengths of 1 ns, whether from a single simulation of 1 ns
or 10 simulations of 100 ps, the relative free energy estimates are
within 0.15�0.25 kcal/mol of the converged results.
3.3. Relative Binding Free Energies of 14 HIV-1 RT Inhibi-

tors. In our previous study,31 relative binding affinities for 44 pairs
of TIBO compounds (among 21 unique TIBO compounds) were
estimated from traditional alchemical free energy simulations
analyzed by thermodynamic integration. In this current study,
we are focusing on the ability ofMSλD to estimate relative binding
free energies when modeling different substituents at more than
one site on a common ligand core simultaneously and so have only

Table 2. Relative Hydration Free Energies (ΔΔG) in kcal/mol for All Pairs of Six Benzene Derivatives Computed by MSλD and
Alchemical Free Energy Perturbation Simulations Analyzed Using the Bennett Acceptance Ratio Method (FEP/BAR)a

exptl MSλD FEP/BAR

site1_site4 ΔΔGb ΔΔGvac ΔΔGsolv ΔΔG ΔΔGvac ΔΔGsolv ΔΔG

react. prod. avg σ avg σ avg avg σ avg σ avg

h_h h_oh �6.41 �10.58 0.07 �15.18 0.12 �4.60 �10.61 0.03 �15.15 0.04 �4.54

h_h ch3_h �0.02 �6.82 0.05 �7.29 0.13 �0.47 �6.76 0.03 �6.58 0.02 0.18

h_h ch3_oh �5.88 �17.29 0.07 �22.34 0.14 �5.05 �17.24 0.05 �21.59 0.10 �4.34

h_h cho_h �3.52 7.38 0.09 5.23 0.16 �2.14 7.39 0.01 5.78 0.04 �1.62

h_h cho_oh �10.72 �2.41 0.20 �9.54 0.22 �7.12 �2.42 0.07 �8.77 0.08 �6.35

h_oh ch3_h 6.39 3.76 0.08 7.89 0.13 4.12 3.85 0.06 8.56 0.07 4.72

h_oh ch3_oh 0.54 �6.71 0.04 �7.16 0.10 �0.45 �6.63 0.03 �6.44 0.06 0.20

h_oh cho_h 2.89 17.96 0.07 20.41 0.14 2.45 18.00 0.04 20.93 0.08 2.92

h_oh cho_oh �4.30 8.17 0.16 5.64 0.19 �2.53 8.19 0.05 6.37 0.03 �1.81

ch3_h ch3_oh �5.85 �10.47 0.07 �15.04 0.09 �4.57 �10.51 0.03 �15.00 0.04 �4.50

ch3_h cho_h �3.50 14.20 0.10 12.52 0.10 �1.67 14.19 0.00 12.39 0.02 �1.81

ch3_h cho_oh �10.69 4.41 0.19 �2.24 0.17 �6.65 4.24 0.06 �2.36 0.09 �6.61

ch3_oh cho_h 2.35 24.67 0.05 27.57 0.09 2.90 24.80 0.03 27.54 0.07 2.73

ch3_oh cho_oh �4.84 14.88 0.16 12.80 0.14 �2.08 14.85 0.03 12.79 0.05 �2.07

cho_h cho_oh �7.19 �9.79 0.16 �14.77 0.14 �4.98 �9.83 0.01 �14.56 0.02 �4.74
aAverages (avg) and standard deviations (σ) are calculated from three independent MSλD trajectories via eq 8 or a series of FEP/BAR trajectories.
ΔΔGvac and ΔΔGsolv represent the relative free energies estimated in the vacuum and solvent environments, respectively. FEP/BAR values in italics
represent cases where the reactant and product differ at both sites, and thus ΔΔG estimates were obtained by combining results for the two FEP/BAR
simulations evaluating changes at one site and then the other site. bCalculated from ref 33 at 310 K.
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included the 14 TIBO compounds for which experimental binding
data are available for both X = O and X = S for a given substituent

on site Y. In the previous study, we used different patch sizes (i.e.,
the number of atoms that were used to represent the substituents at
each site) and scaled the dihedral angle terms by their corresponding
{λi}; therefore, we repeated the free energy simulations so that we
could compare each arm of the thermodynamic cycle with results
obtained from the corresponding MSλD simulations. Free energy
simulation trajectories were run for significantly longer than in our
previous study, and soft-core potentials were used to ensure the
convergence of the alchemical free energy simulations at the end
points.
Table 3 and Figure 5 summarize the results for the relative free

energies that have been computed for pairs of these TIBO
compounds in solvent and protein environments by using either
the new implementation of MSλD simulations or traditional
alchemical free energy simulations analyzed by BAR. Transition
rates at each site in the MSλD simulations are comparable to
those observed for the model compounds and benzene deriva-
tives modeled in a solvent and range from 0.02 to 0.9 ps�1.
The agreement between these two methods for estimates in the
solvent environment is very good: the average unsigned differ-
ence and maximum difference are 0.55 and 1.30 kcal/mol,
respectively. The R2 is 0.998, and the slope of the regression
line is 0.98. For the protein environment, the agreement in the
relative free energies estimated with these two methods is also
reasonably good: the average unsigned difference and maximum
difference are 1.15 and 3.16 kcal/mol, respectively, while the R2

and slope of the regression line are 0.987 and 0.96, respectively.
In both solvent and protein environments, the difference be-
tween the relative free energies computed by FEP/BAR and
MSλD tends to increase with the size differential of the pairs of
compounds. For example, in solvent, the average unsigned
difference in the relative free energies obtained from the two
methods is 0.29, 0.67, and 0.96 kcal/mol for pairs of compounds
whose substituents differ by 0, 1, and 2 heavy atoms, respectively.
Similarly, in the protein environment, the average unsigned differ-
ence between the two methods is 0.73, 1.39, and 1.76 kcal/mol for

Figure 3. Correlation between MSλD-calculated and FEP/BAR-calculated relative free energies in (A) vacuum and (B) solvent environments for a
series of six benzene derivatives and (C) the corresponding relative hydration free energies. (D) Correlation between MSλD-calculated and
experimental relative hydration free energies.

Figure 4. (A) Unsigned deviations for relative free energies in a solvent
were averaged over Ntraj simulations for all pairs in the hybrid ligand
representing six benzene derivatives. The targets were defined for each
pair by combining data from 10 independent trajectories each of 2 ns.
(B) Representative data from an explicit solvent simulation trajectory for
the hybrid benzene model.
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pairs of compounds whose substituents differ by 0, 1, and 2 heavy
atoms, respectively.
As expected, in both methods, the uncertainty in the relative

free energy estimates for the bound simulations is larger than that
in the solvent environment. The average standard deviation of
the free energy estimates from the three series of MSλD and
FEP/BAR solvent simulations is 0.05 kcal/mol. By comparison,
the average standard deviations for the protein simulations are
0.25 and 0.39 kcal/mol for theMSλDand FEP/BAR simulations,
respectively. The average difference between the overall relative
binding affinities for these pairs of TIBO inhibitors estimated by
MSλD and FEP/BAR simulations is 0.7 kcal/mol, and the
maximum difference is 2.4 kcal/mol. The range of predicted

relative binding affinities for these pairs of TIBO inhibitors is
quite small, so the R2 of 0.473 between the relative binding
affinities estimated from MSλD and FEP simulations is signifi-
cantly lower than those obtained for relative free energy esti-
mates in the solvent and bound environments.
Finally, the average unsigned error of the relative binding affinities

for the 29 pairs of TIBO inhibitors is 0.9 and 1.3 kcal/mol for the
MSλDandFEP/BARsimulations, respectively, and the largest errors
are 2.0 and 2.6 kcal/mol, respectively (Table 4). Themagnitudes
of these errors are comparable to those that have been reported for
FEP calculations of inhibitors bound to wild-type or mutant HIV-1
RT45�49 and that may be considered reasonable for drug design
applications. For example, in their recent paper, Chodera et al. state

Table 3. Samping Characteristics of the Relative Free Energies for All Pairs of TIBO Compounds Estimated from Series of
Alchemical Free Energy Simulations Analyzed by BAR (FEP/BAR) and from MSλD Simulationsa

FEP/BAR MSλD

hybrid ligand pairs Æσæ FPL τtrans(X) (ps
�1) τtrans(Y) (ps

�1) Æσæ ÆΔæb max Δc

ΔΔGsolv

D 16 0.05 0.11 0.27 0.66 0.03 0.57 1.30

E 9 0.05 0.15 0.03 0.89 0.09 0.50 0.96

F 4 0.08 0.78 0.17 0.21 0.10 0.54 0.81

overall 29 0.05 0.05 0.55 1.30

ΔΔGprot

D 16 0.38 0.92 0.02 0.20 0.29 1.34 3.15

E 9 0.43 0.96 0.02 0.06 0.21 0.96 2.00

F 4 0.30 0.97 0.04 0.03 0.20 0.80 1.37

overall 29 0.39 0.25 1.15 3.15
aAverages and standard deviations (σ) are calculated from three independent series of six MSλD trajectories via eq 12 and three independent series of
the FEP/BAR trajectories. ΔΔGsolv and ΔΔGprot represent the relative free energies estimated in the solvent environment and binding pocket,
respectively, and are reported in units of kcal/mol. The Fraction Physical Ligand (FPL) represents the fraction of time that a physical ligand is present
during the simulation as opposed to several partial ligands. b Æ|ΔΔGMSλD � ΔΔGFEP/BAR|æ. cMax |ΔΔGMSλD � ΔΔGFEP/BAR|.

Figure 5. Correlation between MSλD-calculated and FEP/BAR-calculated relative free energies for 29 pairs of TIBO compounds that are inhibitors of
HIV-1 reverse transcripatase in (A) solvent and (B) protein environments and (C) the corresponding relative binding affinities. (D) Correlation
between MSλD-calculated and experimental relative binding free energies.
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that “statistical models of prediction-guided prioritization sug-
gest that even moderate accuracy (RMS errors of 2 kcal/mol)
could be sufficient to produce substantial efficiency gains in lead
optimization campaigns.”4 The experimental relative binding
affinities for these pairs of TIBO inhibitors are within 2.6 kcal/
mol of each other, and thus the R2 betweenMSλD-estimated and
experimental relative binding affinities of 0.402 is quite encoura-
ging. Perhaps a more interesting and relevant metric for the
discriminatory ability of these free energy methods in structure-
based drug design is the percentage of time that the better binder
from a pair of compounds is correctly identified. Given that
the experimental uncertainty associated with the binding affinity
measurements are on the order of 0.5�1 kcal/mol3, only pairs of
compounds which have binding free energy differences above a
certain threshold are examined. As demonstrated in Table 5, of
the 14 pairs of TIBO compounds that have differences in their
experimental binding affinities that are greater than 1 kcal/mol,
FEP/BAR and MSλD correctly identify the more potent inhi-
bitor 93% of the time. This percentage increases to 100 when the
six pairs of compounds with experimental binding affinity
differences of greater than 2 kcal/mol are considered.

4. DISCUSSION

4.1. SamplingCharacteristics. Simulation results for the three
model systems in this study clearly demonstrate the robustness of
sampling using MSλD. The relative free energy differences
between pairs of compounds that are estimated fromMSλD agree
well with theoretical values (in the case of the multiple identical
benzene, dihydroxybenzene, and dimethoxybenzene compounds)
and with traditional alchemical free energy methods (in the case of
hydration free energies of the six benzene derivatives and binding
free energies of the TIBO compounds). InMSλD simulations, the
efficiency of the simulations is directly related to the proportion of
time that a “dominant” ligand is represented relative to the partial,

nonphysical ligands, and to the number of transitions or times
that the identity of the “dominant” substituent at each site changes
and more specifically, the number of times the identity of the
“dominant” ligand changes. Thorough sampling enhances the
convergence of the dominant ligands and thus the reliability of
the relative free energies that are estimated from these popula-
tions using eq 8.
In the first model system, sampling convergence is most readily

achieved for the smaller “h” and “oh” substituents since the
substituents at each site sample very similar conformations at each
time step. Given that each of these smaller substituents experiences
comparable magnitudes of the unscaled interaction energies with
the rest of environment at each time step, transitions between
“dominant” substituents are relatively common. With the addi-
tion of the larger, more flexible methoxy moieties on the common
benzene ring, however, the unscaled interaction energies between
each substituent and the environment can be quite different from
one another at a given point in time, which reduces the transition
probabilities between dominant substituents for the dimethox-
ybenzene hybrid molecule relative to transition rates between the
hybrid benzene and dihydroxybenzene molecules. This effect is
magnified in the solvent simulations where systematically lower
transition rates are observed. Visual inspection of the trajectories
confirmed that the methoxy groups explore a wide variety of
conformations. Thus, the extra volume that is explored by the
methoxy groups relative to the smaller substituents suggests that
more substantial solvent rearrangements are required to sample
each of the 1,4-dimethoxybenzene ligands in the “dominant”
ligand state.
Transitioning between dominant ligands can be even more

challenging in the context of a binding pocket where substituent
sites interact with distinct parts of the pocket. In solvent
environments, local solvent configurations surrounding two
substituent sites that are remote from one another can rearrange
relatively independently from each other. By contrast, fluctua-
tions in different parts of a given protein binding pocket influence
one another due to their backbone connectivity and specific
intermolecular interactions and thus are correlated at longer time
scales with one another than are solvent configurations. By
constucting hybrid ligands that contain substituents of similar
molecular volume or polarity to one another, the extent of the
rearrangement of the environment that is required to enable one
substituent to replace the “dominant” substituent is minimized;
therefore, the probability of transitions among substituents on a
hybrid ligand will tend to increase, and the ability of each of the
dominant ligands to be sampled will improve. If clusters of
substituents are selected such that at least one ligand in each
hybrid molecule overlaps with that of another hybrid molecule,
the potency of each represented ligand can be localized on a
single relative scale with one another. With at least one experi-
mental measurement, these calculated estimates are able to be
placed on an absolute scale.
Other simulation parameters can be varied to enhance the

efficacy of MSλD simulations. For example, decreasing mθ will
tend to increase the mobility of the θ values and thus increase
transition rates, though, in our experience, values of mθ on the
order of 5�20 amu 3Å

2 are usually reasonable. Alternatively,
adding biasing potentials associated with the θ values that take
effect only when λR,i < 0.8 as in eq 11 or increasing the magnitude
of the force constant, k, on these biasing potentials will also tend
to increase the transition rates. Though, with increasingly large
force constants, there will be a concomitant increase in the amount

Table 4. Average Unsigned Errors (AUE) and Maximum
Errors (MaxE) in the Computed Relative Binding Affinities,
ΔΔGbind (in kcal/mol), for All Pairs of TIBO Compoundsa

FEP/BAR MSλD

hybrid ligand pairs AUE MaxE AUE MaxE

D 16 1.42 2.62 0.77 1.97

E 9 1.23 2.38 1.05 1.99

F 4 1.00 1.17 1.14 1.84

overall 29 1.30 2.62 0.91 1.97
aComputed relative binding affinities are calculated from the differences
in theΔΔGprot andΔΔGsolv obtained from averaging three independent
series of six MSλD trajectories via eq 12 and three independent series of
the FEP/BAR trajectories.

Table 5. Percentage of Pairs of TIBO Compounds That Are
Correctly Ranked with the Free Energy Methods and Force
Field Parameters Used in This Work

ΔΔGexpt (kcal/mol) # of pairs FEP/BAR MSλD

>2.0 6 100 100

>1.5 12 100 92

>1.0 14 93 93
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of time spent at intermediate λ values (data not shown) and lower
populations for the free energy differences required in eq 8.
4.2. Computational Expense.Themost significant difference

between MSλD and alchemical free energy simulations lies in
their relative computational expense. Results estimated from
MSλD simulations for the hybrid molecule representing six
benzene derivatives were achieved ∼250 times faster than those
for the reported FEP/BAR calculations. However, the triplicate
FEP/BAR calculations were more precise, and so a more appro-
priate comparison would be for trajectory lengths that achieve a
similar level of precision. FEP/BAR simulations in which each λ
window for each pair was sampled for ∼40 ps yield an average
precision in the relative free energy estimates of 0.15 kcal/mol and
require ∼20 times more computational resources than MSλD
simulations of comparable precision.
Similarly, relative binding affinity estimates for the TIBO

compound series for comparable levels of precision are achieved
by MSλD simulatons about 50 times faster than the correspond-
ing series of alchemical free energy simulations. The 1 ns MSλD
trajectories for the bound environment were sufficiently long to
ensure that each physical ligand was sampled in the dominant
state in all but a few simulations; however, significantly shorter
simulations were sufficient to identify the most favorable binders.
Arguably, in prospective drug-design applications, it is primarily
the best binders that are sought and not necessarily a quantitative
ranking of each ligand. Therefore, these relative times represent a
lower bound on the computational efficiency of MSλD over
traditional alchemical free energy simulations that are restricted
to sampling individual pairs of ligands.
4.3. MSλDApplications.Application of MSλD simulations to

structure-based drug design strategies is promising given its
computational expediency relative to traditional alchemical free
energy simulations for exploring multiple variants at multiple
sites on a common ligand framework. However, the quality of the
relative hydration free energies or binding affinities is also
dependent on the quality of the underlying force field param-
eters. In this study, reasonable overall agreement is observed
between experimental relative free energies and those obtained
from MSλD simulations using CGenFF parameters. The overall
average unsigned error for the relative hydration free energies of
the series of benzene derivatives is 1.8 kcal/mol, while the
average unsigned error for the relative binding affinities for pairs
of TIBO compounds is 0.9 kcal/mol. However, it was also clear
that some ligands were poorly modeled relative to the others and
suggestive of errors in the underlying force field parameters
associated with the corresponding functional groups. Specifically,
the quality of the 4-hydroxybenzaldehye parameters yields
systematically underestimated relative hydration free energies
(by 1.2�2.9 kcal/mol) compared with the rest of the benzene
derivatives. 4-Hydroxybenzaldehye has the largest dipole mo-
ment of the ligands in this series, and its electronic structure is
arguably the most sensitive to the local solvent environment.
Thus, the comparably poor quality associated with its calculated
relative hydration free energies is not unexpected, and it is
possible that more sophisticated polarizable charge models
may be needed to capture its true solvation properties.
Given the uncertainties in the sampling on the order of 1 kcal/mol

combinedwith inconsistencies in the force field parameters,MSλD is
not the silver bullet that will reliably identify the best binder out of a
pool of very good binders. The strength of MSλD simulations is
likely to be in the lead optimization stage where a compound has
been identified that binds at micromolar concentrations to a given

macromolecular target. Different functional groups at various sites on
this lead compound can be systematically screened for their ability to
improve the binding affinity relative to the lead compound.11 Thus,
these MSλD simulations could bridge the gap between high-though-
put docking studies that survey libraries of hundreds of thousands of
diverse compounds and the much more expensive alchemical free
energy calculations that are usually performed on only a handful of
chemical variants of the lead compound. MSλD also appears to be a
reasonable and rapidmethod for validating and optimizing force field
parameters to reproduce available hydration free energy data or
alternatively relative hydration free energies for series of functional
groups that would be consistent for a given force field.
4.5. Functional Form of λ Values. In preparation for this

study, we investigated various functional forms of the λ values
that implicitly satisfy the holonomic constraints: 0e λR,ie 1 and
Σi=1
N λR,i = 1. The functional form represented in eq 9 is used

throughout this study and exhibits ideal characteristics formultisite
λ dynamics simulations that mimick SAR strategies. First, it offers
increased numerical stability at larger integration stepsizes over
the original λ dynamics implementaion that used a simplified
Lagrange multiplier method and renomalization at every time
step.27 Second, the periodicity of this functional form is oscillat-
ing in nature and so provides enhanced sampling of each of the
λi≈ 1 states. Third, both the values of λR,i and the forces on λR,i
are computationally inexpensive, and each λR,i has the same
probability density function, so no further bias or correction is
required to account for differences in effective phase space
volume sampled. Finally, this functional form promotes rapid
transitions between λR,i ≈ 1 and λR,i ≈ 0 such that (i) there is a
significant fraction of θ-phase space in which a physical rather
than unphysical ligand is present and (ii) it is relatively insensitive
to the specific threshold that is used to define λR,i ≈ 1. The
coefficient c in eq 7 can be tuned to describe the steepness of the
switching between λR,i≈ 1 and λR,i≈ 0, and we have identified a
“sweet spot” coefficient of 5.5 that seems optimal for MSλD
simulations. Coefficients of less than 5.5 do not transition as
quickly, so a larger fraction of θ space is restricted to intermediate
λ values and so were less efficient for these simulations. Coeffi-
cients of greater than 5.5 demonstrate increased transition rates
in vacuum and thus increased convergence rates; however, the
rates of change in {λ} near the end points are too abrupt in
solvent simulations to retain the stability in the numerical
integrator. Shorter timesteps and/or soft-core potentials could
alleviate this problem; however, the functional form in eq 9
implicitly protects the system by implicitly restraining the upper
bound of λ to be

λmaxR, i e
e5:5

e5:5 þ ðNR � 1Þe�5:5
ð13Þ

or where N = 5 the boundaries are 0.000016 < λR,i e 0.99993
on site R.

5. CONCLUSION

In the present study, we have presented the multisite λ dynamics
method and its application in three model systems, including
computing relative hydration free energies for a series of benzene
derivatives and relative binding affinities for a series of TIBO
inhibitors of HIV-1 reverse transcriptase. Results from our model
compounds of multiple identical benzene, dihydroxybenzene, and
dimethoxybenzene molecules demonstrate the robustness of
sampling in MSλD simulations by achieving relative free energy
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differences within 0.2 kcal/mol of the theoretical values in both
vacuum and solvent environments for combined trajectory
lengths of 1.5 ns.

The relative free energies estimated for individual arms of the
thermodynamic cycle for calculating the relative hydration free
energies for the benzene derivatives and the relative binding
affinities for the TIBO compounds were in very good agreement
with those obtained from traditional alchemical free energy
calculations with R2 values above 0.987. The primary difference
between relative free energies estimated using MSλD and tradi-
tional free energy methods was the computational expense in
whichMSλD simulations achieved the same level of accuracy and
precision as the traditional calculations ∼20�50 times more
quickly.

Overall, these results compared well with experimental results
with an AUE of 1.8 kcal/mol for the 15 pairs of hydration free
energies and an AUE of 0.9 kcal/mol for the 29 pairs of binding
affinities. These simulations also highlighted potential inconsis-
tencies in the CGenFF where the pairs involving 4-hydroxyben-
zaldehye yielded systematically poorer relative hydration free
energies than the rest of the pairs of benzene derivatives.

Systematically evaluating a series of compounds mimics a
chemical optimization strategy in structure-based drug design in
which various substituents are evaluated at specific sites on a
promising new therapeutic lead compound. These examples
provide proof of concept of both the accuracy ofMSλD simulation
results that can be obtained and the efficiency of this approach
relative to traditional alchemical free energy calculations that rely
on fixed λ values and are limited to pairs of compounds. As
generalized force field parametrization strategies for drug-like
molecules continue to mature and methods for constructing
hybrid ligand molecules become more automated, sampling using
MSλD simulations should be effective for routinely screening on
the order of tens to a hundred variations of a lead compound.
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ABSTRACT: Iron nitrosyl complexes are a particularly challenging case for density functional theory. In particular, for the low-spin
state, different exchange�correlation functionals yield very different spin densities [Conradie, J.; Ghosh, A. J. Phys. Chem. B 2007,
111, 12621�12624]. Here, we investigate the origin of these differences in detail by analyzing the Kohn�Sham molecular orbitals.
Furthermore, to decide which exchange�correlation functionals yield the most accurate spin densities, we make comparisons to
CASSCF calculations. To ensure that the spin densities are converged with respect to the size of the active space, this comparison is
performed for [Fe(NO)]2+ as a model system. We find that none of the investigated exchange�correlation functionals are able to
reproduce the CASSCF spin densities accurately.

1. INTRODUCTION

Transition metal complexes are central to metal-mediated
catalysis and bioinorganic chemistry.1,2 For a detailed understand-
ing of their function as catalytically active centers and of catalytic
mechanisms, theoretical analysis has become indispensable.3�12

However, to reliably accomplish such an analysis remains a
challenge for theoretical chemistry.13

In quantum chemical studies of transition metal complexes,
usually density functional theory (DFT) is employed. But,
especially, the treatment of open-shell systems remains a chal-
lenge to DFT.13,14 In particular, results regarding the relative
energetic ordering of closely lying states of different spin multi-
plicities are difficult to obtain with sufficient accuracy.13,15�26

The performance of different approximate exchange�correlation
functionals was intensely discussed in the literature.25�34 Re-
cently, Conradie and Ghosh have identified a particularly difficult
case. They studied the spin-state energetics for the spin-crossover
complex Fe(salen)(NO) as well as the Fe(porphyrin)(NO)
complex.31 These compounds feature a noninnocent nitric oxide
ligand, and the resulting nitrosyl complexes exhibit a complicated
electronic structure.30�32 In addition to the inconclusive predic-
tion of the correct ground state, notable differences in the spin
density distributions were found with different exchange�
correlation functionals. A detailed analysis of the sources of these
differences, however, was not undertaken. Here, we pursue
closing this gap by analyzing their origin. Moreover, we expand
the DFT studies of Conradie and Ghosh by considering the
BP86, TPSS, TPSSh, and M06-L exchange�correlation func-
tionals as well.

According to the Hohenberg�Kohn theorem,35 only the total
electron density is required to predict the electronic energy as
well as all other molecular observables. In principle, the spin
density is not needed. However, for open-shell molecules, one
usually introduces the spin density as an additional variable,

resulting in a spin-DFT formalism,36 first proposed by von Barth
and Hedin.37 This allows one to construct better approximations
for the exchange�correlation energy functional, since the addi-
tional information on the spin density is available and can be
exploited. Within such a spin-DFT formalism, the exact spin-
dependent exchange�correlation functional will (in addition to
the exact electron density) also yield the exact spin density (see,
e.g., ref 38), provided an unrestricted Kohn�Sham formalism is
used.39 Therefore, the spin density is one of the fundamental
quantities in spin-DFT, and it is crucial to know which of the
approximate exchange�correlation functionals yield accurate
spin densities. Moreover, since electron paramagnetic resonance
(EPR) parameters are explicitly dependent on the spin density,40

reliable spin density distributions are an essential ingredient for
an accurate calculation of EPR properties, which represents a
difficult task for theoretical chemistry.41�45

With approximate exchange�correlation functionals, open-
shell molecules in low-spin states are often treated in a broken-
symmetry DFT formalism. In this case, the calculations do not
yield the correct spin density. Instead, it has been argued that the
Kohn�Sham reference system should represent the on-top pair
density.46 However, if properties depending on the spin-density
such as EPR parameters are required, a broken-symmetry
formalism is not useful. Therefore, we prefer the point of view
that the need for a broken-symmetry treatment is an avoidable
consequence of the insufficiencies of the currently available
approximate exchange�correlation functionals and that instead
one should aim at improved functionals that reproduce the exact
spin-density.

To decide which exchange�correlation functional yields
reliable spin densities, accurate benchmark calculations of the
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spin density distribution are necessary. This requires multi-
reference methods such as the multiconfigurational complete-
active-space self-consistent-field (CASSCF) approach. The un-
favorable scaling in computing time with the size of the active
orbital space, however, disfavors the description of large molec-
ular systems, and hence, such correlation methods are not
frequently used in theoretical investigations of transition metal
complexes (for counterexamples, see refs 32, 47, 48). Detailed
CASSCF studies of the salen- as well as of different porphyrin-
containing iron nitrosyl complexes were recently performed
by Pierloot et al.32,49 These studies provided important in-
sight into the electronic structure of these compounds and
the energetics of the different spin states. Furthermore, the
problem of the inconclusive picture provided by DFT calcula-
tions for the spin densities was also addressed. A comparison of
Mulliken spin populations and of spin density isosurface plots
indicated that the nonhybrid functionals yield the most accurate
spin densities.

However, a more detailed comparison of the DFT and the
CASSCF calculations was not performed. Furthermore, the large
size of the molecules under study restricts the dimension of the
active space, and it is therefore not clear whether the spin densities
are converged with respect to the size of the active space.

To circumvent these restrictions, one needs a small model
system for which similar differences in the spin density distribu-
tions are found in DFT calculations, but where, due to the small
size of this model system, one is still able to ascertain how the
choice of the active space affects the resulting spin density
distributions. Such an analysis of the spin density could then
validate the corresponding CASSCF reference spin densities.
Furthermore, a more detailed examination of the spin density
distributions by considering the DFT�CASSCF spin density
differences could be used as a representative benchmark of the
approximate exchange�correlation functionals.

This work is organized as follows. In section 2, the computa-
tional details are presented. A detailed discussion of DFT spin
densities of iron nitrosyl complexes is given in section 3. Then,
section 4 introduces [Fe(NO)]2+ as a small model system and
validates the quality of CASSCF reference spin densities as a
benchmark for the DFT results. Finally, a summary and con-
cluding remarks are given in section 5.

2. COMPUTATIONAL METHODOLOGY

All unrestricted Kohn�Sham DFT calculations were per-
formed with the quantum chemical program package ADF.50

Eight popular exchange�correlation functionals were employed,
from the widely used B3LYP hybrid exchange�correlation
functional with 20% exact exchange51 and TPSSh52 with 10%
Hartree�Fock exchange to five pure exchange�correlation
functionals: OLYP,53 OPBE,54,55 BP86,56,57 BLYP,56,58 TPSS,59

andM06-L.60 For the molecular structures of Fe(salen)(NO) (in
its two different conformations) and Fe(porphyrin)(NO), the
optimized coordinates calculated by Conradie and Ghosh were
taken.31 For direct comparison, all DFT spin density profiles
were obtained from single point calculations at these optimized
structures. Since Slater-type orbitals give consistent and rapidly
converging results for spin state splittings,61 we applied a triple-ζ
plus polarization Slater-type orbital basis set (TZP). The SCF
algorithm was considered converged if the largest element of the
commutator of the Fock matrix and the density matrix repre-
sented in the basis functions was lower than 10�6 Hartree. The

spin density distributions were visualized using the ADF�GUI
ADFVIEW program.62

All CASSCF calculations were performed with the program
package Molpro63 using Dunning’s cc-pVTZ basis set for all
atoms.64,65 As an initial guess, an unrestricted Hartree�Fock
calculation was performed. The natural orbitals from this unrest-
rictedHartree�Fock calculation are then used as starting orbitals
for the CASSCF procedure. As convergence criteria, an orbital
gradient threshold of 10�2 atomic units was chosen, and the
threshold for the change in total energy was set to 10�6 Hartree
in all calculations. As an optimization method, the method
developed by Werner, Meyer, and Knowles66�68 was used in
all calculations. The CASSCF spin densities were visualized using
the program MOLEKEL.69

3. SPIN DENSITIES OF IRON NITROSYL COMPLEXES

Following the work of Ghosh and Conradie,31 we investigate
two iron nitrosyl complexes, denoted as {FeNO}7 after Enemark
and Feltham70 (this notations indicates that seven electrons are
distributed among the combinations of the NO π* and the Fe 3d
orbitals): Fe(salen)(NO) (1) and Fe(porphyrin)(NO) (2),
whereby the former occurs in two different conformations
named 1a and 1b (see Figure 1). The unpaired electron from
the neutral NO species and the six d electrons of Fe(II) can be
distributed over the combinations of the Fe 3d and NO π*
orbitals. The most favorable spin states resulting from this
electronic structure are a doublet (one unpaired electron) and
a quartet (three unpaired electrons) state. Experimentally, 2 is
known to possess a doublet (S = 1/2) ground state,71,72 while 1
exhibits a thermal spin-crossover from the doublet (S = 1/2) to
the quartet state (S = 3/2) near 175 K.73 Therefore, we

Figure 1. Structures of the iron nitrosyl complexes investigated in this
work. (a) Conformation a of Fe(salen)(NO). (b) Conformation b of
Fe(salen)(NO). (c) Fe(porphyrin)(NO). All structures are taken from
ref 31.



2742 dx.doi.org/10.1021/ct1006218 |J. Chem. Theory Comput. 2011, 7, 2740–2752

Journal of Chemical Theory and Computation ARTICLE

considered only the doublet and quartet spin states for all iron
nitrosyl complexes in our theoretical study.
3.1. Energetics. We first analyze the relative spin-state en-

ergies of the iron nitrosyl complexes. These are listed, for the
exchange�correlation functionals considered, in Table 1. For 1
(in both conformations), we found adiabatic energy splittings
between the quartet and doublet state in the range of +12
and �10 kcal/mol. It is obvious that the energy splitting is
largely dependent on the amount of exact exchange encoded in
the exchange�correlation functional.26 B3LYP (with 20% exact
exchange) yields a quartet ground state favored by about 9 kcal/
mol, while for TPSSh (with only 10% exact exchange), doublet
and quartet spin states of almost the same energy are obtained.
OLYP and OPBE behave similar to TPSSh and yield S = 1/2 and
S = 3/2 spin states that are similar in energy. This is in agreement
with the experimentally observed spin-crossover behavior. In
contrast to the hybrid functionals, TPSS, BP86, and BLYP
(all pure functionals without exact exchange) favor the doublet
over the quartet state by approximately 10 kcal/mol. An excep-
tion is the meta-GGA functional M06-L (also a pure functional
without exact exchange), which behaves similarly to B3LYP
and favors the quartet state by about 9 kcal/mol. We note that
the relative energies for OLYP, OPBE, and BLYP are consistent
with the previous work presented by Conradie and Ghosh.31

In general, only small deviations (<0.2 kcal/mol) can be
observed. However, larger differences from the results of

Conradie and Ghosh are found for 1b for OPBE and B3LYP (2.1
and �11.1 kcal/mol, respectively). The reason for these differ-
ences can be revealed by inspecting the Mulliken spin popula-
tions and charges in our calculations (see Table 1 in the
Supporting Information) and in ref 31. Note that since we use
the same basis sets as in ref 31, these can be compared directly.
The comparison indicates that Conradie and Ghosh have found a
different state for S = 3/2 (OPBE) and S = 1/2 (B3LYP).
Further, comparing the energies of these different states shows
that those found in this work are lower in energy, and the
corresponding Mulliken charges are physically more reasonable
with no negative charges on the iron atom. For 1a, larger
differences can be observed for B3LYP. However, the Mulliken
spin populations and charges in our calculations are similar to
those in ref 31, and the origin of these differences remains
unclear.
For 2, similar observations can be made. The adiabatic energy

splittings follow the same trend as observed for 1, except that the
corresponding energy splittings are 6 kcal/mol higher in energy
and, thus, found between �3 and +18 kcal/mol. B3LYP and
M06-L predict a quartet ground state by about 3 kcal/mol. All
other exchange�correlation functionals studied yield a doublet
ground state, but with different relative energies. OLYP and
OPBE as well as TPSSh favor the doublet state by 6 kcal/mol,
while TPSS, BP86, and BLYP yield an energy gap of approxi-
mately 17 kcal/mol. As for 1, our results for OLYP andOPBE are
consistent with the previous work of Conradie and Ghosh,31 and
in general, only small deviations can be observed. Larger
differences are only found for B3LYP. Again, inspection of the
Mulliken spin populations (given in Table 2 of the Supporting
Information) and charges indicates that a different state was
converged for S = 1/2, and in comparison to ref 31, the one found
by us is lower in energy.
3.2. SpinDensity Distributions. It was already pointed out by

Ghosh and Conradie30,31 that the spin density distributions for
the iron nitrosyl complexes are strongly dependent on the choice
of the exchange�correlation functional. Let us first have a closer
look at the spin density profiles before we continue to elaborate
on the sources of these differences in detail.
The spin density distributions for 1b are displayed in Figure 2.

The spin densities for the quartet state do not depend on the
exchange�correlation functional, where the iron atom carries an
excess of R-electron density and the nitrosyl ligand an excess of

Table 1. Energy Differences (ES=(3/2) � ES=(1/2)) between
Quartet and Doublet State (kcal/mol) in a TZP Basis Set for
Selected Exchange�Correlation Functionalsa

OLYP OPBE BP86 BLYP TPSS TPSSh B3LYP M06-L

1a �1.0 0.6 10.5 8.8 11.2 1.3 �9.0 �9.6

1a31 �1.2 0.5 8.8 �9.5

1b 0.3 1.6 11.7 9.8 12.2 1.2 �9.7 �8.9

1b31 0.4 2.1 9.7 �11.1

2 5.7 6.2 17.0 16.2 17.6 6.6 �3.1 �2.5

231 5.9 6.5 16.6b �4.6
aA negative energy difference indicates that the quartet state (S = 3/2) is
more stable, while for a positive value the doublet state (S = 1/2) is
preferred. For comparison, the values reported by Conradie and Ghosh
in ref 31 are also included. b Structure optimization.

Figure 2. Spin density profiles for 1b in a TZP basis set for selected density functionals. An isosurface value of 0.003 is chosen. The small picture in the
upper right corner shows the quartet spin density for each exchange�correlation functional, while the large picture displays the sensitive doublet spin
density. The blue surface (positive spin density) corresponds to an excess of R-electron density, while the yellow surface (negative spin density)
corresponds to an excess of β-electron density.
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β-electron density. For the doublet state, however, notable
differences in the spin density distributions can be observed.
The spin densities can be ordered according to their associated
energy splittings obtained for different exchange�correlation
functionals. For BP86, BLYP, and TPSS, the spin densities are
similar. OLYP, OPBE, and TPSSh yield different distributions
around the nitrosyl ligand atoms with a larger amount of
β-electron density. This excess of β-electron density further
increases for M06-L. A completely different picture is obtained
for B3LYP. While for all other functionals there is both R- and
β-electron density on the nitrosyl ligand, with B3LYP, the ligand
carries only β-electron density. In addition, the amount of
β-electron density on the nitrosyl ligand is much larger with
B3LYP than for all the other functionals, as is also obvious from
the Mulliken spin populations (see Table 1 in the Supporting
Information). For 1a, similar spin density distributions are ob-
tained, which are shown in Figure 1 in the Supporting Information.
Figure 3 shows the calculated spin densities for 2 as obtained

with different exchange�correlation functionals. As already
observed for 1, BP86, BLYP, and TPSS yield similar results.
One can recognize an increase in the R-electron density at the
ligand atoms for TPSSh, and its decrease around the iron center.
OLYP, OPBE, and M06-L yield a large amount of β-electron
density located around the nitrosyl ligand atoms, which ismissing
for BP86, BLYP, TPSS, and TPSSh. As for 1, an excess of
β-electron density only on the nitrosyl ligand is found for B3LYP.
But in contrast to 1, we observe that calculations with different
exchange�correlation functionals which yield similar energy
splittings result in different spin density distributions (e.g.,
TPSSh which is comparable in relative energy, but not in spin
density to OLYP/OPBE). M06-L, on the other hand, delivers a
spin density similar to OLYP and OPBE but yields a very
different energy gap (�2.5 kcal/mol with M06-L vs 6 kcal/mol
with OLYP/OPBE).
3.3. Origin of Deviations in the Spin Density. To under-

stand the origin of the differences in the spin densities of the
doublet state, we investigate the Kohn�Shammolecular orbitals.
For this, we choose 1b and the three exchange�correlation
functionals, BP86, OLYP, and B3LYP. To elucidate the subse-
quent analysis of the DFT orbitals, it is instructive to consider the
qualitative molecular orbital diagram introduced by Hoffmann

et al. for pentacoordinate metal complexes,74,75 which we depict
in Figure 4.
In their qualitative approach, they considered the iron dxy, dz2,

dxz, and dyz orbitals (the dx2�y2-orbital is excluded because it is
significantly higher in energy) as well as the NO σ and the two
NO π* orbitals. Four ligands (in our case, the nitrogen and
oxygen donor atoms of the salen ligand and the nitrogen donor
atoms of the porphyrin ligand) are arranged in the xy plane along
the coordinate axes. Above this xy plane, the NO ligand is located
between the xz and yz planes. For the bent structure present in
1 and 2, these form (due to symmetry considerations) the
molecular orbitals (dyz, π*), (dxz, π*), dxy, (dz2, σ)*, (dyz, π*)*,
and (dxz, π*)*, which are occupied by seven electrons for
the {FeNO}7 complexes. For the doublet state, the (dyz, π*),
(dxz, π*), and dxy orbitals are doubly occupied, and the (dz2, σ)*
orbital is singly occupied. These orbitals, in particular the singly
occupied (dz2, σ)* orbital, determine the spin density distribu-
tions, and the corresponding differences in spin densities can be
traced back to differing orbital patterns.

Figure 3. Spin density profiles for 2 in a TZP basis set for selected density functionals. An isosurface value of 0.003 is chosen. The small picture in the
upper right corner shows the quartet spin density for each exchange�correlation functional, while the large picture displays the sensitive doublet spin
density. The blue surface (positive spin density) corresponds to an excess of R-electron density, while the yellow surface (negative spin density)
corresponds to an excess of β-electron density.

Figure 4. Hoffmann’s correlation diagram for pentacoordinate metal
complexes as presented in ref 74.
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For the quartet state, the (dyz, π*) and (dxz, π*) orbitals are
doubly occupied. The remaining three electrons are then dis-
tributed over the singly occupied dxy, (dz2, σ)*, and dx2�y2

orbitals. Note that, in this case, the order of the molecular orbitals
changes, and dx2�y2, which is not shown in Figure 4, has to be
included. The orbitals obtained in the DFT calculations for the
quartet state are similar for all exchange�correlation functionals
and qualitatively agree with Hoffmann’s simplified picture. As a
representative example, the relevant orbitals from the BP86
calculation are shown in Figure 2a in the Supporting Information.
Figure 5 shows the highest occupied molecular orbitals

obtained for the doublet state with OLYP and BP86. All orbitals
are described by Hoffmann’s qualitative molecular orbital pic-
ture. However, in the unrestricted Kohn�Sham DFT calcula-
tions, R and β orbitals are different. In particular, the (dxz, π*)
orbital contains no significant contribution from the NO π*
orbital to the corresponding R orbital. This induces an excess
of β-electron density around the NO fragment. The same can be
observed for the (dyz, π*) orbital, where the contribution of
the NO π* orbital to the R orbitals is reduced. The excess of
R-electron density around the iron atom and nitrosyl fragment
can be attributed to the singly occupied (dz2, σ)* orbital.
Furthermore, there are also orbital contributions from the salen
(and porphyrin) ligands, which, however, do not contribute to
the spin density. In the case of OLYP, the R-spin (dyz, π*) orbital
contains less contribution from theNOπ* orbital as compared to
BP86, which increases the β-electron density around the nitrosyl
fragment (see also Figure 2) and induces the divergent spin
density distributions.
For B3LYP, we observe different orbital shapes for R and β

electrons as compared to the former exchange�correlation
functionals (see Figure 6). The R1 and R2 and the β1 and β2
orbitals result in very different orbital combinations, while the R3

and R4 and the β3 orbitals can be related to Hoffmann’s orbital
diagram of Figure 4. The nonbonding dxy orbital (R2 and β2) is
replaced by different combinations of Fe d and NO π* orbitals,
which results in a stronger distribution of β-electron density into

the NO π* orbitals. While R electrons are preferentially dis-
tributed over the iron center and the salen fragment (R2 and R3),
β electrons occupy the NO π* orbitals (β2 and β3). This
generates the characteristic cylindrical shape of the β electron
density for B3LYP.Moreover, two singly occupiedR orbitals and
two different singly occupied β orbitals are obtained (compare
R1/R2 and β1/β2, respectively).

Figure 5. Valence orbitals for the doublet state of 1b in a TZP basis set for selected exchange�correlation functionals. Those R and β orbitals which
correspond to the same orbital combination are grouped together and ordered qualitatively according to the energy of the corresponding R orbital. An
isosurface value of 0.05 is chosen. Only the orbitals which determine the spin density distribution are shown. Orbitals forR electrons are displayed on the
left-hand side and orbitals for β electrons on the right-hand side.

Figure 6. Valence orbitals for 1b in a TZP basis set for B3LYP ordered
qualitatively according to their energy. An isosurface value of 0.05 is
chosen. Only the orbitals which determine the spin density distribution
are shown. Orbitals for R electrons are displayed on the left-hand side
and orbitals for β electrons on the right-hand side.
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These different occupational patterns and orbital shapes result
in a “broken-symmetry-like” solution for B3LYP, which can also
be seen in the significantly larger ÆŜ2æ expectation value of 1.2 as
compared to an ideal value of 0.75 in Hartree atomic units (see
also Table 2; the same holds for 2). However, even though
broken-symmetry solutions often yield accurate energetics, they
result in incorrect spin density distributions.While this is obvious
when broken-symmetry solutions are employed for singlet states
(where the correct spin density vanishes14), for the doublet state
considered here, it is less clear whether the spin density obtained
from a particular solution is physically meaningful or not.
Obviously, this is a serious problem if one is interested in the
calculation of EPR properties. Note again that with the exact
spin-dependent exchange�correlation functional, a broken-sym-
metry treatment should not be required, and unrestricted
Kohn�ShamDFTwould always yield the exact spin density.38,39

Finally, we note that the spin densities of 1 are comparable to
those of 2 for a given exchange�correlation functional. Hence,
similar spin densities are obtained for complexes with porphyrin
or salen ligands. The iron nitrosyl moiety dominates the dis-
tribution of the R- and β-electron density, and we will have a
closer look at this fragment in section 4.

4. DEFINING A SUITABLE MODEL FOR ACCURATE
REFERENCE CALCULATIONS

Since the DFT spin densities are ambiguous, reference spin
densities are required to decide which exchange�correlation
functionals provide reliable spin densities. This task can be
achieved by applying multireference ab initiomethods. However,
for the large salen and porphyrin complexes discussed above,
such calculations are not feasible or require a restriction of the
active space. Therefore, we construct a small model system for
which CASSCF calculations are computationally feasible but
which still shows similar differences in spin density distributions
for the selected exchange�correlation functionals as the large
iron nitrosyl complexes. As a model system, we choose [FeNO]2+

(3), since the FeNO moiety dominates the distribution of R
and β electrons in the full-fledged complexes. However, for the
small [FeNO]2+ molecule, a structure optimization of the bent
structure results in a linear orientation of the nitrosyl group,
suggesting an Fe(I) center and a positively charged NO+ frag-
ment. To ensure transferability, we need to enforce the occupa-
tion of the same orbitals as present in the large {FeNO}7

complexes. These problems can be solved by considering the
fixed geometry of the bent iron nitrosyl fragment present in the
larger {FeNO}7 complexes. Furthermore, we include four nega-
tive point charges of�0.5e each, which are located at a distance of

1.131 Å from the iron atom on the x and y axes, to model a
square-planar ligand field and to obtain a similar electronic
structure as present in the larger {FeNO}7 complexes. All
following CASSCF calculations are performed in C1 symmetry
and apply the OLYP optimized iron nitrosyl fragment of 1a.
4.1. DFT Calculations. First, we examine the influence of the

exchange�correlation functional on the spin density distribution
for the [Fe(NO)]2+ model system. In Figure 7, the spin density
profiles calculated for different exchange�correlation func-
tionals are shown. As for the larger {FeNO}7 complexes, the
spin densities for the quartet configuration (shown in the inset on
the right for each functional) are similar. The spin densities of the
doublet state are shown in Figure 7 on the left for each functional.
Compared to those of 1 and 2, the differences between the
different functionals appear smaller. However, there are con-
siderable differences. To illustrate these more clearly, Figure 8

Table 2. ÆŜ2æ Expectation Values in a TZP Basis Set for a
Given Exchange�Correlation Functional

OLYP OPBE BP86 BLYP TPSS TPSSh B3LYP M06-L ideal

1a ÆŜhs2æ 4.40 4.42 4.21 4.18 4.27 4.57 4.75 4.62 3.75

ÆŜls2æ 0.83 0.83 0.78 0.77 0.78 0.92 1.29 0.91 0.75

1b ÆŜhs2æ 4.40 4.42 4.21 4.19 4.27 4.58 4.75 4.63 3.75

ÆŜls2æ 0.80 0.81 0.77 0.77 0.77 0.82 1.26 0.87 0.75

2 ÆŜhs2æ 4.35 4.37 4.18 4.16 4.23 4.50 4.67 4.56 3.75

ÆŜls2æ 0.81 0.82 0.77 0.77 0.77 0.80 1.20 0.86 0.75

3 ÆŜhs2æ 4.49 4.53 4.35 4.30 4.41 4.68 4.82 4.68 3.75

ÆŜls2æ 0.95 0.97 0.83 0.82 0.82 1.24 1.48 1.01 0.75

Figure 7. Spin density profiles for 3 in a TZP basis set for selected
density functionals. An isosurface value of 0.003 is chosen. The small
picture in the upper right corner shows the quartet spin density for each
exchange�correlation functional, while the large picture displays the
sensitive doublet spin density. The blue surface (positive spin density)
corresponds to an excess of R-electron density, while the yellow surface
(negative spin density) corresponds to an excess of β-electron density.

Figure 8. Spin density difference plots for 3 in a TZP basis set of the
spin density profile for the corresponding exchange�correlation func-
tional mentioned with respect to OLYP. An isosurface value of 0.003 is
chosen. The blue surface corresponds to an excess ofR-electron density,
while the yellow surface corresponds to an excess of β-electron density
with respect to OLYP.
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shows isosurface plots of the differences between the spin density
obtained with OLYP and each of the other functionals. The
isosurface value of 0.003 used in these plots of the spin density
differences is the same as the one used for the spin densities
themselves in Figure 7. Plots using larger isosurface values of
0.005 and 0.01 are shown in the Supporting Information (Figures
3 and 4) and are qualitatively similar to Figure 7.
The spin density difference plots reveal that for the

[Fe(NO)]2+ model system the spin densities can be arranged
in two different groups, which are qualitatively similar to those
found for 1 and 2. For OLYP and OPBE, the spin density
distributions are almost identical. The nonhybrid functionals
BP86, BLYP, and TPSS lead to less β-electron density on
the nitrosyl ligand compared to OLYP, i.e., a smaller over-
all spin polarization. For these functionals, one finds a region of
R-electron density near the nitrogen atom in Figure 7. As for 1
and 2, M06-L and the hybrid functionals TPSSh and B3LYP
yield a stronger spin polarization compared to OLYP, corre-
sponding to more R-electron density on the nitrosyl fragment
in the difference plots of Figure 8. The magnitude of spin
polarization, however, is dependent on the exchange�correla-
tion functional and increases from M06-L to TPSSh and is
largest for B3LYP.
In line with the spin density difference plot, the Mulliken

spin populations given in Table 4 show the same increase in
β-electron density on the nitrosyl ligand and in overall spin
polarization. For BP86, BLYP, and TPSS, the β-spin population
on the nitrosyl ligand is between 0.20 and 0.26. It increases to
approximately 0.5 for OLYP and OPBE and to 0.55 for M06-L.
For the hybrid functionals TPSSh and B3LYP, there is a β-spin
population of 0.83 and 1.0, respectively, on the nitrosyl ligand.
Note that the difference of ca. 0.3 between OLYP and OPBE on
the one side and BP86, BLYP, and TPSS on the other is even
larger than for the larger complexes, where the β-spin popula-
tions on the nitrosyl ligand differ only by approximately 0.2.

Thus, the magnitude of the differences between the different
functionals is comparable to those found for complexes 1 and 2.
Note that for 3, three different states can be optimized in the

SCF procedure. In general, the state corresponding to 16 R and
15 β electrons in A0 and 4 R and β electrons in A00 represents the
sought ground state that corresponds to the larger complexes,
and all spin density distributions and in the following molecular
orbitals are presented and discussed for this state. The energies
obtained for all three possible states are given in Table 3 in the
Supporting Information. Only with OPBE and B3LYP, the state
corresponding to the larger complexes is not the ground state.
Note that the point charges try to model a square planar ligand
field in order to enforce similar occupation of orbitals in 3 as
found in the larger {FeNO}7 complexes. For OPBE and B3LYP,
however, the modeled ligand field is not strong enough, leading
to a physically unreasonable ground state.
But what is the origin of the observed differences in spin

density distributions? For the quartet state, all orbitals are similar
for all exchange�correlation functionals considered, and thus, no
dependence of the spin density distribution on the exchange�
correlation functional is found. Furthermore, for all functionals,
the resulting orbitals qualitatively agree with Hoffmann’s simpli-
fied molecular orbital diagram and with the results obtained for
the larger complexes 1 and 2. In particular, the spin density is
determined by the three singly occupied orbitals, which can be
described as dxy, (dz2, σ)*, and dx2�y2. For the BP86 calculation,
the relevant orbitals are shown in Figure 2b in the Supporting
Information.
For the doublet configuration, the situation is different. An

orbital analysis shows that the seven valence orbitals differ
considerably for all selected exchange�correlation functionals.
These seven orbitals determine the spin density distribution,
which will be obvious if we refer to the orbital analysis of the
larger {FeNO}7 complexes. As an explicit example, the orbitals
for B3LYP, OLYP, and BP86 are shown in Figure 9. As expected,

Figure 9. Valence orbitals of 3 in a TZP basis set for selected exchange�correlation functionals. An isosurface value of 0.05 is chosen. The orbitals are
ordered qualitatively according to the energy of the corresponding R orbital. Orbitals which correspond to the same orbital combination are grouped
together. All other orbitals turned out to be similar in shape for all exchange�correlation functionals. Orbitals for R electrons are displayed on the left-
hand side and orbitals for β electrons on the right-hand side.
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they represent a combination of the Fe d with the NO σ and NO
π* orbitals. The orbital shapes obtained for OLYP and BP86 are
similar to those of the corresponding orbitals of the larger
{FeNO}7 complexes, and the divergent distributions of R and
β electron density are due to similar occupation patterns. As for
the larger complexes, R and β orbitals differ. While R electrons
are centered on the iron atom, β electrons are more delocalized
on the NO fragment. This leads to the separation of R- and
β-electron density and results in weak spin polarization. The
reduced β-electron density around the NO fragment obtained
for BP86 is due to the enhanced delocalization of R electrons
into the π* orbital as compared to OLYP for the (dyz, π*) and
(dxz, π*) orbitals.
In the case of B3LYP, different orbital combinations are

obtained, as we have already observed in 1. The R1 and R3 and
the β1 and β3 orbitals contain additional contributions from
different Fe d orbitals as compared to OLYP or BP86. Further-
more,R electrons preferentially occupymetal orbitals (R1 toR4),
leading to an excess ofR-electron density on the iron atom, while
β electrons are distributed over ligand π* orbitals (β1 to β3),
resulting in the corresponding excess of β electron density. This
occupation pattern produces strong spin polarization in the
B3LYP case. Compared to OLYP and BP86, different R and β
orbitals are obtained for B3LYP, resulting in a “broken-symme-
try-like” solution, which we already observed for the larger
{FeNO}7 complexes and which is also indicated by the expecta-
tion value of ÆŜ2æ of 1.48 compared to the ideal value of 0.75 (see
also Table 2).
In conclusion, one observes that the DFT electronic structures

of all complexes studied are similar and correspond to the
qualitative molecular orbital diagram by Hoffmann: Similar
orbital combinations and occupations are obtained. We observe
a similar dependence of the spin density on the approximate
exchange�correlation functional for complex 3 as for complexes
1 and 2, and we can arrange the spin density distributions of 3
according to their spin density patterns in a similar way to what
we found for complexes 1 and 2. Furthermore, the differences in
spin density distributions are based on similar reasons and can be
traced back to the same differences in Kohn�Sham molecular
orbitals. Hence, the [Fe(NO)]2+ complex 3 can serve as a
representative model system for the larger complexes 1 and 2.
4.2. CASSCF Calculations. As discussed in the previous

paragraph, the spin density distributions obtained for the doublet
state of 3 are—as those of the larger complexes—dependent on
the exchange�correlation functional, and it remains unclear
which functional describes the spin density most accurately. To
investigate this question, we calculated CASSCF reference spin
densities. Since we consider a small model system in which the
salen or porphyrin ligands have been removed and replaced by
point charges, we can choose an active space that contains all
orbitals that are possibly relevant for a correct description of the
spin density.
In a minimal active space, all orbitals present in the qualita-

tive molecular orbital diagram by Hoffmann et al. (see Figure 4)
have to be included. This results in an active space which is
composed of four Fe 3d orbitals (dxy, dxz, dyz, and dz2) and both
NO π* orbitals. In addition, the Fe dx2�y2 orbital has to be
included. Altogether, this results in a minimal active space of
seven electrons correlated in seven orbitals. As a further step, we
also consider both NO π orbitals, which further extends the
minimal active space to 11 electrons correlated in nine orbitals.
The natural orbitals obtained in these minimal CAS(7,7) and

CAS(11,9) calculations are also shown in Figures 5 and 10 in
the Supporting Information for the quartet and doublet states,
respectively.
To guarantee that the spin density is converged with respect to

the active space, we performed CASSCF calculations with
different dimensions of the active space, which was systematically
enlarged. In particular, it might be important to include an
additional shell of Fe d orbitals (double-shell orbitals). The
extension of the active orbital space by a second d-shell orbital for
each metal 3d orbital represents a common procedure in
CASSCF calculations.49,76 However, it turns out that it is not
trivial to identify these double-shell orbitals, because they mix
considerably with antibonding ligand orbitals, and for this reason,
additional antibonding ligand orbitals also have to be included in
order to construct a stable active space.
For the quartet state, we proceed as follows. First, two virtual

orbitals with contributions of Fe dxz and dyz were included in the
CAS(11,9) active orbital space, resulting in the corresponding
CAS(11,11) calculation. Yet, the dyz double-shell orbital was
rotated into an empty ligand orbital. To include this double-shell
contribution, the active orbital space had to be extended by an
additional virtual orbital, resulting in our CAS(11,12) calcula-
tion. The CAS(11,12) active space was further extended by an
additional virtual orbital with a large contribution from the third
Fe dz2 orbital for the CAS(11,13) calculation. The fourth Fe dxy
double-shell orbital could be included in the active space in our
CAS(11,15) calculation, which also contains an additional empty
ligand orbital.
Similarly for the doublet state, first two virtual orbitals with

contributions of Fe dxz and dxy were included in the CAS(11,9)
described above, resulting in a CAS(11,11). Adding one addi-
tional virtual orbital with a contribution from Fe dyz yields a
CAS(11,12) active space. The fourth Fe dz2 orbital could be
included in our CAS(11,14) calculation, which contains an
additional empty ligand orbital. Finally, we note that the con-
tributions of the Fe double-shell orbitals to the natural orbitals
are significantly larger for the doublet state than for the
quartet state.
The CAS(11,15) and CAS(11,14) calculations for the quartet

and doublet state, respectively, contain the four Fe dxz, dxy, dyz,
and dz2 double-shell orbitals. Including the fifth (Fe dx2�y2)
double-shell orbital was, however, not feasible since its destabi-
lization by the point charge environment requires the including
of a number of additional ligand orbitals. For both the quartet
and the doublet state, we also explored CASSCF calculations in
which we extended the CAS(11,11) active space by one ligand σ
orbital and the corresponding antibonding σ* orbital, resulting in
a CAS(13,13) containing the Fe dxz and dxy double-shell orbitals.
However, including the remaining Fe double-shell orbitals in
these calculations turned out to be problematic and would
require the inclusion of additional ligand orbitals. Therefore,
calculationswith an active space containing the four Fe double-shell
orbitals, which are included in the CAS(11,15) or CAS(11,14)
calculations, were not possible. For this reason, we will only
consider the CAS(11,x) calculations in the following. The con-
verged natural orbitals for all employed active spaces can be
found in the Supporting Information (Figures 5�9 and 10�14
for the quartet and doublet states, respectively).
The CASSCF spin densities of the quartet and doublet states

are shown in Figures 10a and 11a, respectively. For the quartet
state, one finds only a weak dependence of the spin density on the
size of the active space chosen, and the CASSCF spin density
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profiles are similar for all active spaces considered. Therefore,
the figures only show the CAS(11,15) spin density, while for
the smaller active spaces, only the difference with respect to
CAS(11,15) is shown. For the CAS(7,7) and CAS(11,9) calcula-
tions (i.e., without double-shell effect), the spin density distribu-
tions are qualitatively in good agreement with our converged
CAS(11,15) reference spin density. Hence, already these mini-
mal active spaces are sufficient to obtain an accurate spin density
distribution.We note that also for the active spaces containing 13
active electrons, only small differences in the spin density are
found (see the difference spin density plots in Figure 15 of the
Supporting Information).
For the doublet state, larger deviations of the spin density

distribution with respect to the size of the active space can be
observed. Figure 11a shows the spin-density differences with
respect to the CAS(11,14) reference, for which the active space
contains the four most important double-shell d orbitals. When
enlarging the active space, the spin density gradually converges
toward the CAS(11,14) reference. We should note that the
CAS(7,7) and CAS(11,9) spin densities, i.e., for active spaces
without double-shell orbitals, are qualitatively similar to the
CAS(11,14) reference spin density. These minimal active spaces
are sufficient to obtain a qualitative estimate of the spin density

distribution, while for quantitatively correct spin densities, Fe
double-shell orbitals have to be included. Again, also for the
active spaces containing 13 active electrons, very similar spin
densities are obtained (see the difference spin density plots in
Figure 16 of the Supporting Information.)
To analyze the origin of the spin densities in the CASSCF

calculations, we will examine the natural orbitals and CASSCF
configurations of 3 in detail. An in-depth discussion on the
electronic structure of the larger {FeNO}7 complexes can be
found in ref 49. Concerning both the quartet and doublet states,
the natural orbitals of different active spaces are in general
similar; only some deviations in orbital shape and occupation
numbers can be recognized when the active space is enlarged.
The most important natural orbitals which correspond to those
in theminimal active space of seven electrons in seven orbitals are
shown in Figure 12. In general, the Fe dxy orbital does not interact
with the ligand orbitals for all active spaces considered. More-
over, we observe a strong covalent interaction between three Fe d
orbitals (dyz, dxz, dz2) and the NO σ and π* orbitals resulting
in two bonding [(dyz,π*) and (dxz,π*)], two antibonding
[(dyz, π*)* and (dxz, π*)*], and one nonbonding orbital [(dz2,σ)*].
In general, the three highest bonding [(dyz, π*), (dxz, π*), and dxy],
the two lowest antibonding orbitals [(dyz, π*)* and (dxz, π*)*], and

Figure 10. (a) CASSCF spin density difference plots for different
dimensions of the active space with respect to the CAS(11,15) reference
spin density for the quartet state of 3. The CAS(11,15) spin density is
shown on the right-hand side. The blue surface corresponds to an excess
of R-electron density, while the yellow surface corresponds to an excess
of β-electron density. (b) Difference plots of the spin density for the
approximate exchange�correlation functionals and the CAS(11,15)
reference spin density profile for the quartet state of [Fe(NO)]2+. An
isosurface value of 0.003 is used throughout. Similar plots using larger
isosurface values are included in the Supporting Information (Figures 17
and 18).

Figure 11. (a) CASSCF spin density difference plots for different active
spaces with respect to the CAS(11,14) reference spin density for the
doublet state of 3. The CAS(11,14) reference spin density is shown on
the right-hand side. The blue surface (positive spin density) corresponds
to an excess of R-electron density, while the yellow surface (negative
spin density) corresponds to an excess of β-electron density. (b)
Difference plots of the spin density for the approximate exchange�
correlation functionals and the CAS(11,14) reference spin density
profile for the doublet state of [Fe(NO)]2+. An isosurface value of
0.003 is used throughout. Similar plots using larger isosurface values are
included in the Supporting Information (Figures 19 and 20).
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additionally the (dz2, σ)* orbital resemble qualitatively the orbital
picture of Hoffmann et al., as given in Figure 4.
To identify how the spin density arises, one needs to inves-

tigate not only the (spin-independent) natural orbitals but also
the corresponding wave functions. To this end, Table 3 lists the
most important configurations for the quartet and the doublet
states. For both the doublet and the quartet configuration, the
CI coefficients are very similar for different active spaces, and
therefore, only those obtained in the largest active spaces,
CAS(11,15) for the quartet and CAS(11,14) for the doublet, are
given in the table. For the quartet state, variations in CI coefficients
are in general below 10%; only for the configuration with small CI
weights can larger deviations be observed. Furthermore, there is
a dominant contribution to the wave function (CI weight > 0.7)
which corresponds to the quartet ground state; all other CI
coefficients are smaller (<0.3). This principal configuration is also
shown in Figure 12 and qualitatively corresponds to the orbitals
obtained in the DFT calculations. The principal configuration,
however, which contains three unpaired electrons on the iron
atom, cannot explain the observed spin polarization (Figure 10a).
The polarization can be accounted for by adding those configura-
tions that contain excitations from the bonding (dyz,π*) and
(dxz,π*) to the antibonding (dyz,π*)* and (dxz,π*)* orbitals, which
shifts the β-electron density toward the ligand. All of these
excitations correspond to medium-sized CI coefficients (>0.05)
and are marked in bold face in Table 3. The distribution of
β electrons in both NO π* orbitals results in its characteristic
cylindrical shape. Hence, these excited configurations lead to an
excess of R-electron density on the iron atom and an excess of
β-electron density on the NO fragment. It should be noted that in
all of the configurations listed in Table 3, the (dz2,σ)*, dxy,
and dx2�y2 orbitals are each singly occupied by one R electron.

A similar observation can be made for the doublet config-
uration. As for the quartet state, there is one principal con-
tribution to the wave function (CI weight > 0.8), which is
included in Figure 12 and qualitatively corresponds to the
orbitals obtained in the DFT calculations. In addition, we find
configurations which correspond to excitations from the bond-
ing (dyz, π*) and (dxz, π*) to the antibonding (dyz, π*)* and
(dxz, π*)* orbitals. However, both R- and β-electron excitations
are present in configurations with large CI weights for the
doublet configuration, while for the quartet state, configura-
tions containing only excitations of β electrons correspond to
large CI coefficients. These excitations are marked in bold face
in Table 3. Admixture of these configurations leads to a weaker
spin polarization for the doublet state as compared to the
quartet state. Furthermore, for most configurations with large
CI coefficients, the (dz2, σ)* orbital remains singly occupied
by an R electron, which induces the characteristic shape of the
R-electron density around the Fe atom.
4.3. Comparison of CASSCF and DFT Results. The isosur-

face plot of the CASSCF reference spin densities in Figure 10a
can be compared to those obtained from DFT calculations,
shown in Figure 7. All considered exchange�correlation func-
tionals favor spin polarization, and there is a good qualitative
agreement between the DFT and CASSCF spin densities.
However, a comparison of the isosurface plots might be mis-
leading. Therefore, to consider amore quantitative benchmark of
DFT spin density distributions as well, we additionally calculated
difference plots of the DFT and CASSCF spin densities with
respect to the CAS(11,15) spin density, which is shown in
Figure 10b. Note that these difference plots employ the same
isosurface value that was used for the spin densities themselves in
Figures 7 and 10a. Plots using larger isosurface values are
included in the Supporting Information. These spin density
difference plots are very similar for all of the considered
exchange�correlation functionals, but in all cases, there are
non-negligible differences between DFT and CASSCF. At the

Figure 12. Natural orbitals and occupation numbers for the CAS(11,15)
calculations of the quartet state and the CAS(11,14) calculation of the
doublet configuration of 3. An isosurface value of 0.05 was chosen. The
natural orbitals are printed according to their occupation number. The
arrows indicate the occupation in the principal configuration.

Table 3. Total Wave Function for the Quartet State for the
CAS(11,15) and for the Doublet State for the CAS(11,14)
Calculation of 3a

S = (3/2) S = (1/2)

22 aaa 00 0.7030268 2 22 a 00 0 0.8441848

20 aaa 20 �0.2427797 2 ba a ba 0 �0.1388339

02 aaa 02 �0.2329925 2 ab a ab 0 �0.1239105

2a aaa b0 0.2081849 2 aa a bb 0 0.1021302

a2 aaa 0b 0.1955026 2 2a b a0 0 �0.0859653

ab aaa ab 0.1355478 2 bb a aa 0 0.0844657

0a aaa b2 �0.0551488 2 2a a b0 0 0.0747853
aOn the left-hand side, the configurations are printed; on the right hand-
side, the corresponding CI coefficients are given. Only those natural
orbitals which are important for the spin density are considered; all other
bonding orbitals are doubly occupied and all other antibonding orbitals
empty. The orbital ordering corresponds to the one in Figure 12:
(dyz,π*), (dxz,π*), dxy, dx2�y2, (dz2,σ)*, (dyz,π*)*, and (dxz,π*)* for the
quartet state and dxy, (dyz,π*), (dxz,π*), (dz2,σ)*, (dyz,π*)*, (dxz,π*)*,
and dx2�y2 for the doublet state, respectively. Further, those configura-
tions which are important for the spin density and correspond to CI
coefficients larger than 0.05 are considered and marked in bold face. A
more detailed table can be found in the Supporting Information. 2:
doubly occupied orbital. a: orbital occupied by an R electron. b: orbital
occupied by a β electron. 0: empty orbital.
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nitrosyl ligand, all functionals predict a β-electron density that is
too high, while at the Fe atom, there is a redistribution of the
R-electron density. However, the shape of these spin density
differences is comparable to that of the spin density itself, which
indicates that the differences are mainly quantitative. While the
shape of the spin density is qualitatively correct with all functionals,
they all overestimate the spin polarization. This overestimation is
the smallest for the BP86, BLYP, and TPSS functionals.
Similarly for the doublet state, a qualitative estimate of the

accuracy of approximate exchange�correlation functionals can be
obtained by comparing the DFT and CASSCF spin density
isosurface plots in Figures 7 and 11a, respectively. In the CASSCF
calculations, the R-electron density is located at the iron atom,
while on the nitrosyl ligand, there is only β-electron density, with
an almost cylindrical shape. By contrast, the spin densities
obtained with BP86, BLYP, and TPSS contain R-electron density
close to the nitrogen atom. Thus, the spin densities obtained with
these functionals disagree with the accurate CASSCF spin density.
For all other functionals, the isosurface plots qualitatively appear to
agree with the CASSCF reference spin density.
However, in contrast to this apparently good agreement of the

DFT and CASSCF isosurface plots for all functionals except
BP86, BLYP, and TPSS, we can observe considerable differences
in the corresponding DFT�CASSCF spin-density difference
plots in Figure 11b. With OLYP, OPBE, and M06-L, there is a
too large β-electron density on the nitrosyl ligand, and a too large
R-electron density at the Fe atom; i.e., the spin polarization is
overestimated. The magnitude of these differences is comparable
to the one found for the quartet state. The hybrid functionals
TPSSh and B3LYP yield an even larger excess of β electrons at
the nitrosyl fragment and an overall larger spin polarization
compared to the CASSCF reference. As discussed above, this is
due to the “broken-symmetry-like” solutions obtained in this
case. Finally, for BP86, BLYP, and TPSS, where already the
isosurface plots of the spin density itself did qualitatively not
agree with the CASSCF reference, the difference plots reveal a
too large β-electron density on the nitrosyl ligand, with a
redistribution of spin density close to the nitrogen. However,
even though there is a qualitative disagreement close to the
nitrogen atom, the smallest differences from the CASSCF
reference spin density are found for the BP86, BLYP, and TPSS
exchange�correlation functionals.

A similar picture can be obtained from comparing Mulliken
spin populations of the DFT and CASSCF calculations given in
Table 4. These also show that the functionals can be arranged in
three groups: For BP86, BLYP, and TPSS, the Mulliken spin
populations agree best. A slightly worse agreement is found for
OLYP, OPBE, andM06-L. And, a much larger deviation from the
CASSCF reference is found for B3LYP and TPSSh. Note,
however, that a comparison of Mulliken spin populations ob-
tained in different basis sets (Slater-type TZP basis set for DFT
and Gaussian-type cc-pVTZ for CASSCF) is problematic. De-
spite the good agreement of the Mulliken spin populations for
BP86, BLYP, and TPSS, the spin density difference plots show
that for all functionals there are significant deviations from the
CASSCF spin density.
These deviations in spin densities can also be related to

differences inCASSCF andDFT orbitals. However, it is important
to realize that such a comparison can be misleading: DFT and
CASSCF both try to represent the same (spin) density in a
different fashion (i.e., with integer and noninteger occupation
numbers, respectively). Therefore, even with the exact exchange�
correlation functional, the Kohn�Sham orbitals and the CASSCF
natural orbitals would differ. The CASSCF natural orbitals are in
general more delocalized than the corresponding DFT orbitals, in
particular around the NO ligand (NO π* orbitals), which
decreases the R-electron density around the Fe atom. This can
be observed as the blue surface in the spin density difference plots.
The larger (or smaller) distribution of β electrons around the NO
ligand with respect to the CASSCF reference can refer to the
stronger (or weaker) delocalization of β electrons in the NO π*
orbitals. Note that the CASSCF excitation structure decreases
the β-electron density around the NO ligand and simultaneously
the R-electron density around the Fe atom.
In summary, the comparison of DFT and CASSCF spin

densities shows that none of the exchange�correlation func-
tionals considered here is able to predict the spin density
distributions accurately. This view is supported by a comparison
of the spin density isosurface plots, the spin density difference
plots, and a comparison of the Mulliken spin populations. The
size of the differences in the spin density is comparable for the
quartet state and for the doublet state. For both the quartet and
the doublet states, the smallest differences are found with the
BP86, BLYP, and TPSS exchange�correlation functionals, even
though for the doublet state these three functionals result in a
qualitatively wrong spin density close to the nitrogen atom.

5. CONCLUSIONS

Since the spin density represents an essential quantity for the
calculation of EPR parameters, it is important for quantum
chemistry to be able to predict spin density distributions reliably.
Recently, Conradie and Ghosh31 discussed the difficulty in
calculating accurate spin density distributions for {FeNO}7

complexes employing DFT31 where different exchange�correla-
tion functionals yield qualitatively very different spin density
distributions. In this work, we extend their studies by considering
a large representative set of exchange�correlation functionals
and by performing a detailed orbital analysis of the sources of the
resulting differences in spin densities.

For the {FeNO}7 complexes, the DFT description of the low-
spin doublet state remains most challenging. The spin density
distributions are sensitive to the chosen approximate exchange�
correlation functional. Our orbital analysis shows that the

Table 4. Selected Mulliken Spin Populations for the Doublet
State of 3

S = 1/2

method Fe N O

OLYP 1.484 �0.259 �0.226

OPBE 1.520 �0.283 �0.237

BP86 1.259 �0.130 �0.129

BLYP 1.218 �0.105 �0.114

TPSS 1.208 �0.101 �0.107

TPSSh 1.831 �0.453 �0.378

M06-L 1.545 �0.294 �0.252

B3LYP 2.023 �0.559 �0.465

CAS(11,11) 1.168 �0.082 �0.086

CAS(11,12) 1.090 �0.036 �0.054

CAS(11,14) 1.144 �0.068 �0.076
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different spin densities can be traced back to different occupation
patterns with respect to only a few orbitals. The seven highest
molecular orbitals turn out to be crucial for the distribution of
R and β electrons. Especially, the differences in the two (d,π*)
orbitals and the (dz2, σ)* orbital explain the spin density
distribution obtained for nonhybrid exchange�correlation
functionals. The hybrid functional B3LYP, however, results in
a “broken-symmetry-like” solution. This shows that one has to
be very careful when considering spin densities of low-spin
states obtained from DFT calculations. If no “broken-symme-
try-like” solution is obtained (as in the case of the nonhybrid
functionals), the spin density can be interpreted as an approx-
imation to the real spin density. If, on the other hand, a “broken-
symmetry-like” solution is obtained, the DFT spin density does
not correspond to the physical spin density. Instead, it could be
interpreted as an approximation to the on-top pair density.38

However, this precludes the calculation of properties depend-
ing on the spin density such as EPR parameters and is thus not
desirable.

To decide which approximate exchange�correlation func-
tionals yield accurate spin density distributions, multireference
methods are required. Comparison to CASSCF results can serve
as an accurate benchmark of exchange�correlation functionals.
However, for the large complexes, it is not a priori clear whether
the active spaces that are computationally feasible include all of
the relevant orbitals. Therefore, we introduced a small model
molecule, [Fe(NO)]2+, which features the same electronic
structure and exhibits a similar dependence of the spin density
on the approximate exchange�correlation functional as the
larger complexes. Due to its small size, we can efficiently apply
the CASSCF approach. Furthermore, we can employ an active
space that includes all relevant orbitals that have metal�ligand
character as well as four of the five Fe double-shell d orbitals. This
results in an active space of 11 electrons correlated in 15 or 14
active orbitals, which appears to be sufficient to obtain reliable
reference spin densities.

Note that while such rather small active spaces are sufficient
for the small [Fe(NO)]2+model system to obtain converged spin
density distributions, this might not be the case for the salen and
porphyrin complexes anymore. CASSCF calculations for differ-
ent {FeNO}7 complexes and medium-sized active spaces have
already been presented in the literature,49 giving first insights into
the quality of DFT spin densities. However, studying the
convergence of the spin density with respect to the dimension
of the active space for these larger complexes remains challenging
since additional ligand and iron orbitals should be included in the
active space.49 This renders such calculations infeasible with
standard correlation methods. An efficient treatment of larger
active spaces is possible with conceptually different electronic
correlation methods such as the DMRG algorithm.77�79 The
DMRG study of the discussed {FeNO}7 complexes is part of our
future work.

A comparison of DFT and CASSCF spin density isosurface
plots for the quartet state indicates that DFT provides qualita-
tively consistent spin densities for all exchange�correlation
functionals studied. However, an inspection of DFT�CASSCF
spin density difference plots shows non-negligible differences.
These are similar for all exchange�correlation functionals, where
the smallest differences are observed for the BP86, BLYP, and
TPSS functionals. The deviations are mainly in the quantitative
description of the amount of spin polarization, while qualita-
tively, the spin density is predicted correctly.

For the doublet state, the spin densities obtained with different
exchange�correlation functionals are very different. The best
agreement is again found for BP86, BLYP, and TPSS. However,
these three functionals predict a qualitatively different spin
density distribution at the ligand nitrogen atom. The spin
densities obtained with the remaining nonhybrid functionals
show larger deviations and predict a too large spin polarization,
whereas the hybrid functionals B3LYP and TPSSh result in a
“broken-symmetry-like” solution with a qualitatively wrong spin
density. These results agree with those of earlier work by Pierloot
et al.,49 who found that for the doublet states of the larger
{FeNO}7 complexes, nonhybrid functionals yield spin densities
which are (on the basis of a comparison of spin density isosurface
plots and Mulliken spin populations) in closest agreement with
the CASSCF reference.

In summary, we find that none of the tested exchange�
correlation functionals is able to provide a satisfactory descrip-
tion of the spin densities in the considered iron nitrosyl com-
plexes. Hence, improved exchange�correlation functionals that
reliably predict the spin densities in transition metal complexes
will have to be developed. Our results indicate that the currently
available functionals do not take the spin density (which is, in
addition to the total density, a basic variable in spin-DFT)
properly into account. Therefore, we believe that considering
the spin density more closely provides a promising route to
improved exchange�correlation functionals for transition metal
chemistry.
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ABSTRACT: The structures of more than 70 low-lying water clusters ranging in size from (H2O)3 to (H2O)10 have been fully
optimized with several different quantum mechanical electronic structure methods, including second-order Møller�Plesset
perturbation theory (MP2) in conjunction with correlation consistent triple-ζ basis sets (aug-cc-pVTZ for O and cc-pVTZ for H,
abbreviated haTZ). Optimized structures obtained with less demanding computational procedures were compared to the MP2/
haTZ ones using both MP2/haTZ single point energies and the root-mean-square (RMS) deviations of unweighted Cartesian
coordinates. Based on these criteria, B3LYP/6-31+G(d,2p) substantially outperforms both HF/haTZ andMP2/6-31G*. B3LYP/6-
31+G(d,2p) structures never deviate from the MP2/haTZ geometries by more than 0.44 kcal mol�1 on the MP2/haTZ potential
energy surface, whereas the errors associated with the HF/haTZ and MP2/6-31G* structures grow as large as 12.20 and 2.98 kcal
mol�1, respectively. The most accurate results, however, were obtained with the two-body:many-body QM:QM fragmentation
method for weakly bound clusters, in which all one- and two-body interactions are calculated at the high-level, while a low-level
calculation is performed on the entire cluster to capture the cooperative effects (nonadditivity). With the haTZ basis set, the MP2:
HF two-body:many-body fragmentation method generates structures that deviate from the MP2/haTZ ones by 0.01 kcal mol�1 on
average and not by more than 0.03 kcal mol�1.

1. INTRODUCTION

Hydrogen bonding is widely studied, particularly in water,
because of its key roles in biological phenomena as well as in a
plethora of important chemical and physical processes.1�7 The
characterization of molecular clusters with sophisticated quan-
tum mechanical (QM) electronic structure techniques is often
highly desirable.8�21 High-accuracy computational procedures
are frequently necessary to reliably describe the properties (e.g.,
structures and energetics) of weakly bound clusters. Such com-
putations can also help unravel the chemical physics of the non-
covalent interactions that hold the clusters together. Unfortu-
nately, the computational demands of the most reliable QM
methods scale steeplywith the size of the cluster, thereby prohibiting
their routine application to large systems.

A wide variety of computational techniques have been intro-
duced that partition a cluster into fragments (not necessarily
monomers) in an attempt to extend high-accuracy computational
methods to previously inaccessible size regimes.22�42 The inte-
grated QM:QM fragmentation methods being developed by our
group fall into this category, and they facilitate the computation
of not only energies but also properties. In this paper, we review
the two-body:many-body fragmentation method and its analytic
gradients. The technique is then used to optimize the geometries
of more than 70 (H2O)n clusters where n = 3�10. The errors
associated with these two-body:many-body optimized structures
are assessed and compared to those obtained with three other
relatively inexpensive electronic structure methods.

2. THEORETICAL BACKGROUND

Through careful application of the inclusion�exclusion prin-
ciple, integrated computational chemistry methods (QM:QM,
QM:MM, ONIOM, etc.) have been extended from systems with
a single chemically important subset (or reaction center) to systems
with an arbitrary number of subsets that can overlap.43,44 With
this “multicentered” approach to integrated computations, the
traditional many-body energy decomposition for weakly bound clus-
ters has been recast45,46 in the ONIOM formalism of Morokuma
and co-workers.47 The result is effectively a QM:QM fragmenta-
tion scheme for noncovalent clusters. This basic mathematical
principle is also employed by other fragmentation methods, such
as (cardinality guided) molecular tailoring,35,48 generalized en-
ergy-based fragmentation,49,50 and the molecules-in-molecules
approach.51

In the original two-body:many-body implementation,45,46 an
accurate but computationally demanding high-level QMmethod
is employed to compute the one- and two-body interactions
within a cluster, while a less demanding low-level QM method is
used to recover the higher-order (gthree-body) interactions,
which are also commonly referred to as the cooperative or non-
additive effects. Consequently, a high-level calculation on the entire
cluster [f1f2 ... fn] can be avoided, and high-level computations
only need to be performed on the fragments [fi] and unique pairs
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of fragments [ fi fj] in the cluster. An expression for the total
energy of the cluster can then be obtained by combining the high-
level electronic energies with low-level computations on the
entire cluster as well as the fragments and pairs:

E2bHi:Lo ¼ ELo½f1f2:::fn� þ ∑
n

i¼ 1
∑
n

j > i
ðEHi½fifj� � ELo½fifj�Þ

� ðn� 2Þ ∑
n

i¼ 1
ðEHi½fi� � ELo½fi�Þ ð1Þ

When an appropriate low-level method is used (i.e., one that
accurately reproduces the high-level gthree-body effects), the
method is quite accurate, and errors typically do not exceed
0.2 kcal mol�1 . It is also quite efficient because the demands of
the high-level computations only increase quadratically with the
size of the cluster and are ideally suited for coarse-grained
parallelization. An analogous three-body:many-body procedure
has also been developed to examine the convergence of the
series:52

ΔE3bHi:Lo ¼ ELo½f1f2:::fn� þ ∑
n

i¼ 1
∑
n

j > i
∑
n

k > j
ðEHi½fifjfk�

� ELo½fifjfk�Þ � ðn� 3Þ ∑
n

i¼ 1
∑
n

j > i
ðEHi½fifj� � ELo½fifj�Þ

þ ðn� 2Þðn� 3Þ
2 ∑

n

i¼ 1
ðEHi½fi� � ELo½fi�Þ ð2Þ

For the three-body:many-body CCSD(T):MP2 approach, errors
tend to decrease by an order of magnitude relative to the two-
body:many-body method, suggesting that the series quickly
converges and that the error can be systematically controlled.

These QM:QM fragmentation schemes have been developed
within the ONIOM framework to facilitate the computation of
properties, not just energies. An extremely important feature of
the expression for cluster energies in eqs 1 and 2 is that they are
linear with respect to the computed energies. Consequently for a
linear operator like the gradient, one obtains analogous expres-
sions for the gradient by taking linear combinations of the
appropriate components from a series of high- and low-level
gradient calculations. For example, the two-body:many-body
gradient can be expressed in the following manner:

∇E2bHi:Lo ¼ ∇ELo½f1f2:::fn�

þ ∑
n

i¼ 1
∑
n

j > i
ð∇EHi½fifj� �∇ELo½fifj�Þ

� ðn� 2Þ ∑
n

i¼ 1
ð∇EHi½fi� �∇ELo½fi�Þ ð3Þ

Evaluation of these two-body:many-body Cartesian gradients is
fairly straightforward as long as all gradients are rotated into the
same reference frame. The high- and low-level gradients for the
fragments [ fi] and pairs [ fi fj] in eq 3 only contribute to a few
components of the composite Cartesian gradient. If atom a is
contained in fragment j, then the only nonzero contributions to
the component of the Cartesian gradient along the R coordinate

(R = x,y,z) of atom a can be obtained with the following
expression:

∂E2bHi:Lo

∂Ra
¼ ∂ELo½f1f2:::fn�

∂Ra
þ ∑

n

i 6¼j

∂EHi½fifj�
∂Ra

� ∂ELo½fifj�
∂Ra

 !

� ðn� 2Þ ∂EHi½fj�
∂Ra

� ∂ELo½fj�
∂Ra

 !
ð4Þ

These analytic gradients were originally implemented in a
stand-alone interface to the MPQC ab initio software package53

and applied to the geometry optimization of 15 different hydro-
gen-bonded clusters of hydrogen fluoride, water, and meth-
anol.54 In the current implementation, Cartesian gradients are
computed with MPQC, rotated into a common reference frame,
and combined to form a composite two-body:many-body gra-
dient that is then passed to the Gaussian 03 optimizer via the
“external” keyword.

3. COMPUTATIONAL METHODS

All water clusters were optimized with the Hartree�Fock
(HF) and second-order Møller�Plesset perturbation theory
(MP2) methods, the MP2:HF QM:QM fragmentation method,
and the B3LYP density functional. Residual Cartesian gradients
of all optimized structures were smaller than 4.5� 10�4 Eh a0

�1.
The 6-31+G(d,2p) basis set was used with the B3LYP optimiza-
tions because it has been shown that this methodology provides
quite accurate structures for (H2O)6 isomers.55 All B3LYP com-
putations used a pruned grid, composed of 99 radial shells and
590 angular points per shell. Both HF and MP2 optimizations
were performed with a triple-ζ correlation consistent basis set,
aug-cc-pVTZ for O and cc-pVTZ for H (henceforth denoted
haTZ). MP2 optimizations were also performed with the 6-31G*
basis set, a prescription that has been used to accurately predict
the energetics of cluster formation for the same range of water
clusters that are the focus of this study.56 The QM:QM frag-
mentation optimizations employed MP2/haTZ as the high-level
method and HF/haTZ for the low-level calculations.

For all computations, the change in the root-mean-square
(RMS) density between self-consistent field (SCF) iterations
was converged to at least 1 � 10�8, yielding energies converged
to approximately 1 � 10�10 Eh. The 1s-like core orbitals of the
oxygen atoms were frozen in all MP2 calculations. All atomic
orbital basis sets employed in this work utilized spherical
harmonic functions (5d, 7f) rather than their Cartesian counter-
parts (6d, 10f). MP2/haTZ single point energy calculations were
performed on all optimized structures to compare the relative
energies on the MP2/haTZ potential energy surface (PES). All
calculations were performed with the Gaussian 03,57 Gaussian 09,58

and MPQC53 software packages.

4. RESULTS AND DISCUSSION

Two independent means were used to compare the optimized
structures obtained with the various computational methods.
The first and more straightforward comparison utilized the
minimal RMS deviation of the unweighted Cartesian coordinates
optimized with the superpose program in TINKER.59,60 The
second metric is based on energetics. MP2/haTZ single point
energies were computed for all optimized structures. By defini-
tion, theMP2/haTZ optimized structure corresponds to the lowest
point associated with a particular minimum on the MP2/haTZ
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PES. All other optimized structures lie above that minimum.
Optimization procedures that most accurately reproduce the
MP2/haTZ optimized structure will lie closest to the bottom of
the well and, therefore, also have the smallest deviation from the
MP2/haTZ//MP2/haTZ cluster energy.

All trimer, tetramer, and pentamer structures are commonly
studied low-lying stationary points. Hexamer structures were
taken from ref 21.Most initial heptamer, octamer, nonamer, and de-
camer structures came from MP2/6-31G* optimized geometries56

with a few additional structures from HF/6-31G(d) optimiza-
tions.60 The BI2, BI3, and CH3 isomers of (H2O)7 along with
DP9 of the (H2O)10 have been omitted because they could not
be located on the MP2/haTZ PES. We note, however, that ex-
haustive searches were not performed because they collapse to
other structures on the PES. Because the number of possible

Table 1. RMS Deviations (in Å) for Optimized Structures
Relative to the MP2/haTZ Optimized Structures

method HF MP2 B3LYP MP2:HF

basis Set haTZ 6-31G* 6-31+G(d,2p) haTZ

(H2O)3

C1 0.121 0.127 0.010 0.004

C3 0.160 0.186 0.012 0.004

C3h 0.083 0.014 0.009 0.002

(H2O)4

S4 0.131 0.059 0.017 0.006

Ci 0.146 0.093 0.010 0.007

C4 0.204 0.150 0.010 0.007

C4h 0.095 0.019 0.012 0.003

(H2O)5

C1 0.160 0.126 0.041 0.013

C5 0.243 0.136 0.014 0.011

C5h 0.113 0.025 0.018 0.006

(H2O)6

prism 0.147 0.081 0.031 0.011

cage 0.180 0.115 0.040 0.008

book 1 0.203 0.076 0.020 0.008

book 2 0.262 a 0.081 0.017

bag 0.192 b 0.055 0.010

boat 1 0.297 0.332 0.078 0.038

boat 2 0.304 0.280 0.080 0.015

cyclic 0.154 0.134 0.017 0.012

(H2O)7

A 0.173 0.103 0.036 0.007

B 0.196 0.399 0.039 0.009

C 0.274 0.330 0.046 0.012

D 0.328 0.255 0.048 0.024

PR2 0.178 0.131 0.047 0.009

PR3 0.217 0.145 0.036 0.038

CA1 0.242 0.010 0.029 0.010

CA2 0.386 0.174 0.025 0.011

CH1 0.292 0.320 0.101 0.019

BI1 0.465 0.280 0.020 0.015

CH2 0.235 0.294 0.043 0.015

(H2O)8

C1a 0.166 0.073 0.029 0.010

C1b 0.167 0.068 0.030 0.009

C1c 0.173 0.070 0.029 0.007

C2 0.186 0.021 0.050 0.006

Ci 0.200 0.050 0.031 0.004

Cs 0.179 0.076 0.032 0.007

D2d 0.164 0.068 0.024 0.009

noncubic 1 0.272 0.308 0.184 0.013

S4 0.165 0.069 0.026 0.008

(H2O)9

D2dDDh 0.184 0.091 0.025 0.009

S4Dah 1 0.185 0.092 0.024 0.008

S4Dah 2 0.192 0.107 0.025 0.010

Table 1. Continued

method HF MP2 B3LYP MP2:HF

basis Set haTZ 6-31G* 6-31+G(d,2p) haTZ

S4DDh 1 0.184 0.103 0.026 0.010

S4DDh 2 0.187 0.101 0.025 0.008

D2dDah 0.183 0.102 0.022 0.007

S4Danh 1 0.185 0.125 0.023 0.008

S4Danh 2 0.187 0.089 0.024 0.010

(H2O)10

PP1 c 0.073 0.029 0.013

PP2 0.185 0.076 0.026 0.007

PP3 0.186 0.087 0.027 0.021

PP4 0.191 0.084 0.028 0.007

PP5 0.185 0.086 0.026 0.009

OB1 0.200 0.096 0.026 0.011

OB2 0.202 0.094 0.028 0.008

OB3 0.201 0.089 0.028 0.010

DP1 d 0.102 0.028 0.008

OB4 0.202 0.083 0.034 0.015

OB5 0.200 0.203 0.023 0.012

DP2 0.190 0.109 0.033 0.008

OB6 0.204 0.106 0.037 0.017

OB7 0.205 0.070 0.033 0.016

OB8 0.205 0.073 0.032 0.014

DP3 0.204 0.203 0.060 0.010

DP4 0.210 0.081 0.102 0.025

DP5 0.204 0.089 0.050 0.014

DP6 0.198 0.199 0.022 0.009

OB9 0.220 0.221 0.031 0.012

DP7 0.225 0.143 0.032 0.011

DP8 0.208 0.120 0.052 0.013

OB10 0.199 0.318 0.030 0.006

OB11 0.284 0.279 0.043 0.018

DP10 0.210 0.103 0.065 0.022

DP11 0.212 0.118 0.026 0.014

C1 0.233 0.100 0.035 0.012

C2 0.199 0.101 0.033 0.024

C3 0.222 0.122 0.039 0.020
aCollapsed to prism structure. bNot located on the MP2/6-31G* PES.
cNot located on the HF/haTZ PES. dCollapsed to DP2 structure.
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configurations grows very quickly with n, only structures within
5 kcal mol�1 of the lowest-lying isomer were examined in this study.
4.1. Comparison of Structures.Table 1 contains the minimal

RMS deviations of the unweighted Cartesian coordinates for
various optimized structures compared toMP2/haTZ optimized
structures. The first column of data shows the deviations associated
with the HF/haTZ structures. As expected, HF/haTZ structures
have large deviations from the MP2/haTZ structures. The
second column of data in Table 1 reports the RMS deviations
for theMP2/6-31G* optimized structures. Overall, MP2/6-31G*
has improved accuracy compared to HF/haTZ methodology.
Occasionally however, the MP2/6-31G* RMS values exceed
those for the HF/haTZ structures. The values in the last
two columns of Table 1 are appreciably smaller, indicating that
the B3LYP/6-31+G(d,2p) and MP2/haTZ:HF/haTZ opti-
mized structures deviate only slightly from the MP2/haTZ
ones. The two-body:many-body approach consistently repro-
duces the MP2/haTZ structures more accurately than any other
procedure.
Table 2 summarizes the results of Table 1 with the average and

maximum RMS deviations associated with each method for each
value of n. The second column lists the number of isomers used
to compute the average (unless otherwise noted) . For example,
the largest RMS deviation between the HF/haTZ and MP2/
haTZ structures is 0.465 Å (for isomer BI1 of the water heptamer).
In general, the average and maxium RMS deviations of the HF/
haTZ and MP2/6-31G* approaches are comparable, with the
later exhibiting slightly better performance overall. The average
values are roughly 1 order of magnitude smaller for the B3LYP/
6-31+G(d,2p) optimized structures. The last two columns of
Table 2 list the average andmaximumRMS deviations associated
with the two-body:many-body fragmentationmethod employing
MP2/haTZ for the high-level calculation and HF/haTZ for the
low-level calculations. Regardless of the size of the cluster, this
QM:QM fragmentation procedure yields the smallest average
errors relative to theMP2/haTZ optimized structures. In fact the
RMS deviations never exceed 0.038 Å .
4.2. Comparison of Energetics. Table 3 is similar to Table 1,

but it reports energetic, rather than structural, deviations from the
MP2/haTZ optimized structures (i.e., from the MP2/haTZ//
MP2/haTZ energies). For example, the first column of data
reports the MP2/haTZ//HF/haTZ errors associated with the

Table 2. Average and Maximum RMS Deviations (in Å) for
Various Optimized Structures Relative to the MP2/haTZ Op-
timized Structures for Various (H2O)nClusters with n = 3�10

HF/haTZ MP2/6-31G*

B3LYP/

6-31+G(d,2p)

MP2:HF/

haTZ

n no. avg max avg max avg max avg max

3 3 0.121 0.160 0.109 0.186 0.011 0.012 0.003 0.004

4 4 0.144 0.204 0.080 0.150 0.012 0.017 0.006 0.007

5 3 0.172 0.243 0.096 0.136 0.024 0.041 0.010 0.013

6 8 0.218 0.304 0.170a 0.332a 0.050 0.081 0.015 0.038

7 11 0.272 0.465 0.230 0.399 0.043 0.101 0.015 0.038

8 9 0.186 0.272 0.089 0.308 0.048 0.184 0.008 0.013

9 8 0.186 0.192 0.101 0.125 0.024 0.026 0.009 0.010

10 29 0.207b 0.284 0.125 0.318 0.037 0.102 0.013 0.025
a Excludes the bag and book 2 isomers. b Excludes the PP1 and DP1
isomers.

Table 3. Errors Associated with MP2/haTZ Energies (in kcal
mol �1) Performed on Various Optimized Structures Relative
to the MP2/haTZ//MP2/haTZ Values

method HF MP2 B3LYP MP2:HF

basis set haTZ 6-31G* 6-31+G(d,2p) haTZ

(H2O)3

C1 2.57 0.74 0.10 0.00

C3 2.59 0.97 0.11 0.00

C3h 2.27 0.25 0.10 0.00

(H2O)4

S4 3.82 0.71 0.14 0.01

Ci 3.83 0.78 0.15 0.01

C4 3.83 1.05 0.16 0.00

C4h 3.25 0.37 0.16 0.00

(H2O)5

C1 4.81 0.87 0.19 0.01

C5 4.69 1.07 0.21 0.01

C5h 4.16 0.51 0.21 0.00

(H2O)6

prism 6.47 0.79 0.25 0.01

cage 6.50 0.98 0.26 0.01

book 1 6.18 1.15 0.23 0.01

book 2 6.25 a 0.25 0.01

bag 6.32 b 0.24 0.01

boat 1 5.72 1.34 0.25 0.01

boat 2 5.64 1.22 0.25 0.01

cyclic 5.67 1.12 0.23 0.01

(H2O)7

A 7.77 1.14 0.30 0.01

B 7.64 2.36 0.29 0.01

C 7.21 0.28 0.28 0.01

D 6.89 1.58 0.25 0.01

PR2 7.82 1.02 0.31 0.01

PR3 7.21 1.07 0.30 0.01

CA1 7.07 1.09 0.28 0.01

CA2 6.53 1.26 0.28 0.01

CH1 7.20 1.21 0.28 0.01

BI1 6.82 1.44 0.25 0.01

CH2 7.20 2.20 0.27 0.01

(H2O)8

C1a 9.29 1.05 0.34 0.01

C1b 9.36 1.03 0.35 0.02

C1c 9.32 1.03 0.35 0.01

C2 9.65 0.78 0.39 0.01

Ci 9.73 0.86 0.35 0.01

Cs 9.53 1.01 0.35 0.02

D2d 9.47 1.17 0.35 0.02

noncubic 1 9.13 1.83 0.41 0.02

S4 9.50 1.19 0.36 0.02

(H2O)9

D2dDDh 10.57 1.31 0.38 0.02

S4Dah 1 10.69 1.30 0.38 0.02
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total cluster energy compared to the MP2/haTZ//MP2/haTZ
energies. The MP2/haTZ//HF/haTZ errors are always the
largest, which is entirely consistent with the RMS deviations.
In contrast, theMP2/haTZ//MP2/6-31G* errors aremuch smaller
despite having RMS deviations comparable to the HF/haTZ op-
timized structures. The errors associated with the B3LYP/6-31
+G(d,2p) structures are listed in the penultimate column, and
they are significantly smaller than the errors associated with the
HF/haTZ andMP2/6-31G* optimized structures. The last column
of data shows the energetic errors associated with the two-body:
many-body scheme. Structures optimized with the MP2:HF
QM:QM fragmentation method and the haTZ basis set are
typically one or two hundredths of a kcal mol�1 above the MP2/
haTZ optimized structures.

Again, average and maximum errors are tabulated to help
summarize all of the data in Table 3. For example, the data in
Table 4 show that the errors associated with the HF/haTZ struc-
tures optimized structures increase with the size of the cluster
and grow as large as 12.20 kcal mol�1 (for the PP4 isomer of the
water decamer). The energetic errors associated with the MP2/
6-31G* optimized structures also tend to increase with the value
of n but do not exceed 2.98 kcal mol�1 (for isomer OB10 of the
water decamer). The combination of the B3LYP density func-
tional with the 6-31+G(d,2p) basis set appears to be a good way
to quickly and reliably identify low-lying structures of (H2O)n
clusters. The largest MP2/haTZ//B3LYP/6-31+G(d,2p) error
is only 0.44 kcal mol�1 (for both OB2 and OB3 structures of the
water decamer). The two-body:many-body integrated fragmen-
tation technique for noncovalent clusters provides even more ac-
curate results. The errors associated with the structures opti-
mized with the MP2:HF method and the haTZ basis set never
exceed 0.03 kcal mol�1 (for DP11 isomer of the water decamer).
The average error for the MP2:HF fragmentation method is
0.01 kcal mol�1 for all of 75 water clusters examined. These two-
body:many-body results are particularly encouraging for certain
pathological cases where water clusters are virtually isoenergetic
and separated by less than 0.10 kcal mol�1. For example, the
MP2 complete basis set limit interaction energies for the prism
and cage isomers of the water hexamer are separated electro-
nically by only 0.06 kcal mol�1.10,21

4.3. Efficiency and Convergence. In general, we have found
that the convergence of geometry optimizations for the MP2:HF
procedure is virtually identical to that of the MP2 method. For
well-behaved cases, the MP2:HF optimization converges in a
similar number cycles, typically (10%, as the corresponding MP2
optimization (e.g.,( 2 iterations for a 20-step optimization). To
demonstrate this behavior, both MP2 and MP2:HF geometry
optimizations were started from the B3LYP/6-31+G(d,2p) opti-
mized structure of the C1a isomer of (H2O)8. The corresponding
RMS gradients (in Eh a0

�1) and relative electronic energies [in
millihartree (mEh) with respect to the optimized structures] are
shown in Figure 1. For this system, the MP2 optimization con-
verges quickly (within 20 iterations), and the progression of the
MP2:HF procedure is virtually identical. Only for iterations 8 and
9 is there any noticible difference between theMP2 andMP2:HF
optimizations. It should be noted, however, thatwhen it is difficult to

Table 3. Continued

method HF MP2 B3LYP MP2:HF

basis set haTZ 6-31G* 6-31+G(d,2p) haTZ

S4Dah 2 10.66 1.35 0.38 0.02

S4DDh 1 10.61 1.35 0.39 0.02

S4DDh 2 10.60 1.36 0.39 0.02

D2dDah 10.65 1.34 0.37 0.02

S4Danh 1 10.68 1.39 0.38 0.02

S4Danh 2 10.66 1.35 0.38 0.02

(H2O)10

PP1 c 1.30 0.38 0.00

PP2 11.99 1.35 0.43 0.02

PP3 12.03 1.37 0.41 0.01

PP4 12.20 1.36 0.40 0.02

PP5 12.03 1.41 0.43 0.02

OB1 11.91 1.45 0.43 0.02

OB2 11.94 1.47 0.44 0.01

OB3 11.94 1.48 0.44 0.02

DP1 d 1.42 0.41 0.02

OB4 11.93 1.42 0.42 0.02

OB5 11.94 1.98 0.43 0.02

DP2 11.81 1.50 0.43 0.02

OB6 11.95 1.51 0.43 0.02

OB7 11.95 1.36 0.43 0.02

OB8 11.94 1.38 0.42 0.02

DP3 11.85 1.48 0.37 0.02

DP4 11.72 1.44 0.29 0.01

DP5 11.69 1.53 0.37 0.02

OB9 12.03 1.90 0.43 0.02

DP6 11.87 1.71 0.41 0.02

DP7 11.33 1.65 0.41 0.02

DP8 11.74 1.82 0.07 0.02

OB10 11.92 2.98 0.42 0.01

OB11 11.55 1.92 0.33 0.02

DP10 11.75 1.63 0.41 0.01

DP11 11.83 1.59 0.41 0.03

C1 11.84 1.48 0.40 0.02

C2 11.49 1.55 0.41 0.02

C3 11.63 1.42 0.41 0.02
aCollapsed to prism structure. bNot located on the MP2/6-31G* PES.
cNot located on the HF/haTZ PES. dCollapsed to DP2 structure.

Table 4. Average and Maximum Errors for MP2/haTZ En-
ergies (in kcal mol �1) Performed on Various Structures
Relative to MP2/haTZ//MP2/haTZ Values for (H2O)n
Clusters with n = 3�10

HF/haTZ MP2/6-31G* B3LYP/6-31+G(d,2p) MP2:HF/haTZ

n no. avg max avg max avg max avg max

3 3 2.48 2.59 0.65 0.97 0.10 0.11 0.00 0.00

4 4 3.68 3.83 0.73 1.05 0.15 0.16 0.00 0.01

5 3 4.55 4.81 0.81 1.07 0.21 0.21 0.01 0.01

6 8 6.09 6.50 1.10a 1.34a 0.24 0.26 0.01 0.01

7 11 7.21 7.82 1.45 2.36 0.28 0.31 0.01 0.02

8 9 9.44 9.73 1.11 1.83 0.36 0.41 0.01 0.02

9 8 10.64 10.69 1.34 1.39 0.38 0.39 0.02 0.02

10 29 11.84b 12.20 1.58 2.98 0.40 0.44 0.02 0.03
a Excludes the bag and book 2 isomers. bExcludes the PP1 and DP1
isomers.
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converge the high-level geometry optimization, as is common for
weakly bound noncovalent clusters, the same problem should be
expected for the corresponding two-body:many-body QM:QM
geometry optimization.
The efficiency of the two-body:many-body gradient computa-

tions relative to the high-level method depends not only on the
size and nature of the cluster being examined but also on the me-
thods, basis sets, and software programs used for the high- and
low-level calculations. To provide some measurement of the ef-
ficiency of our approach, we recomputed the MP2 and MP2:HF
gradients for the C1a isomer of (H2O)8 and the PP1 isomer of
(H2O)10 with the MPQC program on a workstation equipped
with twoquad-coreOpteron 2.4GHz2378processors and 32GBof
memory. Thewall times (inminutes) are reported inTable 5. (Note
that no timings reported here were obtained with Gaussian.) The
first column of data has been labeled “MPQC:MPQC” to denote

that both the MP2 and HF computations were perfomed with
the MPQC software package. When computed in this manner, the
MP2:HF gradient is approximately twice as fast as the canonical
MP2 gradient calculation. Roughly 70% of the wall time in these
MP2:HF computations is spent evaluating the low-level gradient
for the complex. Efficiency can be further improved by using a
program with faster parallel HF first derivatives. The last column
of data (with the “MPQC:PQS” heading) contains the wall times
obtained when PQS61 is used to compute the HF gradients
andMPQC is only used for theMP2 gradients. PQS dramatically
decreases the time for the HF gradients (by a factor of ≈8),
which increases the speedups associated with the MP2:HF com-
putations by a factor of 3. In both columns, the efficiency of the
two-body:many-body procedure increases with the size of the
cluster. Spatial and energetic thresholds are expected to further
improve efficiency because distance-based cutoffs have yielded

Figure 1. RMS gradients and relative energies during MP2 and MP2:HF geometry optimizations of the C1a isomer of the water octamer.
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very promising results for the closely related molecules-in-mol-
ecules method.51

5. CONCLUSIONS

Analytic gradient techniques for the two-body:many-body
fragmentation method for weakly bound clusters were used to
optimize the geometries of more than 70 water clusters ranging
in size from (H2O)3 to (H2O)10. In this application, MP2/haTZ
was used as the high-level method to compute the one- and two-
body interactions, while HF/haTZ was employed as the low-
level method to recover the higher-order (gthree-body) inter-
actions. This procedure proved to be quite efficient because the
largest MP2 computations associated with the MP2:HF calcula-
tions involve a pair of water molecules (i.e., a dimer), regardless
of the size of the cluster. Consequently, the HF/haTZ computa-
tion on the entire cluster was always the rate determining step in
these two-body:many-body fragmentation calculations. Struc-
tures optimized with this QM:QM fragmentation procedure were
compared to those obtained from conventional MP2/haTZ opti-
mizations using two different metrics, the minimum RMS devia-
tion of unweighted Cartesian coordinates and the MP2/haTZ
energy. The two-body:many-body optimized structures were vir-
tually identical to those from the MP2/haTZ optimizations. On
average, the structures optimized with these two methods were
within 0.01 kcal mol�1 of each other on theMP2/haTZ PES, and
they never differed by more than 0.03 kcal mol�1 . For com-
parison, HF/haTZ andMP2/6-31G* optimized structures deviated
by as much as 12.20 and 2.98 kcal mol�1, respectively, from the
MP2/haTZ structures. This work also demonstrated that the
B3LYP/6-31+G(d,2p) structures did not differ from the MP2/
haTZ ones by more than 0.44 kcal mol�1 on the MP2/haTZ PES.
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ABSTRACT: Highly accurate coupled-cluster (CC) calculations with large basis sets have been performed to study the binding
energy of the (CH)12, (CH)16, (CH)20, and (CH)24 polyhedral hydrocarbons in two, cage-like and planar, forms. We also
considered the effect of other minor contributions: core-correlation, relativistic corrections, and extrapolations to the limit of the full
CC expansion. Thus, chemically accurate values could be obtained for these complicated systems. These nearly exact results are used
to evaluate next the performance of main approximations (i.e., pure, hybrid, and double-hybrid methods) within density functional
theory (DFT) in a systematic fashion. Some commonly used functionals, including the B3LYP model, are affected by large errors,
and only those having reduced self-interaction error (SIE), which includes the last family of conjectured expressions (double
hybrids), are able to achieve reasonable low deviations of 1�2 kcal/mol especially when an estimate for dispersion interactions is
also added.

1. INTRODUCTION

The stability of the polyhedrane family of hydrocarbons
(CH)2n (n = 6, 8, 10, 12; see Figures 1 and 2) has recently
attracted much attention1�6 due to the subtle interplay found
between intramolecular short-, medium-, and long-range (in the
weak overlap region) physical effects when increasing the size of
the system. The field of computational organic chemistry7,8 is
expected to face a compromise between accuracy and computa-
tional cost in these cases; thus, the assessment of efficient yet
accurate methods for this kind of systems is a topic of ongoing
research. To do so appropriately, benchmarking always needs
highly accurate and/or experimental results for the systematic
validation of less costly methods. Furthermore, we note that two
of the (CH)12 possible isomers are also part of the DC9 subset of
the stringent GMTKN24 general benchmark database,9 which
was recently developed to facilitate a nonbiased comparison
between different theoretical methods, intrinsically proving the
current interest on these molecules as complicated and thus
challenging systems.

In this context and as it has been done before,4,5 we carefully
calculate the binding energies (BE) of polyhedranes relative to
the number of constituing acetylene units

ΔEðBEÞ ¼ 1
n
E½ðCHÞ2n� � EðC2H2Þ ð1Þ

Before any attempt to assess the accuracy of an approximate
model (i.e., DFT) to deal with these and related systems, we will
calculate these energies with the current standard for covalent
and noncovalent interactions of medium-size molecules:10,11

high-level coupled-cluster (CC) theory with singles, doubles,
and perturbatively estimated triple excitations, the CCSD(T)
method. Note the extraordinary effort needed for a method
formally scaling as N7, where N can be related to the size of the
systems, to the whole (CH)2n family of compounds shown in
Figures 1 and 2. These calculations are 2 orders of magnitudes

more demanding than those obtained before, based on spin-scaled
variants of the Møller�Plesset perturbation theory up to second
order (MP2), and subsequently used to benchmark a large number
of density functionals.4 Additionally, the latter authors have
recently corrected their benchmark values due to some inadvertent
overestimation of the original numbers.5 Thus, at this stage, our
objective is 2-fold: (i) to provide first highly accurate reference
values for binding energies of the members of the (CH)2n family
and (ii) to further use these numbers to carefully benchmark the
results of density functional theory (DFT).

2. TECHNICAL DETAILS

The ab initio final energy for each system was calculated as
follows

ECBSCCSDðTÞ≈E
cc-pVQZ==cc-pVTZ
MP2 þ Ecc-pVTZCCSDðTÞ==MP2 � Ecc-pVTZMP2

� �
ð2Þ

where the first term tries to saturate the correlation effects at the
second order of the Møller�Plesset perturbation theory with
respect to the space expanded by the basis sets, the slowest
converging step, while the second term, denoted for the sake of
simplicity ΔCCSD(T) in the following, adds the remaining
correlation effects which have commonly a less marked depen-
dence with respect to the basis sets. Note that these terms are
single-point corrections at the sufficiently converged MP2/cc-
pVTZ geometries. This strategy intends to estimate the correla-
tion effects at the complete basis sets (CBS) limit. The family of
cc-pVnZ basis sets (n = D, T, Q) has been consequently used
along the study. All single-point ab initio calculations were
performed keeping frozen the core orbitals, a minor effect that

Received: March 23, 2011
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will however be further investigated at the MP2 level, and
without the counterpoise correction for basis sets superposition
error, which facilitates comparison with previous results.

The 2.8.0 version of the ORCA quantum-chemical package12

was consistently used for all calculations reported here. Con-
cerning the use of DFT-based methods, note that (i) we
significantly increased all the default thresholds (i.e., integration
grid or convergence of self-consistent resolution of the Kohn�
Sham equations) to reduce numerical errors and (ii) the geo-
metries of the compounds are fully optimized with the cc-pVTZ
basis set, which seems enough to ensure nearly converged
results with respect to the one-particle space. Additionally, the
resolution-of-the-identity (RI) and chain-of-spheres (COSX)
techniques13,14 were employed if needed to alleviate the compu-
tational cost of the more demanding steps. The auxiliary basis
functions were taken from the corresponding basis set library.

3. POLYHEDRANE FAMILY (CH)2N: AB INITIO RESULTS

We will investigate first the convergence of the MP2 values
with respect to the basis sets: Increasing the level from cc-

pVDZ to cc-pVTZ reduces the values of ΔE(BE) by 2.0�2.5
(1.5�1.8) kcal/mol for the 1a�4a (1b�4b) compounds
along the (CH)2n series, whereas going from cc-pVTZ to cc-
pVQZ leaves the values almost unaltered (maximum deviation
less than 0.1 kcal/mol for both cage-like and planar forms).
Thus, the first term of eq 2 can be considered as practically
converged at this stage. Before analysis of the complete
CCSD(T)/CBS results for the entire (CH)2n family, let us
focus first on further envisioned computational savings. We
see two strategies to reduce the cost of the more demanding
ΔCCSD(T) contribution: (i) to employ the cc-pVDZ basis
sets, which reduces the number of two-electron integrals, and
(ii) to employ the CCSD level, which reduces the formal
scaling of the procedure by an order of magnitude. However,
this last strategy is discouraged due to csome compensation of
errors between the convergence of CCSD and (T)
contributions.15 We will thus investigate next the efficiency
of the first possibility for the (CH)12 (1a) case: ΔE(BE) only

Figure 1. Representation of the molecular geometries of cage-like
(CH)2n (n = 6, 8, 10, 12) compounds 1a�4a (from top to bottom)
in two views. Figure created with XMakemol (see http://www.nongnu.
org/xmakemol/).

Figure 2. Representation of the molecular geometries of planar (CH)2n
(n = 6, 8, 10, 12) compounds 1b�4b (from top to bottom). Figure
created with XMakemol (see http://www.nongnu.org/xmakemol/).
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varies (in kcal/mol) from�47.27 (ΔCCSD(T) = ECCSD(T)//MP2
cc-pVTZ �

EMP2
cc-pVTZ) to �47.36 (ΔCCSD(T) = ECCSD(T)//MP2

cc-pVDZ � EMP2
cc-pVDZ),

which completely validates the use of this approximation in the
following. Therefore, the possible impact of further basis sets
extension is not expected to significantly influence the conclusions
reached up to here.

Further investigation of these results, expectedly taken as
benchmarks, is carried out next again for compound 1a, taken
again as example. To do so, we invoke the technique called
valence “focal-point analysis” (FPA)16,17 to study again the dual
convergence of both basis sets and methods toward nearly exact
results. The asymptotic value is estimated as follows: (i) the
binding energy provided by zeroth-order energy (RHF) is
calculated with the cc-pVnZ (n = D, T, Q) sequence and
extrapolated to its CBS limit by a n�5 function;18 (ii) the
remaining correlation contributions to ΔE(BE) employing
CC-based methods (δCCSD and δCCSD(T), respectively) are
included at the extrapolated values; and (iii) the CC series is
extrapolated toward completeness (δFCC) thanks to the avail-
ability of a continued fraction approximation.19 Among all the
available extrapolation techniques for CC-based correlation
energies, Ec, we choose the expression

20

Ecð∞Þ ¼ ½Ecðn þ 1Þ � EcðnÞ�F þ EcðnÞ ð3Þ

where F is a coefficient for extrapolation depending on n and n +
1 and Ec(∞) is the final extrapolated value. Application of the
aforesaid scheme to (CH)12 (1a) brings a final value of �47.39
kcal/mol, in complete agreement with calculations based on eq 2;
δCCSD, δCCSD(T), and δFCC contributing, respectively, with
�8.36, �0.30, and �0.09 kcal/mol to the initial RHF/cc-
pV∞Z value of �38.63 kcal/mol. As a byproduct of this FPA
result, we confirm again the hypothesis implicit in eq 2 about the
negligible impact on further basis sets extension.

Additionally, one needs to complementarily address other
effects which are normally overlooked when trying to reach
errors in the subchemical accuracy range (best estimates deviat-
ing the most with respect to the exact value by 1 kcal/mol): core
correlation effects and scalar relativistic corrections. The former
is calculated here by the difference between MP2/cc-pCVTZ//
MP2/cc-pVTZ andMP2/cc-pVTZ energies and amounts to less
than 0.1 kcal/mol (in absolute value) for the whole (CH)2n set.
The latter correction employs the Douglas�Kroll�Hess (DKH)
Hamiltonian21 and is estimated as the difference between MP2-
DKH/cc-pVTZ//MP2/cc-pVTZ and MP2/cc-pVTZ energies,
which thus gives a value around 0.1 kcal/mol for all compounds.
We have not evaluated the impact of other minor effects yet, i.e.,
the influence of the CCSDT�CCSD(T) correction, although
they are expected to be negligibly small according to the FPA
value obtained for δFCC of the smallest compound. To summar-
ize, our best-estimates (nonrelativistic) core-correlation cor-
rected CCSD(T)/CBS binding energies for compounds
1a�4a (cage-like) and 1b�4b (planar) are gathered in Table 1

and will be used next to benchmark the results obtained by other
methods such as density functional theory (DFT) using mainly
hybrid and double-hybrid models.22�28 Note that orbital-depen-
dent density functionals are called to play a major role in next
decades29 and further applications to chemically interesting
systems are largely envisioned.

4. POLYHEDRANE FAMILY (CH)2N: DFT RESULTS

In this context, we present in Table 2 the results of the
systematic analysis performed; the mean unsigned error (MUE)
will be used to judge the quality of the approximations. Before
analyzing the DFT-based results, we would like to underline first
that spin-component-scaled MP2 models (as SCS-MP230) are
still an approximation to the CCSD(T) values yet certainly an
improvement with respect to unscaled MP2 upon inspection
(vide infra) of the corresponding values; thus, previous claims4,5

should also benefit from the current CCSD(T)/CBS values.
We start with the discussion with systems 1a�4a. Table 2 also

shows that whereas BLYP and B3LYP behave inaccurately, a
MUE of 13.1 and 7.4 kcal/mol is obtained, respectively, a higher
value of exact-like exchange (BHHLYP) clearly improves the
results and reduces the corresponding MUE to 2.0 kcal/mol.
However, further steps in this direction (i.e., increasing the value
of the exact-like exchange weight in an hybrid-like model) is not
recommended, and in fact, the HF-LYP model, with full exact-
like exchange together with a coupled correlation potential in a
self-consistent fashion, drops an MUE of 10.2 kcal/mol. On the
other hand, the double hybrids selected (B2-PLYP and B2GP-
PLYP) are undoubdtedly a major improvement with respect to
the golden standard (B3LYP) since the correspondingMUE is at
least halved. Concerning compounds 1b�4b, simply speaking,
the trends found are the same as before. Dispersion-uncorrected
MUE values are 9.4, 5.0, 0.9, and 8.6 kcal/mol for BLYP, B3LYP,
BHHLYP, and HF-LYP models, lower than for cage-like forms;
note that double-hybrid forms behave very respectably again.

There is still room for further improvement if one couples the
dispersion energy (-D) to any of the calculated DFT values.31 To
do that, at essentially no extra computational cost, we resort to a

Table 1. Binding Energies, ΔE(BE) in kcal/mol, of the
(CH)2n (n = 6, 8, 10, 12) Family of Compounds Calculated at
the Approximate CCSD(T)/CBS Level

(CH)12 (CH)16 (CH)20 (CH)24

compound 1a 1b 2a 2b 3a 3b 4a 4b

ΔE(BE) �47.36�42.28�51.85�45.86�56.38�48.81�54.93�49.60

Table 2. Mean Unsigned Error, MUE in kcal/mol, for Bind-
ing Energies of the (CH)2n (n = 6, 8, 10, 12) Family of
Compounds at Various MP2 and DFT Levels

method MUE

1a�4a 1b�4b

ab initioa MP2 2.4 0.9

SCS-MP2 1.7 2.2

DFTb BLYP 13.1 9.4

BLYP-D 8.0 5.2

B3LYP 7.4 5.0

B3LYP-D 2.8 1.3

BHHLYP 2.0 0.9

BHHLYP-D 0.7 0.2

B2-PLYP 3.6 2.7

B2-PLYP-D 1.2 0.8

B2GP-PLYP 1.0 0.9

B2GP-PLYP-D 0.7 0.5
aWith the cc-pVQZ basis set at the corresponding cc-pVTZ-optimized
geometry. bAt the cc-pVTZ-optimized geometry.
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first-order function which explicitly depends on the well-known
R�6 decay of these interactions

E ¼ s6∑
AB

fdðRABÞC
AB
6

R6
AB

ð4Þ

where s6 is a scaling parameter used to efficiently couple the
exchange-correlation and dispersion energies, fd(RAB) is a damp-
ing function of the interatomic distance (RAB), and C6

AB is a
dispersion coefficient for the atomic pair AB.32�34 Table 2 nicely
shows how the MUE is dramatically altered in the right direction
after addition of the dispersion term to the final values, inde-
pendently of the model chosen.

If one averages now the MUE obtained for both sets of
compounds, 1a�4a and 1b�4b, a range of hybrid (BHHLYP-
D) and double-hybrid (B2-PLYP-D, B2GP-PLYP-D, and B2GP-
PLYP-D) methods are able to be obtained now, in some cases
by far the target of “chemical accuracy” (a maximum error of
(1 kcal/mol with respect to energy reference values). Note that
even in the worst possible scenario any double hybrid would at
least halve the MUE with respect to B3LYP, a somehow super-
seded method now.

In addition, concerning these nonrelativistic all-core DFT-
based calculations, we would like to remark first that a large set of
calculated key properties of organic systems is known to be
mostly affected by the self-interaction error (SIE) of common
density functionals35 (i.e., the spurious self-interaction of an
electron with itself). Generally speaking, functionals having
minimal SIE should be used for theoretical studies of organic
systems.36 As commonly admitted in the field and far from being
trivial,37 the SIE is very often used interchangeably with the
concept of delocalization error, which is maybe more intuitive: a
functional with large SIE would overstabilize delocalized densi-
ties while giving too high energies for localized densities. Note
that this effect would strongly manifest when computing the
energy differences between cage-like (1a�4a) and planar
(1b�4b) isomer forms.

In this respect, Table 3 presents the values of the MUE
obtained for isomerization energies E(na) � E(nb) (n = 1�4)
with respect to the reference values given again by eq 2. The

striking decrease of the MUE values with the weight of exact-like
exchange introduced into the (double-)hybrid form is shown in
Figure 3; we remind that the exact-like exchange is, by definition,
SIE free, which helps to interpret the trend found with a
correlation coefficient r2 = 0.991. It is maybe also illustrative to
compare these numbers with other modernmethods belonging to
theMinnesota family of functionals,38 asM06-L andM06-2X. The
numbers taken from ref 4 lead to a MUE of 8.0 and 4.4 kcal/mol,
respectively, which can be considered as competitive too. All in
all, we would like to warn about the marked influence of SIE and/
or dispersion corrections here and some strategies to cope with
the former among others: high weights of exact-like exchange
(i.e., BHHLYP), double-hybrid models (i.e., B2-PLYP or B2GP-
PLYP), or long-range-corrected functionals (i.e., CAM-B3LYP
or LC-BLYP, the latter drops a MUE of 8.2 kcal/mol according
to the values taken from ref 4). The latter effect can be efficiently
and accurately taken into account by the correction given by eq 4
or related.39

5. CONCLUSIONS

We briefly remind here that our main purpose was to convin-
cingly establish a set of benchmark values for the stability energy
of two forms, cage-like and planar, of polyhedrane hydrocarbons,
which have recently attracted much interest. In the pursuit of the
greatest possible accuracy, we relied on CCSD(T) calculations at
the estimated basis sets limit together with some minor correc-
tions in an attempt to successfully reach the subchemical
accuracy range. Having done that, further assessment of less
costly methods, such as spin-component-scaled MP2 variants
(SCS-MP2) as well as hybrid and double-hybrid functionals, was
carried out. Since there exists in the literature a plethora of
density functionals, our intention was not to extensively cover all
of them; we selected examples from the main existing categories
(pure, hybrid, and double-hybridmethods) without changing the
exchange and correlation density kernels: BLYP, B3LYP,
BHHLYP, B2-PLYP, and B2GP-PLYP. A dispersion correction
(-D) was then added to each functional form to test its influence
on the final results. One can clearly observe upon inspection of
the results and independently of the isomer type (cage-like or

Table 3. Mean Unsigned Error, MUE in kcal/mol, for Iso-
merization Energies between 1a�4a and 1b�4b Members of
the (CH)2n (n = 6, 8, 10, 12) Family of Compounds at Various
MP2 and DFT Levels

method MUE

ab initioa MP2 12.2

SCS-MP2 3.8

DFTb BLYP 32.9

BLYP-D 23.8

B3LYP 20.6

B3LYP-D 12.5

BHHLYP 9.4

BHHLYP-D 7.0

B2-PLYP 8.0

B2-PLYP-D 3.7

B2GP-PLYP 1.7

B2GP-PLYP-D 1.5
aWith the cc-pVQZ basis set at the corresponding cc-pVTZ-optimized
geometry. bAt the cc-pVTZ-optimized geometry.

Figure 3. Evolution of MUE (in kcal/mol) for the isomerization
energies of cage-like vs planar forms as a function of the exact-like
exchange term introduced into the functional.
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planar) how standardmethods such as B3LYP keep unacceptably
large errors and a higher weight of exact-like exchange in the
composition of the hybrid functional definitively helps. Note that
double hybrids normally have, by default, larger weights of exact-
like exchange, and thus, they have also shown excellent behavior.
This seems to indicate the large influence of SIE, especially for
isomerization energies, although intramolecular dispersion inter-
actions are also important mostly for binding energies. Overall, to
be always on the safer side due to the possible existing interplay
between SIE and intramolecular dispersion interactions, we
believe that older functionals should be progressively discarded,
for a routine use in the field of computational organic chemistry,
and double hybrids might be routinely applied if the computa-
tional cost does not become a serious bottleneck.
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ABSTRACT: For molecules containing the fourth-period element arsenic, we test (i, ii) the accuracy of all-electron (AE) basis sets
from the def2-xZVP and ma-xZVP series (where xZ is S, TZ, or QZ), (iii) the accuracy of the 6-311G series of AE basis sets with
additional polarization and diffuse functions, and (iv) the performance of effective core potentials (ECPs). The first set of tests
involves basis-set convergence studies with eleven density functionals for five cases: equilibrium dissociation energy (De) of As2,
vertical ionization potential (VIP) of As2, IP of As, acid dissociation of H3AsO4, and De of FeAs. A second set of tests involves the
same kinds of basis-set convergence studies for the VIP and De values of As3 and As4 clusters. Both relativistic and nonrelativistic
calculations are considered, including in each case both AE calculations and calculations with ECPs. Convergence and accuracy are
assessed by comparing to relativistic AE calculations with the cc-pV5Z-DK or ma-cc-pV5Z-DK basis and to nonrelativistic AE
calculations with the cc-pV5Z or ma-cc-pV5Z basis. The primary objective of this study is to evaluate the abilities of ECPs with both
their recommended basis sets and other basis sets to reproduce the results of all-electron relativistic calculations. The performance of
the def2 and ma series basis sets is consistent with their sizes, and quadruple-ζ basis sets are the best. The def2-TZVP basis set
performs better than most of the 6-311G series basis sets, which are the most commonly used basis sets in the previous studies of
arsenic compounds. However, relativistic def2-TZVP calculations are not recommended. The large-core ECPs, which are the only
available ECPs for arsenic in the popular Gaussian program, have average errors of 9�12 kcal/mol for the arsenic systems studied;
therefore, these ECPs are not recommended. The triple-ζ small-core relativistic ECP (RECP) basis set cc-pVTZ-PP is found to have
performance better than that of the def2-TZVP basis set, and it is highly recommended for arsenic-containing systems. The double-ζ
RECP basis set ma-sc-SVP is recommended for large arsenic systems for which the def2-TZVP and cc-pVTZ-PP basis sets are
unaffordable, if a basis-set error of ∼2 kcal/mol can be tolerated.

1. INTRODUCTION

An effective core potential (ECP) is a potential energy
function added to an electronic structure calculation to replace
the explicit treatment of core electrons. ECPs have two main
advantages in quantum chemistry: they reduce the cost of
calculations by decreasing the size of the basis set required for
a given accuracy (core basis functions are not needed), and—by
using a relativistic ECP (RECP)—they allow the inclusion of
relativistic effects on the size and shape of core orbitals without
using a relativistic treatment of the wave function. A third benefit
is that using ECPs reduces basis set superposition errors. The use
of ECPs is now well-established for calculating wave functions of
systems containing many-electron atoms, and ECPs developed
with Hartree�Fock (HF) wave functions have been found to be
“very reliable and highly transferable”1 for such calculations. The
valence orbitals in a calculation employing an ECP differ from the
valence orbitals in an all-electron (AE) calculation and are called
pseudo-orbitals.

However, when one proceeds from wave function theory
(WFT) to Kohn�Sham (KS) density functional theory
(DFT), new issues arise because of the nonlinear dependence
of the exchange�correlation (xc) functional on density.2,3 This is
widely recognized in solid-state physics, and so-called nonlinear
core corrections (NLCCs) are widely employed in plane wave

codes for density functional calculations of extended systems.
(Despite its name, an NLCC is not an add-on correction but
rather constitutes a more elaborate method for defining and
using an ECP by changing the treatment of the core density.) In
calculations with plane wave basis sets, the ECP is usually called a
pseudopotential (PP), and it is more approximate than the ECPs
usually used in quantum chemistry for calculations with Gaussian
basis functions because one attempts to find a compromise
between high accuracy in representing the effect of core electrons
and the need to include high-momentum plane waves to repre-
sent the pseudo-orbitals. Perhaps for this reason it has not been
recognized that NLCCs may also be needed for calculations with
Gaussian basis sets, and in fact, NLCCs are not employed in
popular Gaussian-based electronic structure packages.

The need for NLCCs in Gaussian-based DFT calculations has
been studied by van W€ullen,4 who wrote, “Since the xc potential
is nonlinear,... one cannot expect that an ECP adjusted at the HF
level performs necessarily well when doing a density functional
calculation on the pseudosystem with a lesser electron number
and an electron density resulting from the valence orbitals alone.
On the other hand, much work has been invested in the

Received: April 6, 2011
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development of ECPs at the HF level.... Gaussian basis sets
suitable for the expansion of valence orbitals have been devel-
oped together with the core potentials. It would be very desirable
to profit from this work in KS calculations.” Indeed ECPs
developed at the HF level and often validated only at the HF
level are present in most popular quantum chemistry software
and are widely used for KS calculations. However, there is only a
handful of systematic work validating this.4�7 Van W€ullen also
pointed out that “To assess the validity of using ECPs, an
‘internal’ consistency check is more important than is a compar-
ison with experiment.”He used large basis sets for his tests “to avoid
any bias introduced by different quality basis sets in the all-electron
and ECP calculations.” He found, in a systematic set of nonrelati-
vistic calculations with large basis sets and small-core nonrelativistic
ECPs (NRECPs), that ECP calculations agree with AE calculations
on average to 0.012 Å for bond lengths and 0.9 kcal/mol for bond
energies, whereas these values change to 0.007 Å and 2.5 kcal/mol
for KS calculations, which he judged satisfactory. Han and Hirao6

extended this kind of systematic test to one-component relativistic
ECPs (RECPs) and found “little loss of accuracy” in using ECPs
with DFT if one uses flexible basis sets and appropriate contraction
coefficients; in particular, they found accuracies of 0.001 Å and
1 kcal/mol for bond lengths and bond energies.

But questions remain: (1) Are the conclusions valid for a wider
variety of systems? (2) Are the conclusions valid if one uses the basis
sets recommended by the ECP developers as widely used with
standard quantum chemistry programs rather than the large, flexible
basis sets in the kind of test summarized above? (3) What new
considerations arise when one compares calculationswithRECPs to
calculations with NRECPs for the same system? In this paper we
explore these questions, in particular for systems containing arsenic.

Arsenic and its compounds are well-known for their toxicity
for most life forms and their potent physiological properties, and
they have been used medicinally for thousands of years.8 Now,
arsenic is under the spotlight due to the report9 of a protebacter-
ium from Mono Lake that reportedly can substitute arsenic for
phosphorus to sustain its growth. This finding is highly
controversial,10�12 and it will stimulate further experimental
and theoretical investigations on arsenic’s role in living systems.
Before one starts a computational study of the biological role or
other properties of arsenic compounds, it is important to choose
a suitable basis set and—to efficiently include relativistic effects
on core orbitals and to keep the overall cost of the calculation for
a given accuracy as low as possible—to choose an accurate
RECP. Exploring these choices for arsenic is of interest not only
for calculations on arsenic-containing systems but also for the
study’s implications for other elements, especially those in the
fourth through sixth periods of the periodic table.

Motivated by the discussion above, we focus in this paper on
the choice of ECP for As, along with the choice of corresponding
basis set, for density-functional electronic-structure calculations
on arsenic-containing compounds. To sort out the special needs
for DFT as compared to those of WFT, we carry out HF
calculations as well as KS calculations. To be sure that our results
for DFT are not biased by the choice of a particular xc functional,
all conclusions about DFT calculations are averaged over 11
different xc functionals.

In the literature,13 the most commonly used all-electron (AE)
basis sets for the theoretical study of small arsenic compounds are
the 6-311G triple-ζ basis set14 with polarization functions and
sometimes augmented with diffuse functions. Although less
widely used for As, the popular correlation consistent basis sets

(cc-pVxZ)15 by Dunning and the most recent collection of basis
sets (def2-xZVP)16 from the Ahlrichs group can be used to
improve the accuracy of AE calculations by increasing the size of
the basis set. However, the 6-311-type, cc-pVxZ, and def2 basis
sets are AE basis sets and, as such, are inefficient for the
simulation of large systems. In addition, arsenic belongs to the
fourth period of the elements, for which the scalar relativistic
effects have been found to be very important for some properties.
Calculations including relativistic effects that use AE basis sets
involve higher costs for accurate results, e.g., the CPU time can be
much larger than that of nonrelativistic calculations at a compar-
able level for large systems. Therefore, using effective core
potentials fitted to relativistic atomic calculations to replace the
inner shell electrons of arsenic may be a good choice for large
systems, because it allows one to incorporate the most important
scalar relativistic effect (the changes in size of s and p core
orbitals) in formally nonrelativistic (NR) calculations while
simultaneously reducing the need for basis functions to expand
the core orbitals. This raises another issue, namely, the number of
core electrons to be replaced by an ECP. Large-core ECPs that
replace 28 electrons have been employed for As,13e,17 but
medium-core (18 electrons) and small-core (10 electrons) ECPs
are potentially better choices. The accuracy of all these choices
needs to be investigated more systematically than has been done
in previous work, especially in the context of DFT.

In the present work, the performance of popular basis sets and
ECPs (large-core, medium-core, and small-core) for HF and KS
calculations of equilibrium bond dissociation energies (De) and
vertical ionization potentials (VIP) of prototype As-containing
compounds will be investigated. In particular, we consider the
ionization potential (IP) of As; the De and VIP of As2, As3, and
As4; the energy of the first acid dissociation of H3AsO4 (i.e., the
energy to remove a proton); and the De of FeAs.

The choice of FeAs is motivated in part by the recent finding
that solid iron arsenide is a novel superconductor material.18

Furthermore, as a 3d metal in the fourth period, the choice of
basis set and RECP for Fe raises some of the same questions we
have raised for As; therefore, by calculating the bond dissociation
energy of the diatomic molecule FeAs, we test whether our
choices of basis set and ECP for As are general, by examining
whether we can use the same basis set choice for Fe as for As.

2. COMPUTATIONAL DETAILS

Although most xc functionals have similar basis set require-
ments, we need to recognize that the requirements do vary.
Therefore, one strategy that we employ for many of our tests of
basis sets and ECPs is to consider 11 xc functionals for a given
property, for example, an equilibrium bond energy (De) or
vertical ionization potential (VIP), and for each functional we
use a large-basis relativistic AE calculation with a basis set
specifically optimized for relativistic calculations to obtain a
reference value for that xc functional and property. For brevity,
this reference value is labeled NCBS-DK (NCBS denotes “nearly
complete basis set” and “DK” is explained below). Then, for a
given smaller basis, employed in an AE or ECP calculation with
the rest of the Hamiltonian either relativistic or nonrelativistic,
we calculate a deviation from the relativistic NCBS-DK value; we
will call this the complete error. The complete mean unsigned
error (C-MUE) is the mean unsigned deviation of the 11 cal-
culated values of the property, each from its NCBS-DK reference
value. Similarly, we use a large-basis nonrelativistic AE calculation
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with a basis set specifically optimized for nonrelativistic calcula-
tions to obtain a nearly complete basis set nonrelativistic
reference value, labeled NCBS-NR, for each functional and that
property. The mean unsigned deviation from the NCBS-NR
reference value is calculated for the 11 calculated values of the
property with a given smaller basis set, and this error measure is
called the nonrelativistic mean unsigned error (NR-MUE). The
NR-MUE is a measure of how well a nonrelativistic basis set
approaches the nonrelativistic limit, whereas the C-MUE is a
measure of how well the whole treatment approaches the
complete basis set limit including relativistic effects.

Following the above protocol, for our first set of tests, the De

of the diatomic molecules As2 (
1Σg

+) and FeAs (2Δ), the VIP
of As2 (1Σg

+), the IP of As atom, and the energy of the first
acid dissociation of H3AsO4 f H2AsO4

� + H+ have been cal-
culated using 11 popular and high-performance xc functionals
(M05,19 M06-L,20 M06,21 BLYP,22ωB97X-D,23 τHCTHhyb,24

G96LYP,22b,25 mPWLYP,22b,26 B3LYP,22,27 X3LYP,28 and
BPBE22a,29), with different basis sets and ECPs. For each given xc
functional, we will compare our relativistic and nonrelativistic AE
calculations and our nonrelativistic RECP and NRECP calculations
to Douglas�Kroll�Hess second-order scalar relativistic calculation30

(sometimes called DKH and sometimes called DK) results with
the nearly complete basis set NCBS-DK, and we will also com-
pare our nonrelativistic AE calculations to nonrelativistic results
with the NCBS-NR basis set for a given xc functional. By looking
at such comparisons, one can largely decouple the errors that are
intrinsic to a given xc functional and treatment of relativistic
effects from those resulting from the choice of basis set and ECP.

For the bond dissociation energy calculations of As2 and FeAs
and the VIP calculations on As2 and IP calculations on the As
atom, the cc-pV5Z-DK and cc-pV5Z basis sets15c,d have been
chosen as NCBS-DK and NCBS-NR basis sets, respectively. For
De of As2, relativistic and nonrelativistic calculations with the
uncontracted cc-pV5Z basis set were also performed to confirm
that the cc-pV5Z-DK and cc-pV5Z basis sets are good enough to
serve as the reference basis set in our investigations. There are no
diffuse functions in the NCBS basis sets for these calculations,
because they were previously found to be unimportant in most
density functional calculations of bond dissociation energy and
ionization energy of neutral molecules.31 In the calculations of
the energy of reaction of the first acid dissociation of H3AsO4, the
minimally augmented cc-pV5Z-DK basis set (ma-cc-pV5Z-DK)
is used as the NCBS-DK basis set, and the minimally augmented
cc-pV5Z (ma-cc-pV5Z) is used as the NCBS-NR basis set. In
these minimally augmented basis sets, a set of diffuse s and p
functions has been added to the cc-pV5Z-DK or cc-pV5Z basis
set for non-hydrogen elements, with the exponents of the most
diffuse s or p functions of cc-pV5Z-DK or cc-pV5Z basis set
divided by a factor of 3, as recommended previously.31

In addition, the relativistic effects of these five cases have been
respectively calculated as the difference between the results of the
relativistic DKH calculations and nonrelativistic calculations with
a given AE basis set and the 11 xc functionals. The value of the
relativistic effect on each property is calculated as the difference
between theNCBS-DK andNCBS-NR values of that property with
a given xc functional, and this is taken as the NCBS relativistic
effect for that property and that functional. TheNCBS relativistic
effect is averaged over the eleven functionals to obtain a nominal
reference value for relativistic effect of that property. For each
property obtained with a given smaller AE basis set and a given xc
functional, we calculate a deviation from the NCBS relativistic

effect of that property with that functional; the mean unsigned
deviation from the NCBS relativistic effect, with the mean
obtained by averaging over the absolute values of the deviations
for the 11 xc functionals, is called themean unsigned error (MUE)
of the relativistic effect for that property and that AE basis set.

In this first set of tests, the tested AE basis sets are the def2
basis sets, with size increasing from double-ζ to quadruple-ζ; the
minimally augmented diffuse def2 basis sets31 (which are called
ma-xZVP basis sets); and the 6-311G basis set series with various
polarization functions and in some case with diffuse functions.
Note that “double-ζ valence” is labeled as “split valence’’ (SV)
rather thanDZV in the def2 series andma series. The “def2” basis
sets were developed as a second generation of default basis sets
for the popular TURBOMOLE program, and they constitute
balanced economical basis sets of graded quality from partially
polarized (P) double-ζ to heavily polarized (PP) quadruple-ζ
for all elements up to radon (Z = 86). The P-type basis sets of
the “def2” series, def2-SVP, def2-TZVP, and def2-QZVP, were
recommended for DFT calculations.16 In general, basis sets
containing diffuse functions are called augmented. Recently,
we31 enhanced the def2 basis sets by adding a minimal set of
diffuse functions to a subset of the elements for certain kind of
calculations, and the new basis sets were labeled by “ma” (which
stands for minimally augmented”). The new ma-TZVP basis set
has been suggested for general-purpose applications of DFT.31

However, the tested elements in the previous study do not
include any elements of the fourth period, for which the omission
of scalar relativistic effects could be a significant omission.
Therefore, the performance of the def2-xZVP and ma-xZVP
basis sets for both nonrelativistic and relativistic DKH calcula-
tions is tested in the present study, and all results are compared
with those obtained from relativistic DKH calculations or non-
relativistic calculations with NCBS basis sets. We also provide
limited testing of the cc-pVTZ and cc-pVTZ-DK basis sets.15c

The tested ECP basis sets (i.e., basis sets to be used with
ECPs) and ECPs are
(i) cc-pVxZ-PP (x = D, T, Q, 5),32 which are correlation-

consistent-type basis sets used with the small-core
(10 electrons) multiconfiguration-Dirac�Hartree�Fock
(MDF) adjusted fully relativistic Stuttgart ECP, denoted
MDF10;33

(ii) the MDF10 RECP with its own basis set;33

(iii) the CRENBL medium-core (18e) RECP34 with its own
basis set; and

(iv�vii) the large-core (28e) ECPs and corresponding ECP
basis sets implemented in the Gaussian program.

The large-core ECP basis sets and ECPs are
(iv) the Wood�Boring quasirelativistic Stuttgart large-core

ECP, labeled MWB28 (also sometimes called SDD);35

(v) the compact effective potential, labeled CEP,36 which is an
RECP [and which is also sometimes called the Stevens�
Basch�Krauss�Jasien (SBKJ) potential];

(vi) the LANL2DZ37 potential, which is a large-core NRECP
for As and a small-core NRECP for Fe; and

(vii) the relatively new large-core (28e) MDF-adjusted fully
relativistic Stuttgart ECP, denoted MDF28,1 with its
own basis set.

In addition, we also tested some combinations of modified and
unmodified def2 and ma basis sets with the MDF10 RECP. The
main motivation for choosing the def2 and ma basis sets for these
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combinations is that, as we already mentioned, the def2 basis sets
are available for all elements up to radon.

For comparison to the ECP calculations of arsenic compounds
with DFT, we also performed calculations with these ECPs by
the HF method for four of the cases in the first test set: De and
VIP of As2, IP of As, and the first acid dissociation energy of
H3AsO4. (The De of FeAs was excluded in the HF test in order
to avoid complicating the comparison by having to consider
transferability of ECPs for iron.) For each calculatedHF property
obtained with each combination of ECP and corresponding basis
set, we computed the deviation from the NCBS-DK reference
value of that property (obtained by relativistic HF calculations),
and the mean unsigned deviation over these properties for each
ECP and associated basis set was labeled MUE.

For the second set of tests, the performance of several selected
basis sets and RECPs has been further tested by calculating VIPs
and De values of arsenic clusters Asn (n = 3 and 4). The NCBS-
DK and NCBS-NR basis sets are again respectively taken as cc-
pV5Z-DK and cc-pV5Z.

For the third set of tests, we carried out nonrelativistic cc-
pVTZ15c calculations and relativistic cc-pVTZ-DK15c calcula-
tions for De and VIP of As2 and for the IP of As. These all-
electron basis sets are de-emphasized because they are not of
primary relevance to our goal of testing ECPs. Furthermore, we
note that the cc-pVxZ and cc-pVxZ-DK basis sets employ general
contraction schemes in which a primitive Gaussian is used in
more than one contracted function. Although general contrac-
tions have some theoretical advantages over the segmented
contraction schemes that the def2-xZVP, ma-xZVP, and
6-311G series basis sets use, efficient integral calculations with
general contractions are not implemented in most popular ab
initio packages, which effectively increases the number of primi-
tive functions.

When we perform ECP calcuations in this paper, the electrons
treated explicitly are always treated nonrelativistically, although
the ECP may be an RECP or an NRECP. We do not test
explicitly relativistic calculations that also include effective core
potentials.38

Taking As2 as an example, it has been confirmed that all 11 of
the xc functionals considered here can predict reasonable geo-
metrical structures, and the calculated properties, such as De

values for As2, are not very sensitive to reasonable choices of
molecular geometries. (See Tables S1 and S2 of Supporting
Information for this confirmation.) Therefore, in all calculations,
for each molecule, the same reasonable geometry was used,
which has the advantage that we are directly comparing electro-
nic energies without the complication of using different geome-
tries, and this strategy simplifies the interpretation of the results.

For As2, the experimental bond length39 of 2.1026 Å was used.
The D3h structure was used for arsenic trimer, as obtained from
Igel-Mann et al.40 with each bond length equal to 2.3284 Å. The
experimental structure41 was used for arsenic tetramer; it is a
tetrahedron with each bond length equal to 2.4353 Å. The
structures of FeAs, H3AsO4, and H2AsO4

� were optimized by
nonrelativistic calculations with the M05 xc functional, with the
def2-TZVP basis set for FeAs, and with the ma-TZVP basis set
for H3AsO4 and H2AsO4

�. The structures of the six molecules
involved in the present article are shown in Figure 1.

All calculations are carried out using the Gaussian 09 electro-
nic structure package.42

3. RESULTS AND DISCUSSION

3.1. Performance of All-Electron Basis Sets. Table 1 shows
the mean unsigned errors (C-MUE and NR-MUE) for five cases
(De and VIP of As2, IP of As, and De of H3AsO4 and FeAs)
averaged over 11 xc functionals with the def2, ma, and 6-311G-
type basis sets. The corresponding average of the C-MUEs or
NR-MUEs (A-C-MUE or A-NR-MUE) over three or five cases
for each basis set is also listed in Table 1. In addition, the mean
unsigned deviations of De for As2 from the relativistic or
nonrelativistic calculations with uncontracted cc-pV5Z basis set
are also shown in Table 1. Comparing these results to the MUEs
calculated with relativistic cc-pV5Z-DK or nonrelativistic cc-pV5Z
results, we confirm that cc-pV5Z-DK and cc-pV5Z are reasonable
reference basis set for As.
3.1.1. def2 and ma Basis Sets. 3.1.1.1. VIP of As2, De of As2,

and IP of As. For the calculations ofDe of H3AsO4 and FeAs, the
basis set choice for other elements (H, O, or Fe) could have an
impact on the conclusions. Therefore, we first analyze the
calculated VIP of As2, De of As2, and IP of As, based on their
average C-MUE [A-C-MUE(3)] values, which are based on
comparison to the NCBS-DK reference values.
As shown in rows 16 and 17 of Table 1, for nonrelativistic

calculations, the def2-QZVP basis set has a similar, slightly lower
A-C-MUE(3) value than the larger cc-pV5Z basis set (which is
the NCBS-NR reference basis). The errors in the def2-TZVP
nonrelativistic calculations (row 18) are comparable with those
of def2-QZVP. The A-C-MUE(3) for the smaller def2-SVP basis
set (row 20) is 0.4 kcal/mol larger than that of def2-TZVP. The
def2-SVP basis set is worse for De values than for VIP and IP
values. This indicates that the double split valence basis is not
sufficiently flexible for a good description of the electron
distribution of bonds; a triple-ζ or more accurate basis set is
needed for calculations of bond dissociation energy.
When relativistic calculations are performed (rows 1�15), the

average performance of both def2-QZVP and def2-SVP for the
three cases is improved, while the results for the def2-TZVP basis
set get worse. Examining Table 1 in more detail, we see that the
complete mean unsigned errors, C-MUEs, of ionization poten-
tials are decreased in relativistic calculations with all three def2
basis sets as compared to those of the nonrelativistic calculations
with the same basis sets, while forDe calculations on As2, only the
def2-QZVP results are improved. That is because the relativistic
effects will contract the inner core and cause a more efficient
screening of the nuclear charge for the outer shells, thus leading
(in this case) to an expansion of the valence orbitals.43 Although
the shape changes of the valence orbitals are weak, the important
role of valence orbitals in molecular bonding apparently requires
that, to get more accurate De values in relativistic calculations,

Figure 1. Structures.
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Table 1. Mean Unsigned Errors (C-MUE and NR-MUE, kcal/mol) in All-Electron Calculations ofDe and VIP of As2 (
1Σg

+), IP of
As, De of H3AsO4 (H3AsO4 fH2AsO4

� + H+), and De of FeAs (
2Δ) Averaged over 11 xc Functionals, Based on Comparisons to

the NCBS-DK Reference Value and NCBS-NR Reference Value of the Given Functional

C-MUE

basis set type De, As2 VIP, As2 IP, As De, H3AsO4
a De, FeAs A-C-MUE(3)b A-C-MUE(5)a,c

NCBS-DKd DK 0/0.17e 0 0 0 0 0 0

def2-QZVP DK 0.55/0.69e 0.15 0.16 1.04 0.21 0.29 0.42

def2-TZVP DK 2.63/2.75e 0.79 0.58 2.01 0.23 1.33 1.25

def2-TZVPxf DK 0.35/0.52e 0.40f

def2-SVP DK 2.11/2.11e 0.84 0.50 10.53 3.80 1.15 3.56

def2-SVP+f DK 1.80/1.84e

ma-QZVP DK 0.45/0.58e 0.22 0.21 0.07 0.13 0.29 0.22

ma-TZVP DK 2.14/2.27e 1.27 0.76 1.58 0.35 1.39 1.22

ma-SVP DK 2.75/2.62e 1.64 1.13 5.33 2.81 1.84 2.73

6-311++G(3df,3pd) DK 1.17/1.33e 0.60 0.44 0.78 0.60 0.74 0.72

6-311+G(2d,p) DK 1.23/1.14e 0.92 0.47 2.87 0.26 0.87 1.15

6-311+G(d,p) DK 1.75/1.65e 0.99 0.43 4.39 0.30 1.06 1.57

6-311G(3df,3pd) DK 1.35/1.51e 0.46 0.37 5.67 2.91 0.73 2.15

6-311G(2d,p) DK 1.21/1.11e 0.65 0.40 5.32 5.03 0.75 2.52

6-311G(d,p) DK 1.86/1.76e 0.76 0.35 5.79 8.02 0.99 3.36

NCBS-NR NR 0.69/0.78e 1.42 0.82 0.34 2.28 0.98 1.11

def2-QZVP NR 0.70/0.80e 1.37 0.81 1.32[0.99] 2.14 0.96 1.27 [1.20]

def2-TZVP NR 0.78/0.94e 1.56 0.85 2.27[1.25] 2.00 1.06 1.49 [1.29]

def2-TZVPxf NR 1.58/1.42e 1.65g

def2-SVP NR 1.67/1.62e 1.97 0.73 10.72[1.53] 1.87 1.46 3.39 [1.55]

def2-SVP+f NR 1.50/1.61e

ma-QZVP NR 0.79/0.88e 1.46 0.88 0.24 2.10 1.04 1.09

ma-TZVP NR 0.88/1.04e 2.15 1.07 1.27 2.13 1.37 1.50

ma-SVP NR 2.34/2.22e 3.12 1.50 5.03 1.14 2.32 2.63

6-311++G(3df,3pd) NR 1.24/1.41e 1.81 0.75 0.53 2.66 1.27 1.40

6-311+G(2d,p) NR 1.43/1.33e 2.17 0.63 2.57 2.19 1.41 1.80

6-311+G(d,p) NR 1.85/1.75e 2.21 0.80 4.11 1.82 1.62 2.16

6-311G(3df,3pd) NR 1.35/1.52e 1.62 0.61 5.94 2.14 1.19 2.33

6-311G(2d,p) NR 1.44/1.34e 1.81 0.48 5.55 2.86 1.24 2.43

6-311G(d,p) NR 2.05/1.92e 1.93 0.66 6.05 5.55 1.55 3.25

NR-MUE

basis set type De, As2 VIP, As2 IP, As De, H3AsO4
a De, FeAs A-NR-MUE(3)b A-NR-MUE(5)a,c

NCBS-NRh NR 0/0.17i 0 0 0 0 0 0

def2-QZVP NR 0.15/0.19i 0.07 0.07 0.98[1.33] 0.18 0.10 0.29 [0.36]

def2-TZVP NR 0.51/0.65i 0.54 0.36 1.99[1.59] 0.42 0.47 0.76 [0.68]

def2-SVP NR 1.57/1.44i 0.94 0.65 10.38[1.87] 4.14 1.05 3.54 [1.83]

ma-QZVP NR 0.14/0.24i 0.13 0.10 0.11 0.20 0.12 0.14

ma-TZVP NR 0.47/0.60i 0.73 0.33 1.61 0.28 0.51 0.68

ma-SVP NR 2.27/2.13i 1.70 0.77 5.38 3.18 1.58 2.66

6-311++G(3df,3pd) NR 0.87/1.03i 0.44 0.37 0.84 0.40 0.56 0.58

6-311+G(2d,p) NR 1.46/1.36i 0.77 0.40 2.91 0.18 0.88 1.14

6-311+G(d,p) NR 1.89/1.76i 0.84 0.36 4.45 0.46 1.03 1.60

6-311G(3df,3pd) NR 1.00/1.17i 0.34 0.33 5.60 3.76 0.56 2.21

6-311G(2d,p) NR 1.47/1.37i 0.52 0.40 5.71 5.00 0.80 2.62

6-311G(d,p) NR 2.01/1.91i 0.63 0.31 5.21 7.83 0.98 3.20
aThe values in square brackets are obtained using the ma-TZVP basis set for O and the def2-TZVP basis set for H. bA-C-MUE(3) [A-NR-MUE(3)] is
the average of C-MUE (NR-MUE) for three cases (VIP andDe of As2, IP of As).

cA-C-MUE(5) [A-NR-MUE(5)] is the average of C-MUE (NR-MUE)
for all five cases. dThe NCBS-DK reference value is the relativistic result with the cc-pV5Z-DK basis set forDe and VIP of As2, IP of As, andDe of FeAs,
and it is the relativistic result with ma-cc-pV5Z-DK for De of H3AsO4.

e For comparison, the mean unsigned deviation of De of As2 from the relativistic
result with uncontracted cc-pV5Z-DK basis set is shown after the slash. fThe def2-TZVPxf on As and def2-TZVP on Fe yields 0.38. gThe def2-TZVPxf
on As and def2-TZVP on Fe yields 1.71. hTheNCBS-NR reference value is the nonrelativistic result with the cc-pV5Z basis set forDe and VIP of As2, IP
of As, andDe of FeAs, and it is the nonrelativistic result with ma-cc-pV5Z forDe of H3AsO4.

i For comparison, the mean unsigned deviation ofDe of As2
from the nonrelativistic result with uncontracted cc-pV5Z basis set is shown after the slash.
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one must use valence basis functions specifically optimized for
relativistic calculations or use relatively complete valence basis
sets that can accommodate the change of shape. The parameters
of the def2 basis sets were obtained from nonrelativistic calcula-
tions; therefore, the incomplete def2-TZVP and def2-SVP basis
sets cannot accurately represent the valence orbitals in relativistic
calculations. At the same time, we notice that the relativistic def2-
SVP results are relatively better than those of def2-TZVP, and
they have a 0.5 kcal/mol lower C-MUE for De of As2.This is
probably due to cancellation of errors in def2-SVP relativistic
calculations.
The relativistic def2-TZVP calculations overestimate the De

values; this could be an indication that the def2-TZVP basis set is
overpolarized for relativistic valence orbitals. Therefore, we
deleted the f polarization subshell of def2-TZVP to get what
we call def2-TZVPxf basis set, where “xf” denotes excluding f
functions. The nonrelativistic def2-TZVPxf calculations give a
larger C-MUE for De of As2 than does def2-TZVP, but the
relativistic def2-TZVPxf calculations have improved perfor-
mance compared to def2-TZVP, even better than def2-QZVP.
This confirms that the def2-TZVP basis set is overpolarized for
relativistic valence orbitals. On the contrary, the f subshell added
to def2-SVP basis set slightly improves the relativistic results of
def2-SVP.
Previous investigations showed that the diffuse functions are

usually not important for De and IP calculations by DFT.31 Due
to the relative completeness of the def2-QZVP basis set, the ma-
QZVP basis has similar A-C-MUE(3) values to those of the def2-
QZVP basis set for both relativistic and nonrelativistic calcula-
tions. The ma-TZVP and ma-SVP basis sets perform worse than
the correspondingly sized def2 basis sets, especially for ma-SVP.
This implies that augmented small basis sets might be unba-
lanced for De and IP calculations.
3.1.1.2. De of H3AsO4.Table 1 shows that, when the same basis

sets are used for all the atoms of H3AsO4, the C-MUEs of
the def2-TZVP and def2-SVP basis sets are respectively 2 or
10 times larger than that of def2-QZVP, for both relativistic and

nonrelativistic calculations of the energy of acid dissociation of
H3AsO4 (which is denoted asDe even though we are considering
dissociation to ions, i.e., proton detachment). Due to the small
relativistic effect on De of H3AsO4 (the relativistic effect will be
discussed in section 3.2), the relativistic and nonrelativistic
calculations with def2 basis sets have similar C-MUE values.
The products of the first acid dissociation reaction of H3AsO4

are a proton and H2AsO4
�. Because a negative ion is involved,

diffuse functions play an important role in getting an accurate De

value for H3AsO4. As shown in Table 1, the diffuse ma basis sets
improve the calculated results forDe of H3AsO4 remarkably. The
C-MUE of the relativistic ma-QZVP results is only 0.07 kcal/mol,
showing that ma-QZVP is very close to the complete basis set.
The improvement due to adding diffuse functions is most
dramatic for the double-ζ basis set; the C-MUE of ma-SVP is
5 kcal/mol lower than that of the def2-SVP basis set for both
relativistic and nonrelativistic calculations.
In the calculations ofDe of H3AsO4, the choice of basis sets for

oxygen and hydrogen could also affect the accuracy of the results,
especially for oxygen, because the negative charge is mainly
distributed on oxygen atoms. However, here we are concerned
more with the choice of basis set for As. Therefore, we tested the
performance of different sizes of def2 basis sets for As in
nonrelativistic calculations in which the ma-TZVP basis set is
used for O andH. In contrast to the large improvement discussed
in the previous paragraph, when the same basis set is used for all
elements, only∼0.3 kcal/mol of improvement is observed when
the size of basis set increases from double-ζ to triple-ζ or from
triple-ζ to quadruple-ζ. Hence, the basis set of As is less
important than that of oxygen in the acid dissociation reaction
of H3AsO4, and diffuse functions are not needed for As but are
very important forO; using def2-TZVP or usingma-TZVP for As
gives almost the same MUE (C-MUE or NR-MUE) values if the
ma-TZVP basis set is used for oxygen in both cases.
3.1.1.3. De of FeAs. The relativistic def2-QZVP and def2-

TZVP calculations have similar C-MUE values, which are
very small (∼0.2 kcal/mol), for De of FeAs. The nonrelativistic

Table 2. Mean Unsigned Error (MUE, kcal/mol) in the Value of the Relativistic Effecta Averaged over 11 xc Functionals

MUE

basis set De, As2
b VIP, As2 IP, As De, H3AsO4 De, FeAs AMUE(5)

def2-QZVP 0.58 0.15 0.14 0.06 0.35 0.26

def2-TZVP/def2-TZVPxf 2.11/1.45 0.60 0.55 0.03 0.53 0.76

def2-SVP/def2-SVP+f 0.82/0.82 0.32 0.36 0.15 0.96 0.52

ma-QZVP 0.50 0.14 0.14 0.05 0.29 0.22

ma-TZVP 1.67 0.53 0.51 0.03 0.50 0.65

ma-SVP 0.78 0.10 0.46 0.05 0.90 0.46

6-311++G(3df,3pd) 0.40 0.18 0.22 0.06 0.20 0.21

6-311+G(2d,p) 0.17 0.41 0.21 0.04 0.23 0.21

6-311G(d,p) 0.37 0.16 0.22 0.06 0.19 0.20

6-311G(3df,3pd) 0.43 0.16 0.20 0.08 1.27 0.43

6-311G(2d,p) 0.43 0.15 0.19 0.10 1.27 0.43

6-311G(d,p) 0.41 0.14 0.21 0.08 1.26 0.42
aThe relativistic effect is calculated as the difference between the value obtained in an all-electron relativistic DKH calculation and the value obtained in
an all-electron nonrelativistic calculation with the same basis set. The error is the deviation from the NCBS relativistic effect, which is obtained with two
different NCBS basis sets, one for the relativistic calculation and one for the nonrelativistic calculation; in particular, the NCBS relativistic effect for a
given property and a given xc functional is the difference between the relativistic DKH result using the cc-pV5Z-DK basis set (ma-cc-pV5Z-DK for
H3AsO4) and the nonrelativistic result with the cc-pV5Z basis set (ma-cc-pV5Z for H3AsO4).

bThe values after the slash are obtained with def2-TZVPxf
or def2-SVP+f basis sets.
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calculations with the two basis sets give similar C-MUE, which
are ∼1.8�1.9 kcal/mol higher than those of the relativistic
calculations. It seems that the relativistic def2-TZVP calculation
is good enough for calculating theDe of FeAs. However, based on
our analysis in the previous section, the def2-TZVP basis set is
overpolarized for relativistic valence orbitals of As. Hence, the
good results of the relativistic def2-TZVP could be fortuitous.
There is only one σ bond in the 2Δ state of FeAs, and it is formed
by a 4p orbital of As and the 4s orbital of Fe. Table 1 shows that f
functions have only a small effect onDe for FeAs, which indicates
that the σ bond is not strongly affected by the polarization
afforded by f functions.
The nonrelativistic calculations of def2-SVP have a lower

C-MUE value than those of def2-QZVP and def2-TZVP, as a
result of cancellation of errors. The relative incompleteness of
def2-SVP can be confirmed from the NR-MUE of nonrelativistic
calculations with def2-SVP and fromC-MUE for relativistic def2-
SVP calculations, which are shown in Table 1.
On the basis of the C-MUE and NR-MUE values of all

calculations with ma basis sets forDe of FeAs, the diffuse functions
are not needed for the larger def2 basis set, but they can improve
the results of def2-SVP.
3.1.1.4. The Overall Performance of def2 andma Basis Sets

for the Five Cases. Consider the overall performance for the five
cases, which can be evaluated through the A-C-MUE(5) in
Table 1. The relativistic ma-QZVP calculations give the best
results, and they have a 0.2 kcal/mol of improvement compared
to the relativistic def2-QZVP results. The relativistic calculations
do not systematically increase the accuracy of def2-TZVP and
def2-SVP basis sets for As.

3.1.2. The 6-311G Series of Basis Sets. Although they are the
most commonly used basis sets in studies of arsenic compounds,
when the relativistic effect is ignored, all 6-311G-type basis sets
have worse performance than def2-TZVP for VIP and De of As2;
however, they have a slightly better performance for the IP of As.
Except for the 6-311++G(3df,3pd) calculation ofDe for H3AsO4

and the 6-311+G(d,p) calculation of De for FeAs, nonrelativistic
calculations with basis sets of the 6-311G series also perform
worse than def2-TZVP for De of H3AsO4 and FeAs. Relativistic
calculations improve the accuracy of 6-311G-type basis sets for
the VIP andDe of As2 and IP of As, but they have less effect onDe

of H3AsO4. For De of FeAs, only augmented 6-311G-type basis
sets, such as 6-311++G(3df,3pd) [which is the same as 6-311+
G(3df) for FeAs], 6-311+G(2d,p) [which is the same as 6-311+
G(2d) for FeAs], and 6-311+G(d,p) [which is the same as 6-311+
G(d) for FeAs], can give results comparable to def2-TZVP, and
the others perform very badly. The p functions of the 6-311G basis
set for iron are too tight (the smallest p exponent is 0.592684)
compared with the p functions of the def2 series (the smallest p
exponent is 0.134915 for def2-SVP and def2-TZVP and
0.028000 for def2-QZVP). Therefore, adding diffuse functions
is helpful forDe calculations on FeAs with 6-311G-type basis sets.
This is in agreement with the recommendation of Raghavachari
and Trucks14e that diffuse functions are needed when using
6-311G-type (Wachters�Hay) basis sets14a,b for first row transi-
tion metals. As shown in Table 1, based on the overall results for
the five tested cases, only the very large 6-311++G(3df,3pd) basis
set and 6-311+G(2d,p) basis set (with relativistic treatment)
perform better than the smaller def2-TZVP basis set.

Table 3. Details of the Basis Sets and ECPs for As

basis set contracted functions numbers of basis functions numbers of primitive Gaussians ECP corea lb

cc-pV5Z-DK(cc-pV5Z) 8s,7p,5d,3f,2g,1h 104 309 (306)

def2-QZVP 11s,7p,4d,2f,1g 75 179

def2-TZVP 6s,5p,4d,1f 48 114

def2-SVP 5s,4p,3d 32 80

ma-QZVP 12s,8p,4d,2f,1g 79 183

ma-TZVP 7s,6p,4d,1f 52 118

ma-SVP 6s,5p,3d 36 84

6-311++G(3df,3pd) 9s,8p,5d,1f 65 116

6-311+G(2d,p) 9s,8p,4d 53 100

6-311+G(d,p) 9s,8p,3d 48 94

6-311G(3df,3pd) 8s,7p,5d,1f 61 112

6-311G(2d,p) 8s,7p,4d 49 96

6-311G(d,p) 8s,7p,3d 44 90

cc-pV5Z-PP 7s,6p,5d,3f,2g,1h 100 236 MDF10 10 0�3

cc-pVQZ-PP 6s,5p,4d,2f,1g 64 178 MDF10 10 0�3

cc-pVTZ-PP 5s,4p,3d,1f 39 133 MDF10 10 0�3

cc-pVDZ-PP 4s,3p,2d 23 87 MDF10 10 0�3

MDF10 6s,6p,4d 44 126 MDF10 10 0�3

CRENBL 3s,3p,4d 32 36 CRENBL 18 0�∞
SDD 2s,2p 8 16 MWB28 28 0�3

MDF28 4s,4p 16 24 MDF28 28 0�3

CEP 2s,2p 8 20 CEP 28 0�∞
LANL2DZ 2s,2p 8 12 LANL2DZ 28 0�∞
ma-sc-SVP 5s,5p,3d 35 78 MDF10 10 0 � 3

aThis column shows the number of core electrons, that is, the number of electrons replaced by the ECP. bThis column shows the range of l in the ECPs.
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3.2. Relativistic Effects. So far we have discussed both relati-
vistic and nonrelativistic calculations but we have not discussed the
relativistic effect itself, that is, the difference between the two kinds
of calculation. To estimate the magnitude of the relativistic effect,
we calculated this difference with each of the eleven xc functionals
and averaged the eleven results. These calculations show that the
average absolute value of relativistic effect, calculated with the two
NCBS basis sets, is respectively 1.42, 0.69, 0.82, 0.34, and 2.28
kcal/mol for VIP of As2,De of As2, IP of As,De of H3AsO4, andDe

of FeAs. For each small AE basis set, the mean unsigned deviation
(MUE) of the relativistic effects obtained with eleven xc func-
tionals from the NCBS relativistic effects and their average MUE
over the five cases (AMUE(5)) are summarized in Table 2.
As shown in Table 2, the def2-TZVP has the worst perfor-

mance of all tested basis sets for calculating relativistic effects,
especially forDe of As2, as a result of overpolarized valence orbitals
in relativistic calculations. The 6-311G series of basis sets is more
appropriate for describing relativistic effects than def2-TZVP and
def2-SVP in most of the cases, although the 6-311G series without
diffuse functions fails in the case ofDe for FeAs. Table 2 shows that
diffuse functions are usually beneficial for calculations of relativistic
effects. Therefore, ma basis sets perform better than the corre-
sponding def2 basis sets. Augmented 6-311G basis sets and the
ma-QZVP basis set have the smallest averagemean unsigned error
for calculating the relativistic effect itself.
The present investigations show that the relativistic effect is

usually not very large for arsenic compounds, but it is more than
2 kcal/mol in one case. Unless there is cancellation of errors, all
nonrelativistic calculations have an error equal at least to the
relativistic effect; therefore, the error of nonrelativistic calcula-
tions with the best AE basis sets could be more than 2 kcal/mol.
Although def2-TZVP (or ma-TZVP when diffuse functions are
needed) is a good basis set for nonrelativistic studies, it fails in
relativistic calculations, as we have seen. Only the relativistic
calculations with the larger basis sets, def2-QZVP, ma-QZVP,

6-311+G(2d,p), or 6-311++G(3df,3pd), can give accurate results
for describing the properties of arsenic compounds. However, for
large systems, such basis sets could be unaffordable; even
nonrelativistic def2-TZVP calculations could be hard. A good
ECP (especially an RECP) and corresponding valence basis set is
potentially a better choice for large systems, and we will study
this next.
3.2.1. DFT Calculations with Standard ECP Basis Sets. Next

we consider the use of ECPs in DFT calculations. Table 3 compares
the size of the AE basis sets considered in this work to basis sets used
in combination with ECPs. Whereas AE basis sets for As involve
32�104 contracted basis functions (80�309 primitive Gaussians),
with ECPs we can reduce this to as few as eight basis functions
(12 primitive Gaussians) for a large-sized core or 32 basis functions
(36 primitive Gaussians) for a medium-sized core; ECP basis sets
for a small core have 23�100 contracted basis functions (78�236
primitive Gaussians). The computational effort of DFT calculations
usually scales asN3 orN4 as the number of atomsN in the system is
increased, while HF calculations scale as N4, and these scaling laws
may be combined with the numbers of basis functions and primitive
Gaussians in Table 3 for rough estimates of relative computational
savings when using ECPs. (Specific timing examples will be given in
section 3.6.) We should keep inmind though that the purpose of an
ECP is not just to decrease the number of basis functions. As
mentioned in the Introduction, another purpose that is important to
us is to introduce scalar relativistic effects by using relativistic ECPs
without requiring a fully relativistic calculation.
In general, the ECP on an atom is written as44

U ¼ ULþ1ðrÞ þ ∑
L

l¼ 0
∑
l

m¼�l
½UlðrÞ �ULþ1ðrÞ�jlmæÆlmj ð1Þ

where r is the distance from the nucleus, and |lmæ is a spherical
harmonic. WhenUL+1(r) 6¼ 0, the ECP affects all symmetries (l =
0�∞), whereas when UL+1(r) = 0, it affects only l = 0�L.

Table 4. Complete Mean Unsigned Errors (C-MUE, kcal/mol) forDe and VIP of As2 (
1Σg

+), IP of As,De of H3AsO4 (H3AsO4f
H2AsO4

� + H+), and De of FeAs (
2Δ) Averaged over 11 xc Functionals, with Standard ECPs with Individual Optimized Valence

Basis Sets, Compared to the NCBS-DK Reference Valuea for the Given Functional

C-MUE

basis set ECP for As De, As2 VIP, As2 IP, As De, H3AsO4
b De, FeAs A-C-MUE(3)c A-C-MUE(4)b,d A-C-MUE(5)b,e

cc-pV5Z-PP MDF10 0.57/0.44 0.60 0.61 0.75 2.35 0.59 0.63 0.98

cc-pVQZ-PP MDF10 0.70/0.57 0.69 0.68 2.32 2.51 0.69 1.10 1.38

cc-pVTZ-PP MDF10 0.74/0.62 0.36 0.71 5.49 (0.87) [1.44] 2.80 0.60 1.83 (0.67) [0.81] 2.02 (1.10) [1.21]

cc-pwCVTZ-PP MDF10 0.66/0.53 0.42 0.77 0.62

cc-pVDZ-PP MDF10 3.64/5.51 1.03 1.13 10.82 3.52 1.93 4.16 4.03

MDF10 MDF10 2.69/2.56 0.21 0.58 0.65f [1.91] 2.78 1.16 1.03f [1.35] 1.38f [1.63]

CRENBL CRENBL 20.84/21.35 6.95 4.19 9.37 8.30 10.66 10.34 9.93

SDD MWB28 21.48/20.71 8.65 4.32 7.91 [1.74] 6.43 11.48 10.59 [9.05] 9.76 [8.52]

MDF28 MDF28 23.92/23.79 4.62 3.90 [1.57] 9.37 10.81 [8.50] [8.68]

CEP CEP 25.12/24.99 9.67 2.99 13.83 7.73 12.59 12.90 11.87

LANL2DZ LANL2DZ 30.10/29.97 11.54 4.35 6.23 [1.52] 2.87 15.33 13.06 [11.88] 11.02
aThe NCBS-DK reference value is the relativistic result with the cc-pV5Z-DK basis set for De and VIP of As2, IP of As, and De of FeAs, and it is the
relativistic result with ma-cc-pV5Z-DK for De of H3AsO4. For comparison, the mean unsigned deviation of De of As2 from the relativistic result with
uncontracted cc-pV5Z-DK basis set is shown after the slash. bThe values in parentheses are obtained using the ma-cc-pVTZ-PP basis set for As and the
ma-cc-pVTZ basis set for O and H; the values in square brackets are obtained using the ma-TZVP basis set for O and H. cThe A-C-MUE(3) is the
average of C-MUE for VIP andDe of As2 and IP of As.

dThe A-C-MUE(4) is the average of C-MUE for VIP andDe of As2, IP of As, and De of H3AsO4.
eThe A-C-MUE(5) is the average of C-MUE for VIP andDe of As2, IP of As,De of H3AsO4, andDe of FeAs.

fTheMDF10 basis set is used for As; the aug-
cc-pVTZ basis set is used for O and H.
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The last column of Table 3 shows the range of l in all of the ECPs
considered in this work.
The complete mean unsigned errors (C-MUE) of calculations

with the standard combinations of ECP basis sets and ECPs listed
inTable 3 are given inTable 4, where, as in earlier sections, themean
is over 11 xc functionals. Since these errors are with respect to the
relativistic NCBS-DK (cc-pV5Z-DK or ma-cc-pV5Z-DK) results,
they include both basis set incompleteness and any errors due to the
ECP being an inexact substitute for an explicit relativistic core.
As shown in Table 4, the results obtained with cc-pVxZ-PP

(x g T) basis sets are in good agreement with those of the
relativistic NCBS-DK (cc-pV5Z-DK) basis set, with an average
C-MUE [A-C-MUE(3)] of less than 0.7 kcal/mol for VIP andDe

of As2 and IP of As, better than either the relativistic or
nonrelativistic calculations with any of the AE triple-ζ basis sets
and even better than nonrelativistic calculations with quadruple-
and quintuple-ζ sets. The MDF10 RECP with its own basis set is
also reasonably accurate with an A-C-MUE(3) of 1.2 kcal/mol.
The large-core and medium-core ECPs usually are not good
choices, because they could lead to misestimating of valence
electron correlation and polarization energies compared to AE
calculations because of a nodeless valence pseudo-orbital in the
core region and core penetration effects, as well as inadequate
Pauli repulsion between valence electrons on one center with the
pseudopotential core on another.43 Therefore, as expected, they
have a very large A-C-MUE(3) (>10 kcal/mol) for the three
homonuclear cases. LANL2DZ is the only tested NRECP
generated from nonrelativistic AE numerical HF atomic wave
functions for As; that could be one of reasons that it has the
largest C-MUEs for the three cases.
In the case of H3AsO4, if the cc-pVxZ AE basis set is used for

oxygen and hydrogen and the cc-pVxZ-PP basis set is used for As,
all the tests, except for that using the quintuple-ζ basis set, give
worse results than those with the def2 basis set at the same level.
We took cc-pVTZ-PP as an example and tested its performance
when the diffusema-cc-pVTZ orma-TZVP basis set is used for O
and H. The C-MUE for De of H3AsO4 is respectively decreased
from 5.5 to 0.9 or to 1.4 kcal/mol. Even when a large-core ECP
basis set is used for As, but with ma-TZVP for O and H, the
C-MUE could be around 1.5 kcal/mol. This confirms that the
choice of basis set for oxygen is more important than the As basis
for the H3AsO4 acid dissociation reaction.

In the calculations of De for FeAs, unpublished cc-pVxZ-PP
basis sets for iron were kindly provided by Peterson.45 For the tests
of large-core ECP basis sets for As, the corresponding small-core
(10 electrons) ECP is used for iron. Table 4 shows that only
cc-pVxZ-PP (x g T), MDF10, and LANL2DZ (which is small-
core NRECP for Fe) give reasonably accurate results for De

of FeAs.
Considering all five cases, the cc-pVTZ-PP ECP basis set and

the MDF10 RECP with its own basis set are recommended for
arsenic, and their A-C-MUE(5) are smaller than or similar to that of
the AE def2-TZVP basis. In addition, the latest new cc-pwCVTZ-PP
basis set46 that considers core�valence correlation effect is also tested
for the VIP andDe of As2 and the IP of As. It yields a similar result to
that for cc-pVTZ-PP. This indicates that the effect of core�valence
correlation effect is slight for the arsenic compounds tested.
3.2.2. DFT Calculations with Nonstandard RECP Basis Sets.

Sufficiently accurate optimized valence basis sets are as important
as the ECPs themselves because the radial shape of the pseudo-
valence orbitals in the core region is different from the shape of
AE valence orbitals as a result of the underlying pseudovalence
orbital transformation.43 The shape and size extent of pseudo-
valence orbitals depend on the choice of ECP, so that the
exponents of basis functions from AE nonrelativistic basis sets
are not necessarily applicable for ECP calculations, nor are the
contraction coefficients. For each ECP, a particular valence basis
set is usually recommended by the creators of the ECP. Never-
theless, in this section we test some new combinations of def2
basis sets with the reasonably successful MDF10 small-core
RECP. Selected results are presented in Table 5.
From the investigations above, we know that the def2-SVP or

ma-SVP basis sets are relatively better at calculations of the
relativistic effect than def2-TZVP; thus, it is not very surprising
that Table 5 shows that the combinations of def2-SVP or some
modified basis sets based on def2-SVP with MDF10 perform
relatively well, in despite of having less basis functions than def2-
TZVP. One modification that we considered is deleting the first
contracted s basis function from def2-SVP to make it more
compatible with the MDF10 RECP. We label the modified def2-
SVP basis in which this 1s contracted function is excluded the sc-
SVP basis, where “sc” denotes its intended use with a small-core
RECP. The best combination that we found employs theMDF10
RECP combined with a minimally augmented sc-SVP basis set,

Table 5. Complete Mean Unsigned Errors (C-MUE, kcal/mol), Averaged over 11 xc Functionals, Using the Relativistic Small-
Core RECP (MDF10) Combined with Different Valence Basis Sets, Compared to the NCBS-DK Reference Value a for the Given
Functionals

C-MUE

basis set RECP De, As2
b VIP, As2 IP, As De, H3AsO4

c De, FeAs A-C-MUE(3)d A-C-MUE(4)c,e A-C-MUE(5)c,f

ma-sc-SVP MDF10 0.77 (0.81) 1.59 2.07 4.58 [0.80] 1.42 1.48 2.25 [1.31] 2.09 [1.33]

ma-SVP MDF10 1.11 (1.06) 0.66 3.04 4.70 1.67 1.60 2.38 2.24

def2-SVP MDF10 0.90 (1.07) 1.07 3.72 11.09 [0.93] 2.99 1.90 4.20 [1.66] 3.95 [1.92]

def2-TZVP/def2-TZVPxf MDF10 3.30/1.99 (3.43/1.86) 4.05 4.60 2.67 [1.01] 9.11 3.98/3.55 3.66 [3.24] 4.75 [4.41]

def2-QZVP MDF10 0.95 (1.09) 4.12 4.43 2.01 [0.95] 2.29 3.17 2.88 [2.61] 2.76 [2.55]
aThe NCBS-DK reference value is the relativistic result with the cc-pV5Z-DK basis set for De and VIP of As2, IP of As, and De of FeAs, and it is the
relativistic result with ma-cc-pV5Z-DK for De of H3AsO4. For comparison, the mean unsigned deviation of De of As2 from the relativistic result with
uncontracted cc-pV5Z-DK basis set is shown in parentheses. bThe values after the slash are obtained with def2-TZVPxf as valence basis set cThe
corresponding ma-SVP or def2-xZVP basis sets are used for O and H. The values in square brackets are obtained using the ma-TZVP basis set for O and
H. dThe A-C-MUE(3) is the average of C-MUE for VIP andDe of As2 and IP of As.

eThe A-C-MUE(4) is the average of C-MUE for VIP andDe of As2,
IP of As, and De of H3AsO4.

fThe A-C-MUE(5) is the average of C-MUE for all five cases.
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where theminimal augmentation is performed in the usual31 way.
We label this combination of basis set and RECP as ma-sc-SVP.
The ma-sc-SVP basis set has a little worse performance than
MDF10 when only three cases (VIP and De of As2 and IP of As)
are considered; however, when all five tested properties are
considered, it has comparable accuracy to MDF10 and is only
0.1 kcal/mol worse than cc-pVTZ-PP (in the case of H3AsO4, the
ma-TZVP basis set is used for O and H). As shown in Table 3,
ma-sc-SVP has less basis functions than cc-pVTZ-PP and
MDF10. In addition, in contrast to cc-pVTZ-PP (which is
unpublished for 3d metal elements from Sc to Ni), ma-sc-SVP
is published for all 3d metals. It could be a good compromise to
use ma-sc-SVP in calculations for large arsenic systems contain-
ing 3d metals. The ma-sc-SVP basis needs to be tested further
and validated, if possible, for 3d metals.
As shown in Table 5, the combination of def2-TZVP with the

MDF10 RECP, denoted as def2-TZVP-MDF10, is the worst
combination due to overpolarized pseudovalence orbitals. The
def2-TZVPxf-MDF10, which is def2-TZVP-MDF10 without f
functions, has a substantially improved performance for De of
As2 as compared to def2-TZVP-MDF10. The larger def2-QZVP-
MDF10 (def2-QZVP in conjunction with the MDF10 RECP) is
worse than the combination of def2-SVP and MDF10 (def2-SVP-
MDF10) or than ma-sc-SVP. We hypothesize that the better
performance of double-ζ basis sets with MDF10 could be a result
of cancellation of two kinds of errors: one is the intrinsic error of
small basis sets; the other is the error resulting from the radial
shape change of pseudovalence orbitals in the core region.
3.2.3. HF Calculations with ECPs. Table 6 lists the deviation

andmean unsigned deviation (MUE) of HF calculations with the
ECPs tested above from relativistic NCBS-DK HF reference
values for De of As2, VIP of As2, IP of As, and De of H3AsO4.
Comparing Table 6 with Tables 4 and 5 shows that, inmost of the
cases, the small-core MDF10 RECP with the basis sets optimized
for it (the original MDF10 basis set and the cc-pVxZ-PP basis)

have better performance for HF calculations than for DFT,
especially with the cc-pVxZ-PP (x g T) basis set. The non-
standard combinations of MDF10 with def2-SVP, ma-SVP, or
ma-sc-SVP basis sets always perform better for IP of As in HF
calculations, and when considering all four cases, these nonstan-
dard combinations also have a smaller MUE(4) for HF calcula-
tions than for DFT calculations. The relatively worse performance
in DFT confirms that the transferability of HF-based ECPs is
reduced inDFT calculations because of the nonlinear nature of the
xc functional’s dependence on the density.
AlthoughDFT calculations with theMDF10 RECP for arsenic

have larger deviations from relativistic NCBS-DK reference
values than do HF calculations, the deviations still are within
an acceptable error range. Therefore, NLCCs will be helpful but
are not very important for As.
All of the large- and medium-core ECPs have even larger

errors for HF calculations than DFT calculations, as shown in
Tables 4 and 6. This probably occurs because the errors
introduced by using a large core dominate the total error of
the large-core ECP calculations, so that the nonlinear error is
drowned out by the large-core error.
3.3. Further Tests for def2-TZVP, cc-pVTZ-PP, ma-sc-SVP,

and MDF10 for Arsenic Clusters. On the basis of the above
investigations, the preferred basis sets and ECPs for arsenic in
DFT calculations of relatively large arsenic-containing systems
are RECP calculations with the cc-pVTZ-PP, ma-sc-SVP, and
MDF10 basis sets and nonrelativistic def2-TZVP all-electron
calculations. In this section, we test these four choices further by
comparing their performance for 10 De and three VIP calcula-
tions of arsenic clusters Asn (n = 2�4) plus the IP of As atom to
NCBS-DK reference values. The calculated C-MUEs and the
average C-MUE of the 14 properties (A-C-MUE(14)) over 11 xc
functionals are listed in Table 7, along with (for comparison) the
relativistic results obtained with the def2-TZVP and 6-311+
G(2d,p) basis sets. We note that previous studies47 of arsenic

Table 6. Deviation (kcal/mol) from Relativistic NCBS-DK Reference Valuea of HF Calculations and Mean Unsigned Deviation
(MUEs in kcal/mol)

basis set RECP De, As2 VIP, As2 IP, As De, H3AsO4
b MUE(3)c MUE(4)b,d

cc-pV5Z-PP MDF10 0.41 �0.07 0.01 0.28 0.16 0.19

cc-pVQZ-PP MDF10 0.32 �0.02 0.06 1.15 0.13 0.39

cc-pVTZ-PP MDF10 �0.23 0.53 0.40 3.30 0.38 1.11

cc-pVDZ-PP MDF10 �3.33 1.78 0.56 4.65 1.89 2.58

MDF10 MDF10 �1.91 1.15 0.14 �0.37e 1.07 0.89e

CRENBL CRENBL �22.86 12.72 1.77 �13.85 12.45 12.80

SDD MWB28 �28.15 9.41 5.70 �16.02 14.42 14.82

MDF28 MDF28 �29.16 5.90 �1.44 [-1.56] 12.17 [9.51]

CEP CEP �29.74 9.63 4.50 �21.08 14.62 16.23

LANL2DZ LANL2DZ �35.06 8.02 6.07 �14.47 16.38 15.90

ma-sc-SVP MDF10 �0.60 1.23 �1.41 �5.42 1.08 2.16

ma-SVP MDF10 �1.73 �0.01 �2.34 �5.54 1.36 2.41

def2-SVP MDF10 �1.05 0.03 �2.51 4.66 1.20 2.06

def2-TZVP MDF10 4.86 �4.67 �3.96 0.93 4.50 3.61

def2-QZVP MDF10 1.17 �4.18 �3.64 1.34 2.99 2.58
aThe NCBS-DK reference value is the HF relativistic result with the cc-pV5Z-DK basis set for De and VIP of As2 and IP of As, and it is the relativistic
result with ma-cc-pV5Z-DK for De of H3AsO4

bThe values in square brackets are obtained using the ma-TZVP basis set for O and H. cThe MUE(3) is
the mean unsigned deviation from relativistic NCBS-DK reference value for VIP and De of As2 and IP of As. dThe MUE(4) is the mean unsigned
deviation from relativistic NCBS-DK reference value for VIP andDe of As2, IP of As, andDe of H3AsO4.

eTheMDF10 basis set is used for As; the aug-cc-
pVTZ basis set is used for O and H.
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clusters showed that the def2-TZVPP basis set gives reliable
results for both nonrelativistic density functional and wave
function calculations. Here we restrict attention to density
functional calculations, and we study the def2-TZVP basis set
and compare the results to a more diverse set of other ap-
proaches, including relativistic effects.

Table 7 shows the clear superiority of cc-pVTZ-PP when
errors are averaged over the 14 properties, and it has a smaller
A-C-MUE(14) than nonrelativistic calculations with the cc-pV5Z
(NCBS-NR) basis set, although A-C-MUE(16), which is our
most comprehensive figure of merit, is worse. The nonrelativistic
def2-TZVP calculations also show reasonably good performance.
As we expected, the relativistic def2-TZVP calculations are worse
with an A-C-MUE(14) of 1.8 kcal/mol and a similar value for
A-C-MUE(16). This confirms again that the def2-TZVP basis set
should only be used in nonrelativistic calculations. Although the
relativistic calculations with the 6-311+G(2d,p) basis set perform

Table 7. Complete Mean Unsigned Errors (C-MUE, kcal/mol) forDe Values of 10 Dissociation Reactions and IP or VIPs of Four
Ionization Reactions over 11 xc Functionals, with cc-pV5Z, def2-TZVP, cc-pVTZ-PP, ma-sc-SVP, and MDF10, Compared to
NCBS-DK Reference Values for the Given Functional

NCBS-DKa NCBS-NRb 6-311+G(2d,p) def2-TZVP def2-TZVP cc-pVTZ-PP ma-sc-SVP MDF10

type DK NR DK DK NR RECP RECP RECP

For Des of 10 Dissociation Reactions

As2 f As + As 0 0.65 1.23 2.63 0.78 0.74 0.77 2.69

As3 f As2 + As 0 0.27 2.30 1.70 0.84 0.35 0.76 2.58

As4 f As3 + As 0 0.35 2.07 3.23 1.36 0.26 3.77 2.89

As4 f 2As2 0 0.62 3.54 2.30 1.76 0.54 2.87 2.79

As2
+ f As + As+ 0 0.66 1.75 2.46 0.50 1.19 3.44 3.16

As3
+ f As2+As

+ 0 0.33 2.46 1.51 0.39 0.58 2.37 2.37

As3
+ f As2

+ + As 0 0.40 1.54 1.67 0.93 0.20 1.30 1.90

As4
+ f As3 + As+ 0 0.99 3.17 2.38 0.62 0.67 1.41 3.26

As4
+ f As2+ As2

+ 0 0.48 3.73 1.62 0.57 0.45 1.39 2.68

As4
+ f As3

+ + As 0 0.41 3.02 2.57 0.23 0.46 0.44 3.47

For IP or VIPs of Four Ionization Reactions

As f As+ 0 0.82 0.47 0.58 0.85 0.71 2.07 0.58

As2 f As2
+ 0 1.42 0.92 0.79 1.56 0.36 1.59 0.21

As3 f As3
+ 0 1.40 0.25 0.86 1.48 0.55 0.98 0.88

As4 f As4
+ 0 2.11 1.10 1.43 2.80 0.39 3.07 0.41

A-C-MUE(14)c 0 0.78 1.98 1.84 1.05 0.53 1.87 2.13

A-C-MUE(16)d 0 0.85 1.92 1.75 1.19 0.98 2.01 2.08
aNCBS-DK reference value is the relativistic result with cc-pV5Z-DK basis set. bNCBS-NR reference value is the nonrelativistic result with cc-pV5Z
basis set. cA-C-MUE(14) is the average C-MUE of the 14 properties, each of which is calculated with 11 xc functionals, for a total of 154 comparisons
to NCBS-DK results for each entry in the second last row. dA-C-MUE(16) is the average C-MUE for the five quantities in Tables 1 (or Table 3 or 4) and
the 14 quantities in this table, counting the three quantities that appear in both tables only once. Therefore, each entry in the last row is an average over
16 � 11 = 176 comparisons to NCBS-DK results.

Table 8. Mean Unsigned Errors (C-MUE and NR-MUE,
kcal/mol) of cc-pVTZ and cc-pVTZ-DK Basis Sets for De and
VIP of As2 and IP of As Averaged over 11 xc Functionals,
Based on Comparisons to the NCBS-DKReference Value and
NCBS-NR Reference Value of the Given Functionala

C-MUE

basis set type De, As2 VIP, As2 IP, As A-C-MUE(3)b

cc-pVTZ-DK DK 0.61 0.13 0.32 0.35

cc-pVTZ DK 7.99

cc-pVTZ NR 0.28 1.35 0.53 0.72

NR-MUE

basis set type De, As2 VIP, As2 IP,As A-NR-MUE(3)b

cc-pVTZ NR 0.63 0.14 0.31 0.36
aThe NCBS-DK reference value is the relativistic result with cc-pV5Z-
DK basis set; the NCBS-NR reference value is the nonrelativistic result
with the cc-pV5Z basis set. All results in this table are for all-electron
calculations. bA-C-MUE(3) [A-NR-MUE(3)] is the average of C-MUE
(NR-MUE) for the three cases.

Table 9. Complete Error (kcal/mol) for IP of As

basis set def2-TZVP 6-311++G(3df,3pd)

Type NR NR

M05 0.87 0.99

M06-L 2.37 0.00

M06 1.26 0.43

BLYP 0.36 0.87

ωB97X-D 1.20 1.12

τHCTHhyb 0.46 0.57

G96LYP 0.92 0.85

mPWLYP 0.06 0.81

B3LYP 0.63 0.87

X3LYP 0.55 0.86

BPBE 0.70 0.83
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well for the first test set, they have slightly worse A-C-MUE(14)
value than the relativistic def2-TZVP results in this larger test set.
The performances of ma-sc-SVP and of MDF10 with its own
basis set are found to be inconsistent. For some cases they
perform well, but in other cases they perform poorly. The ma-sc-
SVP has a general performance worse than that of relativistic
def2-TZVP calculations, and MDF10 is even worse. Therefore,
although ma-sc-SVP is a relatively good RECP basis set, con-
sidering its small size and its availability for 3d metals, one must
be careful about using it, and MDF10 cannot be recommended.
3.4. cc-pVTZ and cc-pVTZ-DK.Table 8 shows a few results for

all-electron calculations with the cc-pVTZ and cc-pVTZ-DK
basis sets. First we see, as already seen earlier, that the use of
contracted AE basis sets in relativistic calculations where con-
traction coefficients are optimized for nonrelativistic calculations
can lead to very large errors; in particular, the relativistic
calculations with the cc-pVTZ basis set (optimized for nonrela-
tivistic calculations) has a C-MUE of 7.99 kcal/mol for De of
As2. For the same size and type of basis set, the results are much
better when a nonrelativistically optimized basis is used non-
relativistically or when a relativistically optimized basis is used
relativistically.
3.5. Method Dependence. We emphasize that all results

presented so far are averaged over 11 choices of xc functional. To
remind the reader that the results dependon the functional, Table 9
presents some results for individual functionals. Table 9 takes the IP
of As as an example. The table shows the calculated complete error
in the IP of As for each of the 11 xc functionals with def2-TZVP and
6-311++(3df,3pd) [it is the same as 6-311+G(3df) for As], in each
case comparing to the relativistic cc-pV5Z-DK result for that
functional. We see that M06-L has the smallest basis set error with
6-311++G(3df,3pd) and the largest basis set error for the def2-
TZVP basis set. The mPWLYP functional is best with def2-TZVP
(error = 0.06 kcal/mol) but has an error of 0.81 kcal/mol with the
other basis for which results are shown.
3.6. Timings. The CPU time for calculating integrals depends

on both the number of Gaussian primitives and the number of
contracted Gaussians, while all other steps depend on only the
number of contracted basis functions. Some AE basis sets and
ECP basis sets have been chosen to illustrate the computational
cost of HF and BLYPmethods for a large arsenic cluster As20, and
the corresponding CPU times are shown in Table 10. The time
saving of using ECPs is confirmed. Furthermore, we note that the
all-electron cc-pVTZ-DK BLYP calculation takes 7.2 times long-
er than the ma-sc-SVP one employing an ECP.

4. SUMMARY

Before summarizing the conclusions, we remind the reader
that the present study is concerned with effective core potentials
(ECPs) and basis-set incompleteness, not with the accuracy of
density functionals. Therefore, all errors are relative to the nearly
complete basis set all-electron limit for a given property and given
density functional, not with respect to experiment.

We know from previous work that basis set requirements for
electronic structure calculations are different for DFT and for
wave function theory. We also know that scalar relativistic effects
become significant for chemical accuracy for fourth-period ele-
ments. Here we test strategies for reproducing the basis-set limit
of relativistic calculations on the fourth-period element As. We
test four kinds of strategies for reproducing nearly complete basis
set relativistic calculations: all-electron (AE) relativistic calcula-
tions; AE nonrelativistic calculations; formally nonrelativistic cal-
culations in which a small, medium, or large core is replaced by a
relativistic effective core potential (RECP); and formally nonrela-
tivistic calculations with a nonrelativistic ECP (NRECP). All
relativistic calculations are carried out by employing the Douglas�
Kroll�Hess second-order scalar relativistic Hamiltonian.

The performance of AE basis sets from the def2-xZVP andma-
xZVP series and from the 6-311G series with additional polar-
ization and diffuse functions was first tested by relativistic and
nonrelativistic density functional calculations for five cases: VIP
of As2,De of As2, IP of As, acid dissociation of H3AsO4, andDe of
FeAs. Overall, relativistic ma-QZVP and def2-QZVP calcula-
tions, with average mean unsigned errors of 0.2 and 0.4 kcal/mol,
perform better than relativistic 6-311++G(3df,3pd) calculations,
which have an average mean unsigned error of 0.7 kcal/mol. The
def2-TZVP and ma-TZVP basis sets are good for nonrelativistic
calculations, with average mean unsigned errors relative to nearly
converged relativistic calculations of 1.3�1.5 kcal/mol, but using
them in relativistic calculations does not decrease their errors.
Therefore, it is not recommended to do relativistic calculations
with the def2-TZVP or ma-TZVP basis set. The relativistic
calculations with the 6-311+G(2d,p) basis set perform signifi-
cantly better than nonrelativistic calculations with this basis set,
and they perform slightly better than the def2-TZVP basis set,
with an averaged mean unsigned error of ∼1.2 kcal/mol. The
other tested 6-311G-type basis sets [6-311G(3df,3pd), 6-311G(2d,p),
6-311G(d,p), and 6-311+G(d,p)], which are commonly used in
previous studies of arsenic compounds, performworse than def2-
TZVP for both relativistic and nonrelativistic calculations, with
average mean unsigned errors in the range 1.6�3.4 kcal/mol. As
expected, the smallest basis set, def2-SVP, performs worst of all
tested AE basis sets, except 6-311G(d,p). However, when a good
basis set, ma-TZVP, is used for oxygen, the use of def2-SVP for As
only has an average mean unsigned error over the five cases that is
only 0.3 kcal/mol larger than using def2-TZVP. Due to the ionic
product H2AsO4

�, the use of diffuse functions can significantly
improve the results for acid dissociation ofH3AsO4. For the case of
FeAs, diffuse functions have less effect on the def2-TZVP and
def2-QZVPbasis sets, but they are helpful for the smaller def2-SVP
basis set and the 6-311G-type basis set with tighter p functions for
iron. The inclusion of diffuse functions does not improve the
results for the other cases and may even lead to worse results.

Several ECPs available for arsenic were also investigated in
the present work. First we considered the same five cases as in
the previous paragraph. The cc-pVxZ-PP (x g T) basis in
which valence basis functions are specifically optimized for the

Table 10. Relative Computational Cost Required for Single-
Point Energy Calculations with Various Basis Sets for an As20
Cluster, Using the HF and BLYP Methods

type

number of

basis

functions

number of

primitive

Gaussians HFa BLYPa

cc-pVTZ-DK DK 43 197 5.95 4.52

cc-pVTZ NR 43 196 5.68 4.15

cc-pVTZ-PP RECP 39 133 4.81 3.28

def2-TZVP NR 48 114 2.76 1.32

ma-sc-SVP RECP 35 78 1.00 0.63
aThe relative computational cost is estimated by dividing the CPU time
required for each calculation by the CPU time for HF/ma-sc-SVP
calculations.
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small-core MDF10 RECP was found to give very good results;
this combination, denoted simply as cc-pVTZ-PP, has an average
mean unsigned error of 1.1 kcal/mol (when the ma-cc-pVTZ
augmented basis set is used for O in the case of H3AsO4). The
small-core MDF10 RECP with its own basis set also performs
well, with an average mean unsigned error of 1.4 kcal/mol. All of
the medium-core and large-core ECPs perform poorly, with
average mean unsigned errors of 8.5�11.9 kcal/mol. In the
popular Gaussian program, only large-core ECPs are implemen-
ted for arsenic, so one must expect large deviations from the
relativistic nearly complete basis set limit.

We also introduced a very efficient nonstandard combination
of basis set and RECP that is called ma-sc-SVP; this denotes the
ma-SVP basis set with the first contracted s function removed and
used in conjunction with the small-core MDF10 RECP. This
combination has a comparable performance with MDF10, but
with many less basis functions. The application of ma-sc-SVP to
the rest of the fourth period needs to be validated.

The performances of small-core ECPs and associated basis sets
for DFT calculations are a little worse than but still comparable to
those forHF calculations for four cases:De of As2, VIP of As2, IP of
As, andDe of H3AsO4. Therefore, NLCCs inDFT calculations for
arsenic will be helpful, but are not particularly necessary.

We selected seven of the methods for further DFT tests on a
larger test set with 11 additional cases (De and VIP for various Asn
with n = 3 and 4), and we computed an average mean unsigned
error for all 16 cases. Since each case is already averaged over
11 xc functionals, this final error estimate is an average over 176
basis set convergence tests. The final error for nearly complete
basis set nonrelativistic calculations is 0.9 kcal/mol, and the final
error for def2-TZVP nonrelativistic calculations is 1.2 kcal/mol.
The latter number increases to 1.8 kcal/mol if the calculation is
instead carried out relativistically. The relativistic calculations
with the 6-311+G(2d,p) basis set give a slightly larger error than
def2-TZVP relativistic calculations and therefore are not recom-
mended. A much more efficient and more accurate way to include
relativistic effects is with an RECP, and such a calculation with
cc-pVTZ-PP has a final basis-set-incompleteness error of 1.0
kcal/mol. A very efficient but slightly less accurate option is
ma-sc-SVP, with a final error of 2.0 kcal/mol.

On the basis of the present investigations, for small arsenic-
containing systems, we recommend relativistic def2-QZVP (or
ma-QZVP when diffuse functions are needed) calculations for
getting accurate results. If the relativistic effect is insignificant
for the property under consideration, nonrelativistic def2-TZVP
(or ma-TZVP when diffuse functions are needed) calculations
are good enough. The triple-ζ RECP basis set cc-pVTZ-PP is
recommended for larger arsenic systems. However, if 3d metals
are involved in the arsenic-containing system, the double-ζ
RECP basis set ma-sc-SVP may be tested. The use of ma-sc-
SVP for As could lead to basis-set errors up to ∼2 kcal/mol.
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ABSTRACT: We demonstrate that natural orbitals allow for reducing the computational cost of wave function based correlated
calculations, especially for atoms and molecules in a large box, when a plane wave basis set under periodic boundary conditions is
used. The employed natural orbitals are evaluated on the level of second-order Møller�Plesset perturbation theory (MP2), which
requires a computational effort that scales as O(N5), where N is a measure of the system size. Moreover, we find that a simple
approximation reducing the scaling to O(N4) yields orbitals that allow for a similar reduction of the number of virtual orbitals. The
MP2 natural orbitals are applied to coupled-cluster singles and doubles (CCSD) as well as full configuration interaction Quantum
Monte Carlo calculations of the H2 molecule to test our implementation. Finally, the atomization energies of the LiH molecule and
solid are calculated on the level of MP2 and CCSD.

’ INTRODUCTION

Correlated methods such as coupled-cluster theory and
Møller�Plesset perturbation theory are common practice in
the field of quantum chemistry. However, in their canonical
formulation these methods are hard to apply to large systems and
require huge computational resources. Reducing the computa-
tional cost is therefore one of the main goals in the development
of correlated methods. Local correlation methods,1�4 pair-nat-
ural orbitals,5�7 explicitly correlated methods,8�11 optimized
virtual orbitals,12 and natural orbitals13�17 are among the most
popular approaches to reduce the computational cost of wave
function based methods. In the canonical formulation of wave
function based methods, the computational cost arises in large
part from the virtual orbital space. Therefore, many attempts aim
at minimizing the number of virtual orbitals. Natural orbitals
allow for a reduction of the virtual orbital space without
compromising accuracy and are obtained easily from diagonali-
zation of the virtual�virtual orbital block of the one-electron
reduced density matrix, which can be calculated at the level of
second-order Møller-Plesset perturbation theory (MP2):

Dð2Þ
ab ¼ ∑

cij

2ÆcbjijæÆijjcaæ� ÆcbjjiæÆijjcaæ
Δcb

ij Δ
ca
ij

ð1Þ

where

Δcb
ij ¼ εi þ εj � εc � εb

The indices i, j and a, b, c denote occupied and unoccupied
one-electron spatial orbitals, respectively, and are understood to
be shorthands for both the band index and the Bloch wave vector.
The εn correspond to one-electron Hartree�Fock eigenvalues
and Æij|abæ are two-electron-four-orbital integrals. Note that the
evaluation of eq 1 scales as O(N5) for atoms and molecules,
whereN is a measure of the system size. In ref 17, Aquilante et al.

proposed to approximate the density matrix by

Dð2Þ
ab ≈∑

ci

ÆcbjiiæÆiijcaæ
Δcb

ii Δ
ca
ii

ð2Þ

This allows for calculating an approximate MP2 density matrix
with a computational effort that scales as O(N4) only.

Eigenvectors and eigenvalues of the density matrix are called
(approximate) MP2 natural orbitals and occupation numbers,
respectively. The occupation numbers lie between 0 and 1, and
those extreme values imply that the corresponding natural orbital
occurs in none or all configurations (excited Slater determi-
nants), respectively.13 We stress that only virtual orbitals are
mixed by Dab

(2).
If Gaussian-type orbitals (GTOs) are used, natural orbitals

allow for a reduction of the virtual orbital space by about one-half
without significantly compromising accuracy.14�16 But Gaussi-
an-type orbitals are already spatially confined to the regions
around the atoms, and much larger reductions are possible if a
spatially delocalized, unbiased basis set is used to capture
correlation effects.

Plane waves (PWs) fall into this category. They have undeni-
able advantages; in particular, their precision and completeness
can be arbitrarily improved by increasing a single parameter, the
PW energy cutoff. Plane waves are very efficient for conventional
density functional theory or Hartree�Fock calculations if itera-
tive algorithms are used to determine the occupied orbitals
only.19 Similar iterative algorithms are not yet available for
many-electron wave function based methods. The advantages
of plane waves then turn into a severe handicap: the number of
virtual orbitals becomes intractable very quickly. Fortunately,
most of the variational degrees of freedom are irrelevant for the
description of the many-electron wave function, in particular, for
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atoms or molecules in a large box, where several thousand plane
waves are required to achieve total energy convergence. A large
part of this variational space is unnecessary, because it describes
regions in the vacuum far away from the nucleus, where the true
many-electron wave function vanishes. In the following, it is
shown that one can lift this problem by means of natural orbitals
that are calculated at the level of MP2 or in an even more
approximate fashion. This allows for the efficient calculation of
the electronic correlation energy using highly sophisticated
many-electron methods, such as coupled-cluster or full config-
uration interaction quantumMonte Carlo (FCIQMC) methods,
which have previously been limited to more compact basis sets
such as GTOs.

’COMPUTATIONAL DETAILS

The density matrix in eq 1 is calculated using the Vienna ab
initio simulation package (VASP) in the framework of the
projector-augmented wave (PAW) method.18�20 In the PAW
method, the one-electron orbitalsψ are derived from the pseudo-
orbitals ψ~ by means of a linear transformation

jψæ ¼ jψ~æ þ ∑
i
ðjϕiæ� jϕ~iæÞÆ~pijψ~æ ð3Þ

The pseudo-orbitals ψ~ are the variational quantities of the
PAW method and are expanded in reciprocal space using plane
waves. The index i is a shorthand for the atomic site Ri, the
angular momentum quantum numbers li and mi, and an addi-
tional index εi denoting the linearization energy.19 The all-
electron partial waves ϕi are the solution to the radial Schr€odinger
equation for the non-spin-polarized reference atom at specific
energies εi and specific angular momentum li. The pseudopartial
waves, ϕ~i, are equivalent to the all-electron partial waves outside a
core radius rc and match continuously onto ϕi inside the core
radius. The partial waves ϕi and ϕ~i are represented on radial
logarithmic grids. The projector functions ~pi are constructed in
such a way that they are dual to the pseudopartial waves, i.e.,

Æ~pijϕ~jæ ¼ δij ð4Þ

As a result of the transformation, any local operator (e.g.,
density) can be expressed as a sum of three terms:

A ¼ Æψ~jAjψ~æ� ∑
ij
½Æϕ~ijAjϕ~jæÆψ

~j~piæÆ~pjjψ~æ

þ ÆϕijAjϕjæÆψ~j~piæÆ~pjjψ~æ� ð5Þ

The first term is a pseudized contribution evaluated on a plane
wave grid, whereas the second and third terms are corrections to
account for the shape difference between the pseudized orbitals
|ψ~æ and the exact all-electron orbitals |ψæ. They are calculated
separately for each atomic site using atom centered grids (i.e.,
only one-center contributions are required). The terms Æϕ~i|A|ϕ~jæ
and Æϕi|A|ϕjæ are the expectation values of the operator A in an
LCAO (linear combination of atomic orbitals) basis, where the
first and second basis set describes the pseudized orbitals and
the exact all-electron orbitals, respectively. The efficiency of the
method relates to the fact that only one-center corrections are
required, since all long-range contributions are (exactly) de-
scribed by the first term. Similar expressions are obtained for the
two-electron integrals (see ref 21 for details). Since a more
detailed introduction to the PAWmethod is beyond the scope of

this work, we refer the reader to the seminal paper of Bl€ochl18 and
the work of Kresse and Joubert.20

The evaluation of the two-electron�four-orbital integrals Æij|
abæ in the PAW method is thoroughly discussed in ref 21 and
requires two plane wave basis sets: (i) the basis set for the one-
electron orbitalsψi(r),ψj(r),ψa(r), andψb(r) as well as (ii) the
auxiliary basis set used in the construction of the overlap density
between two orbitals ψi*(r)ψa(r). These basis sets are deter-
mined by all PWs eiGr with wavevectors G satisfying the
equations

ðp2=2meÞjGj2 < Ecut
and

ðp2=2meÞjGj2 < Eχ
respectively.

As such, the energy cutoff Ecut determines the basis set for the
one-electron orbitals, whereas the cutoff Eχ defines a basis set for
densities (products of two orbitals) that is analogous to auxiliary
basis sets used in density fitting.22 For the evaluation of Dab

(2) we
set Eχ close to Ecut because we find a fast convergence of the
natural orbitals with respect to Eχ. The correlation energy in the
complete basis set limit, however, is extrapolated by system-
atically increasing Eχ at fixed Ecut. The exact extrapolation
procedure is outlined in ref 21.

In this work, we used a newly developed coupled-cluster
singles and doubles (CCSD) module in VASP and the FCIQMC
code from ref 23 that was interfaced with VASP. Coupled-cluster
theory24�26 is a very successful method for describing electronic
correlation in atoms and molecules.27 In particular, CCSD(T) is
known for achieving chemical accuracy (1 kcal/mol) in the
prediction of atomization and reaction energies for a wide class
of molecules.27 We apply the CCSD method to three-dimen-
sional fully periodic systems. Our CCSD implementation em-
ploys the working equations published in refs 28�30 and reduces
the memory requirements by evaluating all two-electron�four-
orbital integrals on-the-fly. The FCIQMC method by Booth
et al.23 constitutes a recently developed and very efficient way to
calculate the exact full CI ground state energy of a many-electron
system by solving the imaginary-time Schr€odinger equation
stochastically. We will not repeat the expressions of the CCSD
and FCIQMC methods, but we refer the reader to refs 28�30
and 23, 31�33 for details, respectively.

Natural orbitals with an occupation number close to zero are
expected to contribute only little to the correlation energy.13

Therefore, we introduce a threshold, ξ, that defines a subspace of
the natural orbitals by truncating them according to their occupa-
tion number. Only natural orbitals with an occupation number
larger than ξ are included in this subspace.

Unlike HF orbitals, natural orbitals do not diagonalize the HF
Hamiltonian. Therefore, noncanonical formulations of the em-
ployed correlated methods would be required. We use a standard
recanonicalization to avoid the necessity for noncanonical im-
plementations by carrying out the following procedure subse-
quent to the underlying Hartree�Fock (HF) calculation: (i)
calculate the natural orbitals (NOs), (ii) order the natural orbitals
according to their occupation numbers (eigenvalues of Dab

(2)),
(iii) recalculate the HF Hamiltonian in the basis of NOs, and
(iv) diagonalize the HF Hamiltonian in a truncated subspace
defined by those natural orbitals with occupation numbers
above a threshold ξ. These “canonicalized” orbitals diagonalize



2782 dx.doi.org/10.1021/ct200263g |J. Chem. Theory Comput. 2011, 7, 2780–2785

Journal of Chemical Theory and Computation ARTICLE

the Hartree�Fock Hamiltonian in the truncated subspace and
can be used in a subsequent canonical wave function based
correlated calculation.We stress that the correlation energy is not
changed by the diagonalization in the subspace of NOs since the
occupied orbital space is always unchanged.

In the calculations of the atomization energies of the molec-
ular systems (H2 and LiH), we minimize the interaction between
the periodic images by extrapolating the contribution from the
correlation energy according to a 1/V2 behavior to V f ∞,
where V corresponds to the unit cell volume. This procedure has
already been outlined in ref 21. To obtain the atomization
energies of solids, we use large cubic boxes with 9 Å length in
the calculations of the isolated atoms.

’RESULTS

Natural MP2 Orbitals. As a first example, we study the
convergence of the MP2 correlation energy of a spin polarized
Li atom in a 6 � 6 � 6 Å3 box. The correlation energy was not
extrapolated to the complete basis set limit; instead, a fixed
kinetic energy cutoff of Eχ = 400 eV was used. The kinetic energy
cutoff for the one-electron orbitals was set to Ecut = 500 eV.
Figure 1 shows the MP2 correlation energy of the Li atom with
respect to the number of orbitals per spin channel. For the given
cutoff and box size, 5450 orbitals span the complete space of

one-electron Hartree�Fock orbitals (HFOs). The convergence
of the correlation energy with respect to the number of HFOs is
extremely slow. Even 4000 HFOs yield an MP2 correlation
energy that deviates by more than 10 meV from the correlation
energy obtained using the full space (733 meV). In contrast, 30
natural orbitals (NOs) already suffice to obtain an agreement
that is within 10 meV of the converged value. The top axis of the
inset in Figure 1 shows the corresponding occupation number
threshold, ξ, of the MP2 natural orbitals, indicating that 30
natural orbitals correspond to an occupation number threshold
of 10�6. The occupation numbers quickly decay to zero, which
illustrates the insignificance of the neglected natural orbitals and
the “redundancy” present in the PWbasis set in the description of
many-electron properties. Approximate MP2 natural orbitals
(eigenvectors of the approximate density matrix given by eq 2)
reduce the convergence rate only slightly (see inset of Figure 1).
In fact, both types of natural orbitals allow for reducing the
number of virtuals compared to Hartree�Fock by at least an
order of magnitude.
Figure 2 shows the charge densities of the fourth, 40th, and

400th natural andHartree�Fock orbital of a Li atom in a 6� 6�
6 Å3 box. Hartree�Fock orbitals and natural orbitals are ordered
by their increasing one-electron HF eigenvalues and decreasing
occupation numbers, respectively. The HF orbitals become
essentially plane waves at higher energies and greater band
indices, since the kinetic energy operator dominates at suffi-
ciently high energies. The natural orbitals with large occupation
numbers maximize the overlap with the occupied orbitals,
whereas the natural orbitals with small occupation numbers
exhibit only very little density at the Li atom, as can be clearly
seen for the 400th NO.
Figure 3 shows the convergence of theMP2 correlation energy

of the face-centered-cubic LiH crystal with a unit cell volume of
17.03 Å3. The first Brillouin zone was sampled using a 4� 4� 4
k-point mesh and the same cutoffs as for the Li atom were
employed (Eχ = 400 eV, Ecut = 500 eV). In the case of solids, the
reduction of the virtual orbital space using natural orbitals is less
significant than for a single atom in a box. This is not unexpected,
because in contrast to an atom in a box, the electrons of the solid
are delocalized over the entire unit cell and almost all degrees of
freedom supplied by the plane wave basis set are required to
describe the many-electron wave function. Nevertheless, it is
possible to remove about half of the full HF virtual orbital space
without introducing an error larger than 10 meV. Note that a

Figure 1. Convergence of the MP2 correlation energy of the Li atom in
a 6� 6� 6 Å3 box with respect to the number of natural andHF orbitals
per spin-channel. The inset shows the convergence on a different scale.
The top axis in the inset shows the occupation number threshold, ξ, of
the MP2 natural orbitals for the spin-up channel.

Figure 2. Charge densities of the Hartree�Fock orbitals (HFOs) in the
top row and natural orbitals (NOs) in the bottom row of a Li atom in a
6� 6� 6 Å3 box. The fourth, 40th, and 400th orbitals have been plotted.

Figure 3. Convergence of the MP2 correlation energy of the LiH solid
using a 4� 4� 4 k-point mesh with respect to the number of natural and
HF orbitals per k-point. The top axis shows the occupation number
threshold, ξ, of the MP2 natural orbitals at the Γ-point.
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reduction in the number of virtual orbitals by a factor of 2 reduces
the computational cost in MP2 calculations by a factor of 4. The
approximate and exact MP2 natural orbitals show a very similar
convergence rate. The top axis in Figure 3 shows the correspond-
ing occupation number thresholds, ξ, for the MP2 natural
orbitals. An error smaller than 10 meV in the correlation energy
can be achieved by including all NOs with ξ = 10�7.
NaturalMP2 orbitals for CCSD and FCIQMC.As a first test of

our implementation we calculate the dissociation energy of the
H2 molecule with a bond length of 0.75 Å using 80 natural
orbitals. Both the CCSD as well as the FCIQMC method were
applied. Since for a two-electron system CCSD accounts for all
possible excitations from the HF determinant into excited Slater
determinants, it should yield exact results, as does the full CI
quantum Monte Carlo method. Indeed, our FCIQMC and
CCSD results agree exactly. We obtain a HF and FCIQMC
contribution to the dissociation energy of 3.619 and 1.112 eV,
respectively. Likewise, the resulting dissociation energy of 4.731
eV agrees with the experimental value of 4.73 eV.34

As a second test of our implementation we have calculated the
dissociation energy of the LiH molecule at the level of MP2 as
well as CCSD using NOs. The bond length was set to 2.042 Å.
This bond length corresponds to the nearest neighbor distance in
the LiH solid at the unit cell volume of 17.03 Å3. Table 1
summarizes the HF, MP2, as well as CCSD contributions to
the atomization energies of the LiH molecule. The column on
the right lists the results that have been obtained using the GTO
GAMESS code.35�37 The middle column summarizes the HF
and MP2 results that were calculated using a PW basis set and
Hartree�Fock orbitals in ref 21. The column on the left
summarizes the HF, MP2, as well as CCSD contributions
obtained using PWs and NOs. The PW and GTO results agree
to within a few millielectronvolts. The discrepancy between the
PW MP2 results obtained using NOs and HFOs is 1 meV and
originates from the truncation of the virtual orbitals in the natural
orbital basis. A total of 200 and 58 NOs were used in the
calculations of the molecule and atom, respectively correspond-
ing to an occupancy threshold ξ of approximately 10�7. For
comparison, we note that the aug-cc-pVQZ basis set consists of
126 and 80 orbitals in the LiH molecule and Li atom, respec-
tively. The agreement of the CCSD result calculated using PWs
with the one obtained using the GTO basis is very good as well,
with the PW result being approximately 5 meV lower in energy
than the GTO result. This is excellent considering that VASP
employs the PAW method and is not a conventional GTO all-
electron code.

At this point we want to stress that the calculations of the LiH
molecule summarized above and in ref 21 were not carried out at
the experimental equilibrium bond length (1.596 Å).38 MP2
and CCSD calculations using NOs at the experimental bond
length of the LiH molecule yield an atomization energy of 2.33
and 2.52 eV, respectively. The experimental dissociation energy
corrected for the zero-point energy amounts to 2.52 eV.38 As
expected, CCSD corrects for the underestimation present in
MP2 and deviates from experiment by less than 10 meV.
As a last application, we calculate the atomization energy of the

LiH solid on the level of MP2 as well as CCSD. Even with natural
orbitals, it would be impossible to perform aCCSD calculation of
the LiH crystal with a k-point mesh denser than 2 � 2 � 2,
because of the large number of virtual orbitals and the unfavor-
able scaling of the computational effort of CCSD with respect to
the system size. Therefore, we use an approach similar to the
progressive downsampling technique of Ohnishi et al. in ref 39,
relying on the observation that the long-range behavior of the
correlation energy depends mostly on the low-lying excitations.
We approximate the correlation energy, Êc, of a solid for (K �
K � K) k-points and mfull orbitals per k-point with

ÊcðK � K � K,mfullÞ ¼ Ecð2� 2� 2,mfullÞ þ ∑
K

k¼ 3
Ck

ð6Þ

Ec(2 � 2 � 2,mfull) is the calculated correlation energy using
a (2 � 2 � 2) k-point mesh and a converged basis set.
Ck are correction terms that account for the difference between

Table 1. Atomization Energies of the LiH Molecule in the
HF, MP2, and CCSD Approximation Using Natural and HF
Orbitalsa

this work ref 21 GAMESS

basis set type PWs PWs aug-cc-pV[TQ]Z

orbitals NOs HFOs HFOs
ΔEHF 1.084 1.084 1.085

ΔEc
MP2 0.823 0.822 0.818

ΔEc
CCSD 1.039 1.034

a Plane-waves (PWs) as well as aug-cc-pVXZ(X=T,Q) basis sets were
used in the calculations. The results obtained using aug-cc-pVXZ basis
sets were extrapolated to Xf∞ assuming a functional form of 1/X3 for
the correlation energy. All energies in eV.

Table 2. Contributions of theMP2 Correlation Energy to the
Atomization Energy of the LiH Crystal Calculated According
to eq 6a

mNOs m3 m4 ΔEc
MP2

192 16 16 1.192

256 16 16 1.195

192 32 16 1.203

192 48 16 1.189

192 54 16 1.189

192 64 16 1.205

192 54 32 1.185

192 54 48 1.187
aAll energies in eV.

Table 3. HF, MP2, and CCSD Contributions to the Atomi-
zation Energy of the LiH Crystal Using Different Orbitals
Compared to Quantum Chemical Calculations Deducing the
Atomization Energy from LiH Clusters Using an Incremental
Approach (ref 40)a

this work ref 21 ref 40

orbitals NOs HFOs HFOs

ΔEHF 3.583 3.583 3.589

ΔEc
MP2 1.187 1.188 1.182

ΔEc
CCSD 1.326 1.329

aThe MP2 contribution to the atomization energy of the LiH crystal
from ref 21 corresponds to a calculation using a 4� 4� 4 k-point mesh.
All energies in eV.
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(2 � 2 � 2) and denser k-point grids. Those corrections are
calculated according to

Ck ¼ Ecðk� k� k,mkÞ � Ecððk� 1Þ � ðk� 1Þ � ðk� 1Þ,mkÞ
In practice, we find a fast convergence ofCkwith respect tomk.

This allows the denser k-point meshes to be calculated with fewer
bands per k-point since only the energy difference between the
k-point meshes is required.
Evidently eq 6 becomes exact formkfmfull, but typicallymk is

chosen significantly smaller than mfull and decreases with an
increasing number of k-points, k. Moreover, we note that Ec(2�
2 � 2,mfull) is calculated using mNOs natural orbitals at each
k-point.
Table 2 summarizes the convergence of the MP2 atomization

energy with respect to mNOs and mi for all k. We find that the
convergence with respect tomk is fairly noisy. From the noise, we
estimate an error bar of approximately 10meV for the correlation
energy given by eq 6. To attain this accuracy, it suffices to use
mNOs = 192, m3 = 54, and n4 = 32 to reproduce straightforward
MP2 calculations.
These values are then employed in a CCSD calculation.

Table 3 summarizes the resulting HF, MP2, and CCSD con-
tributions to the atomization energy of the LiH crystal. The
results are compared to previous calculations obtained using
Gaussian type orbitals and standard quantum chemical methods
combined with the incremental approach, which extrapolates the
correlation energy from LiH clusters of increasing size.40 For
MP2, the agreement between refs 21 and 40 was already
discussed in ref 21. The first important observation is that the
extrapolation procedure eq 6 works reliably for the MP2
contribution to the atomization energy of the LiH crystal. Our
MP2 results deviate by less than 10 meV from those of ref 21. In
passing, we note that periodic local MP2 results for the cohesive
energy of the LiH crystal published in ref 41 also agree to within
10 meV with our values. Moreover, our CCSD results are in very
good agreement with ref 40, which gives us confidence in the
correct implementation of the CCSD code for periodic boundary
conditions.
The resulting MP2 and CCSD atomization energies deviate

from the experimental atomization energy corrected for zero
point vibrations (4.974 eV42) by 204 and 65 meV, respectively.
As such, CCSD clearly outperforms MP2 and is likely to capture
more of the correct physics in the case of the LiH solid.

’CONCLUSIONS AND OUTLOOK

In summary, we have shown that MP2 natural orbitals allow
for a tremendous reduction of the virtual orbital space, compared
to HF orbitals for calculations of atoms or molecules in a box
using a PW basis set. For the atoms and molecules considered
here, the basis set is typically reduced by a factor of 10�100
compared to untruncated canonical HF plane wave orbitals. The
reduction allows for calculations of atoms and small molecules
using highly accurate quantum-chemical methods such as CCSD
and even FCIQMC in a PW basis set. In the case of solids, the
virtual orbital space can be reduced approximately by half with-
out compromising the accuracy significantly. Note that in CCSD
calculations, a reduction of the virtual orbital space by half
corresponds to a speed-up of an order of magnitude. Although
the computational cost of evaluating natural orbitals scales as
O(N5), we can approximate the MP2 NOs by a simpler expres-
sion that scales only as O(N4). The approximated NOs perform

only slightly worse than the exact MP2 NOs. This even allows us
to reduce the computational cost of MP2 calculations for large
systems. But natural orbitals will not only help in expanding the
applicability of our MP2 or CCSD implementation. Many other
correlated methods that are implemented in a PW basis will
benefit as well. It is straightforward to apply the presented
procedures to other methods such as the random-phase approx-
imation plus second-order screened exchange43 or GW-BSE.44

We hope to use this formalism to greatly expand the scope of
wave function based periodic methods in a PW basis set. More-
over, future prospects shall include the development of an
FCIQMC algorithm that will enable us to treat solid-state
systems using complex orbitals and arbitrary k-point meshes.
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ABSTRACT: Variational Monte Carlo method is a powerful tool to determine approximate wave functions of atoms, molecules,
and solids up to relatively large systems. In the present work, we extend the variational Monte Carlo approach to study confined
systems. Important properties of the atoms, such as the spatial distribution of the electronic charge, the energy levels, or the filling of
electronic shells, are modified under confinement. An expression of the energy very similar to the estimator used for free systems is
derived. This opens the possibility to study confined systems with little changes in the solution of the corresponding free systems.
This is illustrated by the study of helium atom in its ground state 1S and the first 3S excited state confined by spherical, cylindrical, and
plane impenetrable surfaces. The average interelectronic distances are also calculated. They decrease in general when the
confinement is stronger; however, it is seen that they present a minimum for excited states under confinement by open surfaces
(cylindrical, planes) around the radii values corresponding to ionization. The ground 2S and the first 2P and 2D excited states of the
lithium atom are calculated under spherical constraints for different confinement radii. A crossing between the 2S and 2P states is
observed around rc = 3 atomic units, illustrating the modification of the atomic energy level under confinement. Finally the carbon
atom is studied in the spherical symmetry by using both variational and diffusion Monte Carlo methods. It is shown that the
hybridized state sp3 becomes lower in energy than the ground state 3P due to a modification and a mixing of the atomic orbitals s, p
under strong confinement. This result suggests a model, at least of pedagogical interest, to interpret the basic properties of carbon
atom in chemistry.

1. INTRODUCTION

Bound states of free atoms or molecules are associated with
wave functions that are quadratically integrable when the spatial
integration extends over all space. As a consequence, the eigen-
function of the Schr€odinger equation tends to zerowhenone of the
particles belonging to the system goes to infinity. When the atoms
or the molecules are confined by impenetrable surfaces, the wave
function vanishes on these repulsive surfaces. When the atom is
inside an impenetrable sphere, this corresponds to an ideal model
related to an approximation of the physical reality. The solutions
of the Schr€odinger equation fulfill the so-called Dirichlet bound-
ary conditions. The model of a spatially confined atom is not just
of pedagogic interest. The properties of atoms and molecules
undergo drastic changes when they are spatially confined in
either penetrable or impenetrable surfaces. This topic has been
attracting a lot of attention, and it has become a field of active
research. During the last 70 years this model has proved to
be quite useful in a number of fields of physics: the effect of pressure
on properties, such as the atomic compressibility, the filling of the
energy levels, the polarizability or the ionization threshold of
atoms and molecules,1�3 and artificial atoms like quantum dots4

and in several other areas, like astrophysics and chemistry.5 Since
then many studies investigating various aspects of confined
hydrogen atom by employing different approaches have been
reported in the literature. We refer the reader to the reviews.6�8

The resolution of the Schr€odinger equation with Dirichlet
boundary conditions is a difficult problem, and to the best
of our knowledge, accurate results exist only for low-Z

atoms and few-electrons diatomic molecules. The Rayleigh�
Ritz variational method is one of the most popular meth-
od for calculating accurately the ground- or excited-state
energy of an atomic or a molecular system. Its extension to
confined systems with more electrons is an important
point.

Within the variational approximation, the variational Monte
Carlo (VMC) method has been extensively applied to study
free complex atoms and molecules obtaining accurate
results.9,10 In the most widely employed implementations,
the trial wave function is written as the product of two factors.
One factor is completely antisymmetric to account for the
fermionic character of the electrons, while the other is symmetric
and is tailored to describe the electronic correlations. A third
correlation mechanism,10 based on nonhomogeneous backflow
transformations that introduces a dependence of the orbitals in
the position of the other electrons, has been employed obtaining
very accurate results in atomic, molecular, and extended
systems.11�13

It is tempting to introduce in the second function a factor to
take into account the Dirichlet boundary condition that the
wave function vanishes on the impenetrable surfaces. Several
forms for such cutoff function to satisfy the Dirichlet boundary
condition have been proposed and employed in different
works. External potentials, like harmonic oscillator potentials,

Received: April 25, 2011
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have been used to describe confined quantum system in
different symmetries, including oblate symmetries when con-
fined molecules are studied.14,15

The purpose of this paper is to extend the VMC method to
study confined systems. Taking explicitly into account the
Dirichlet boundary condition, we will derive a functional
which is quasi identical to the functional used for nonconfined
systems. The present work opens the possibility to start from
the available function for unbound systems and to analyze the
changes of these systems under confinement in a straightfor-
ward and flexible manner with little changes in the VMC
codes. We illustrate the applicability of this approach by
calculating ground- and excited-state energy of confined
atoms in different symmetries.

The remaining of the paper is organized in the following
manner. In Section 2 the theoretical methods employed in this
paper are presented. Section 3 is devoted to the discussion of
the results. The paper is concluded in Section 4. Atomic units
are used throughout this work.

2. THEORY

2.1. Dirichlet Boundary Conditions and VMC Approach.
Let us consider a general Hamiltonian,H, of a quantum system of
n interacting particles:

H ¼ � 1
2 ∑

n

i¼ 1
∇2

i þ Vðr1, ..., rnÞ

where the first sum is the kinetic energy operator andV stands for
the potential energy operator of the n particles.
The VMC method is based on the variational approach

with expectation values calculated by using random walks.
The variational approach starts from a judicious choice
for the ansatz of a many-body wave function satisfying
various properties in accordance with the system under
consideration. For unbounded systems, the integration
volume in the spatial coordinates is R3n, and the trial wave
function vanishes at the infinity. In order to account for
confinement by impenetrable surfaces a cutoff factor, w,
vanishing at the boundary surface, ∂τ, is included in the
variational ansatz:

Ψtðr1, ..., rnÞ ¼ Ψf ðr1, ..., rnÞwðr1, ..., rnÞ ð1Þ

where Ψf is a trial function for the unbound system.
For brevity, in the following we will use the notation,Ψt(ri) =

Ψt(r1, ..., rn), Ψf(ri) = Ψf(r1, ..., rn), w(ri) = w(r1, ..., rn) and
33n=∑i3i so that the expressions33n

2 w(ri) and33nw(ri) stand for the
3n dimension laplacian and the gradient, respectively, of the 3n
variables function w(ri) or Ψf(ri). The expectation value of the
Hamiltonian with properly normalized trial functions can be
written as follows:

ÆHæΨt
¼
Z
τð∂τÞ

�wðriÞ2Ψf ðriÞ∇2
3nΨf ðriÞ

2
�Ψ2

f ðriÞwðriÞ∇2
3nwðriÞ

2

"

�Ψf ðriÞwðriÞ∇3nΨf ðriÞ 3∇3nwðriÞ þ Ψ2
t ðriÞVðriÞ

#
dτ

ð2Þ

where τ(∂τ) represents the volume enclosed by the surface ∂τ. The
term with the gradients can be simplified by usingZ

τð∂τÞ
½Ψf ðriÞ∇3nΨf ðriÞ� 3 ½wðriÞ∇3nwðriÞ�dτ

¼ 1
4

Z
τð∂τÞ

∇3nw
2ðriÞ 3∇3nΨ

2
f ðriÞdτ

and applying a Green transformation:Z
τð∂τÞ

∇3nw
2ðriÞ 3∇3nΨ

2
f ðriÞdτ ¼

Z
∂τ
Ψ2

f ðriÞ∇3nw
2ðriÞ 3 ds

�
Z
τð∂τÞ

Ψ2
f ðriÞ∇2

3nw
2ðriÞdτ

In the latter equation the surface termvanishes because of theDirichlet
condition, w(ri) = 0 when ri ∈ ∂τ, and the volume term can be
rewritten as followsZ

τð∂τÞ
Ψ2

f ðriÞ∇2
3nw

2ðriÞdτ ¼ 2
Z
τð∂τÞ

Ψ2
f ðriÞwðriÞ∇2

3nwðriÞdτ

þ 2
Z
τð∂τÞ

Ψ2
f ðriÞ∇3nwðriÞ 3∇3nwðriÞdτ

the first integral cancels out when substituted in the expectation value
of the Hamiltonian, eq 2, obtaining

ÆHæΨt
¼
Z
τð∂τÞ

jΨf ðriÞj2 wðriÞ2EfLðriÞ þ 1
2
½∇3nwðriÞ�2

� �
dτ

ð3Þ

¼
Z
τð∂τÞ

jΨtðriÞj2 EfLðriÞ þ 1
2
½∇3nln wðriÞ�2

� �
dτ

ð4Þ
where

EfLðriÞ � HΨf ðriÞ
Ψf ðriÞ

These expressions provide the energy for a system under constrains
defined by the choice of the cutoff function w. The estimator for
unbound systems is recovered bymakingw(ri)� 1 and extending the
surface to infinity

ÆHæΨf
¼
Z
τð∞Þ

jΨf ðriÞj2EfLðriÞdτ

Extension of these equations to non-normalized trial wave functions is
straightforward. Equations 3 and 4 are specially suited for VMC
calculations. Calculations for bounded systems can be carried out
starting from these equations with minor changes in a VMC code.
2.2. Dirichlet Boundary Conditions and Diffusion Monte

Carlo (DMC) Approach. To improve the energies of the
atoms, in particular for the carbon atom calculated below,
with the wave functions proposed in this work, we have also
used them as trial functions in a quantum Monte Carlo
calculation. The results are presented below in Section 3.4.
More specifically, we shall use in this work the so-called
diffusionMonte Carlo (DMC)method. We recall briefly here
the main ideas underlying the DMC approach. Further de-
tails relative to this powerful approach to solve the
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Schr€odinger by simulating the Green’s function of the system
in question by statistical methods can be found in, e.g., refs 9
and 10.
DMC method starts from the time-dependent Schr€odinger

equation in imaginary time that becomes the classical diffusion
equation. To determine the random walk that simulates the
diffusion, the Green’s function at short time approximation is
invoked. Then a step of the random walk consists in an isotropic
Gaussian diffusion and branching processes of the walkers. After
a large number of iterations, the excited-state contributions are
projected out from the initial ensemble, converging to the ground-
state wave function, and the ground-state energy can be deduced.
Fermi systems, as those studied in this work, are affected by

sing problems resulting from the required antisymmetry of the
wave function. Here we will employ the fixed node approx-
imation that uses a prefix nodal surface, including the Dirichlet
boundary conditions, in the configuration space of the system.
For fermions systems, the fixed node diffusion DMC can be
thought of as a super variational approach with an energy
which is guaranteed to be closer than the value given by the
VMC with the same wave function to the exact one. The
results so calculated are not exact anymore, instead an upper
bound for the energy is obtained. The accuracy of such bound
is governed by the quality of the nodal surface employed in the
simulation. This is the most commonly used approach in the
literature.
The algorithm, as described above, is in general very

inefficient due to the large fluctuations in the ensemble along
the random walk introduced by the interaction potential.
Practical implementations usually make use of the Monte
Carlo technique known as importance sampling that greatly
reduces these fluctuations. This method requires an analytical
trial function that is used to bias the random walk. However,
very involved parametrizations, which generally are time-
consuming, will slow down the calculation due to the fact
that in each step the gradient and the laplacian must be
calculated for each walker. Hence, compact and concise and
still accurate wave functions are ideal. The choice of an
adequate trial wave function that affects the statistical error
in the calculation is very important. For fermion systems, the
trial wave function not only affects the statistical error of the
calculation but also to the value obtained for the energy. This
comes from the fact that the trial wave function also deter-
mines the location of the nodal surface. In general, very little is
known about the exact location of the nodes in fermion
systems. The quality of the nodes structure induced by the
trial wave function will determine how close one can come to
the exact result. This is usually established a posteriori for
those systems for which exact or quasi-exact solutions are
available by other methods.
2.3. Determination of the Wave Function and the Energy

for Confined Few-Electron Atoms. The atomic Hamiltonian
considered here is

H ¼ � 1
2 ∑

n

i¼ 1
∇2

i � ∑
n

i¼ 1

Z
ri
þ ∑

i < j

1
rij

ð5Þ

Bound states are calculated within the variational approx-
imation starting from the trial wave function given in eq 1,
i.e., the product of a trial function for the unbound system
times a cutoff factor. For the trial function of the unbound

system, we use

Ψf ðriÞ ¼ Φ0ðriÞJðriÞ ð6Þ
The functionΦ0(ri) is the model function and takes into account
the antisymmetry of this fermionic system. The J(ri) factor
describes the correlation between the electrons and is chosen to
be positive. This correlation factor usually includes variational
parameters and different functional forms are available in the
literature to describe accurately the electronic correlation up to
relatively large systems.16,17 In the present work we will use a
simple wave function including only three parameters. The main
advantage of employing a simple few-parameters wave function
is to provide an easy physical insight on the behavior of
interelectronic correlation with the variation in the confinement
parameter.
In all of the different applications of this work, the model

function Φ0(ri) is chosen such that it satisfies the Schr€odinger
equation for n noninteracting electrons moving in a nuclear
potential with electric charge Z:

∑
n

i¼ 1
�1
2
∇2

i �
Z
ri

� �" #
Φ0ðriÞ ¼ E0Φ0ðriÞ ð7Þ

Then the expression for the energy, eq 4 reduces to

ÆHæΨt
¼ E0 þ

Z
τð∂τÞ

jΨtðriÞj2 1
2
½∇3nlnðJðriÞwðriÞÞ�2 þ ∑

i < j

1
rij

( )
dτ

ð8Þ

The total energy of a n-electron atomic system is decomposed
into two parts: E0 representing the energy of the free n
noninteracting electrons moving in an attractive potential of
nucleus with charge Z and a second term accounting for the
electron�electron repulsion energy, electronic correlations,
and cutoff conditions. This expression is convenient for carry-
ing out variational calculations. In the following we apply it to
study confined helium, lithium, and carbon atoms with different
boundary conditions.
2.4. Explicit Wave Function for Few-Electron Systems.

2.4.1. Helium Atom. Three different confinements, spherical, two
planes, and cylindrical, have been considered for the helium
atom. This is done by using different forms of the confinement
function w(ri). Different expressions for the cutoff function,
linear, quadratic, step-like function, have been considered in the
literature.18 The functional form for the cutoff function w(ri)
used in this work was proposed by Laughlin and Chu.19 It is
extended here to the different geometries considered. In a recent
work20 the accuracy of this choice for the cutoff on the confined
ground state of hydrogen atom has been studied. The exact
solution of the latter atom is known under Dirichlet boundary
conditions, and this allows a check of the accuracy of the different
forms of the cutoff functions. Additional calculations made on
the confined helium atom in spherical surfaces show also the
validity of this choice for the cutoff function.
For an atom located at the center of an impenetrable sphere of

radius rc, the cutoff function is taken as

wsphericalðriÞ ¼
Yn
i¼ 1

1� ri
rc

� �
exp

ri
rc

� �
ð9Þ



2789 dx.doi.org/10.1021/ct200284q |J. Chem. Theory Comput. 2011, 7, 2786–2794

Journal of Chemical Theory and Computation ARTICLE

When the atom is located on the z axis of a impenetrable cylinder,
axial symmetry, of radius Fc, wcylindical is

wcylindricalðFiÞ ¼
Yn
i¼ 1

1� Fi
Fc

 !
exp

Fi
Fc

 !
ð10Þ

where Fi2 = xi
2 + yi

2. Finally, to describe an helium atom confined
between two parallel impenetrable planes located at ( zc the
following cutoff function is employed

wplanarðziÞ ¼
Yn
i¼ 1

1� jzij
zc

� �
exp

jzij
zc

� �
ð11Þ

We study both, the ground state and the first 3S excited state.
For both states Φ0 is written as a Slater determinant

Φ1S
0 ¼ 1ffiffiffiffi

2!
p detfj100j v æ,j100j V æg

Φ3S
0 ¼ 1ffiffiffiffi

2!
p detfj100j v æ,j200j v æg

with | v æ and | V æ the electronic spin part and

jnlmðrÞ ¼ RnlðrÞYlmðΩÞ

with Ylm(Ω) the spherical harmonic and Rnl

R10ðrÞ ¼ 2Z3=2e�Zr , R20ðrÞ ¼ Z3=2ffiffiffi
2

p 1� Z
2
r

� �
e�Z=2r

has already been proposed in a previous paper .21

For the correlation factor, we use the following form

Jðr1, r2Þ ¼ ½coshðλr1Þ þ coshðλr2Þ� exp br12
1 þ ar12

� �
ð12Þ

so that the trial function, eq 1, for these two states of the confined
helium atom is

ΨtðriÞ ¼ ½Φ1S
0 orΦ3S

0 �JðriÞwðriÞ

with w any of the three cutoff factors given in eqs 9, 10, or 11.
This function satisfies the electron�electron cusps condi-
tions governing the interaction for the short interelectronic
distances and the electron�nucleus cusps conditions. The
parameter λ is interpreted as a screening constant for one
electron when it is located far away from the nucleus. The
relevant part of the wave function representing the latter
property is

coshðλriÞ expð � ZriÞ≈exp½ � ðZ� λÞri�ri . 1 ð13Þ

Such function, though very simple, is accurate and conveni-
ent for the calculation.
The expectation value of the energy has been calculated by

using eq 8. The integral has been evaluated by using the VMC
method with Metropolis sampling. Analytical expressions for
|r(Jw)|2 can be obtained in a straightforward manner.
2.4.2. Lithium Atom. The wave function for the lithium

atom ground, 1s22s 2S and 1s22p 2P, and, 1s23d 2D, excited
states is a direct extension to the three-electron system of

the previous one. For this atom we will consider spherical
confinement only.
The Slater determinant part is built starting from hydrogenic

orbitals ϕnlm

Φ2S
0 ¼ 1ffiffiffiffi

3!
p detfj100j v æ,j100j V æ,j200j v æg

Φ2P
0 ¼ 1ffiffiffiffi

3!
p detfj100j v æ,j100j V æ,j210j v æg

Φ2D
0 ¼ 1ffiffiffiffi

3!
p detfj100j v æ,j100j V æ,j320j v æg

The spherical confinement, eq 9, is used for the cutoff function
w. For the correlation factor, a product of two terms, one
depending on the interelectronic distance and the other on the
electron�nucleus distance, is employed

JðriÞwðriÞ

¼ ∑
3

i < j
½coshðλriÞ coshðλrjÞ�

Y3
i < j

exp
brij

1 þ arij

 !8<
:

9=
;

Y3
i¼ 1

1� ri
rc

� �
eri=rc

( )

ð14Þ

The trial wave functions for these three statesΦ0
2S,Φ0

2P, andΦ0
2D

of the lithium atom under spherical confinement read

ΨtðriÞ ¼ ½Φ2S
0 or Φ2P

0 or Φ2D
0 �JðriÞwðriÞ ð15Þ

Note that the factor depending on the interelectronic distance is
of the same form as that employed for the helium atom. For the
other factor, a pair product form employed in a previous work22 is
used because it provides a better performance from the varia-
tional point of view.
2.4.3. Carbon Atom. We focus on the carbon atom in order

to study the effect of the spherical confinement on the
electronic configuration. In particular we aim to compare
the behavior under confinement of the ground state 3P wave
function of carbon atom with that of the hybridized config-
uration sp3. The hybridized atomic orbitals are employed in
quantum chemistry calculations to account for the valence of
this atom. In doing so, two different orbital sets to buildΦ0 are
considered.
In order to describe the 3P ground state a single Slater

determinant can be used

Φ3P
0

¼ 1ffiffiffiffi
6!

p detfj100j v æ,j100j V æ,j200j v æ,j200j V æ,j211j v æ,j210j v æg

ð16Þ
with the form of the orbitals given above and

R21ðrÞ ¼ Z3=2

2
ffiffiffi
6

p Zre�Z=2r

Hybrid orbitals are symmetry adapted atomic orbitals because
they are constructed to provide a basis of atomic orbitals
consistent with the observed structure of the molecules, e.g.,
ref 23. This is done by taking linear combinations to form a
basis for a representation of the point symmetry group of the
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molecule. For example, the four sp3 hybrid orbitals of the
carbon atom form a basis for a representation of the group Td

and are given as

j1 ¼ 1
2
ð2s þ 2px þ 2py þ 2pzÞ,

j2 ¼ 1
2
ð2s þ 2px � 2py � 2pzÞ ð17Þ

j3 ¼ 1
2
ð2s� 2px þ 2py � 2pzÞ,

j4 ¼ 1
2
ð2s� 2px � 2py þ 2pzÞ ð18Þ

where px, py, and pz are the real spherical harmonics. The
spatial distribution of the sp3 orbitals is such that the direc-
tions of maximum density point from the center of the
tetrahedron to its corners. Therefore, these atomic hybrid
orbitals of the carbon atom are specially suited to build
molecular orbitals of compounds like methane.
Starting from the hybrid sp3 orbitals given in eq 18 a Slater

determinant Φ0
sp3 is built

Φsp3

0

¼ 1ffiffiffiffi
6!

p detfj100j v æ,j100j V æ,j1j v æ,j2j V æ,j3j v æ,j4j v æg

ð19Þ
To study the performance of both set of orbitals for confined

carbon atom, the spherical confinement is considered. For the
correlation and confinement factors, the following form is
employed

JðriÞwðriÞ

¼
Y6
i¼ 1

coshðλriÞ
Y6
i < j

exp
brij

1 þ arij

 !8<
:

9=
;

Y6
i¼ 1

1� ri
rc

� �
eri=rc

( )

ð20Þ
The two trial wave functions employed for the ground state of the
carbon atom under spherical confinement are

Ψt ¼ ½Φ3P
0 or Φsp3

0 �JðriÞwðriÞ ð21Þ

3. RESULTS AND DISCUSSION

This section presents the results obtained with the correlated
wave function proposed in the previous section. They are
compared with the data in the literature when available. The
present trial wave function has only three variational parameters.
They have been first optimized for the free systems. When the
constraint is added we have also optimized these parameters. We
found that among the three parameters a, b, and λ, the optimized
values of the parameters a and b do not vary significantly along
the confinement radius rc in all the atoms studied here. For this
reason we present in the tables the results obtained with fixed
values for a and b = 0.5 determined at once for the free system.
The λ parameter is optimized for the different values of the
constraint distances rc, Fc, or zc.

This suggests that for the atoms studied here the interelec-
tronic correlation remains almost unaffected by the confining
potential, and the major contribution of this part of the energy
comes from close interelectronic distances, cusps conditions, that
are favored by the strong confining conditions. For the atoms
studied here this is in agreement with the observation made by
Lude~na who noted that the correlation energy is largely inde-
pendent of the size of the enclosing sphere .24 This conclusion
cannot be straightforwardly extended to confined heavier atoms
where2 first relativistic effects are important, and second the use

Table 1. Ground-State Energy and Radial Expectation Values
for the Helium Atom under Different Constraints for Some
Values of the Constraint Distance a

dc const λ E EHyll Æræ Ærijæ

1.0 3D 0.00 1.01866(4) 1.015755 0.44279(2) 0.64795(4)

2D 0.05 �0.52859(7) 0.55925(5) 0.83369(9)

1D 0.50 �1.86606(6) 0.71691(8) 1.0825(1)

1.1 3D 0.50 0.01077(3) 0.47795(2) 0.70122(4)

2D 0.45 �1.14577(7) 0.59531(5) 0.8891(1)

1D 0.60 �2.14097(6) 0.74635(9) 1.1284(2)

1.2 3D 0.70 �0.70744(2) 0.51274(2) 0.75411(5)

2D 0.575 �1.58350(7) 0.62662(5) 0.9373(3)

1D 0.65 �2.33433(7) 0.76839(9) 1.1627(2)

1.3 3D 0.825 �1.22999(2) 0.54636(3) 0.80542(5)

2D 0.675 �1.90036(6) 0.65777(6) 0.9855(1)

1D 0.70 �2.47314(6) 0.79125(9) 1.1986(2)

1.4 3D 0.90 �1.61647(2) 0.57798(3) 0.85338(5)

2D 0.75 �2.13348(6) 0.68731(6) 1.0315(1)

1D 0.725 �2.57454(6) 0.80819(9) 1.2250(2)

1.5 3D 0.95 �1.90621(2) 0.60783(3) 0.89991(6)

2D 0.80 �2.30743(6) 0.71376(7) 1.0727(1)

1D 0.75 �2.64948(5) 0.82477(9) 1.2511(2)

2.0 3D 1.05 �2.60303(2) �2.604038 0.73327(4) 1.09582(7)

2D 0.90 �2.72192(4) 0.81224(7) 1.2275(1)

1D 0.80 �2.82508(4) 0.87972(9) 1.3379(2)

3.0 3D 1.0 �2.87060(2) �2.872495 0.87392(7) 1.3228(1)

2D 0.875 �2.88044(3) 0.89839(8) 1.3660(1)

1D 0.80 �2.89118(3) 0.9231(1) 1.4075(2)

4.0 3D 0.9 �2.89883(2) �2.900485 0.91761(9) 1.3964(2)

2D 0.825 �2.89856(2) 0.9237(1) 1.4078(2)

1D 0.775 �2.89954(2) 0.9325(1) 1.4229(2)

5.0 3D 0.85 �2.90188(2) �2.903410 0.93475(9) 1.4258(2)

2D 0.80 �2.90127(2) 0.9347(1) 1.4262(2)

1D 0.75 �2.90114(2) 0.9314(1) 1.4211(2)

6.0 3D 0.85 �2.90121(2) �2.903696 0.9538(1) 1.4578(2)

2D 0.775 �2.90179(2) 0.9353(1) 1.4274(2)

1D 0.75 �2.90152(2) 0.9361(1) 1.4289(2)

10.0 3D 0.75 �2.90196(2) �2.903724 0.9355(1) 1.4279(2)

2D 0.725 �2.90185(2) 0.9291(1) 1.4173(2)

1D 0.725 � 2.90177(2) 0.9325(1) 1.4229(2)

20.0 3D 0.75 � 2.90179(2) �2.903724 0.9333(1) 1.4242(2)

2D 0.725 �2.90178(2) 0.9340(1) 1.4255(2)

1D 0.725 �2.90178(2) 0.9348(1) 1.4267(2)
a 3D stands for spherical, 2D for cylindrical, and 1D for two plane
impenetrable surfaces. The energy in the 3D case is compared with the
highly accurate value, EHyll, of Laughlin and Chu19 calculated by using
Hylleraas-type basis functions. In parentheses we show the statistical
error in the last digit.
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of the Dirichlet boundary condition to model confinement is not
relativistically consistent.
3.1. Confined Helium Ground State. The energy values for

helium ground state under different constrains: spherical (3D),
axial (2D), and planar (1D) are reported in Table 1. The
corresponding values are plotted in Figure 1. In all of the cases,
it can be remarked that the energies are increased when the
constraint is stronger. The raise in energy is more important
when the atom is located at the center of a impenetrable sphere
than on the axis of a impenetrable cylinder or in the middle
between two impenetrable planes. The assumption that the atom
lies at the center of a repulsive sphere is an exact result in this case,
but it should not be extended when the surface is attractive, like a
fullerene surface. The values for ground state in the 3D constraint
are in good agreement with the highly accurate energies obtained
from expansions in terms of Hylleraas-type basis functions,
results included in Table 1, and also with other data available
in the literature, see ref 19 and references therein. In this respect
it is very useful to evaluate and test a new approach. To the best of
our knowledge, no other data are presently available for 2D or 1D
constrains. It might be of interest to note that in the latter
constrains (2D, 1D), the space allowed to the atom is still infinite
and, however, a significant effect of the confinement results. Such
constraint is similar to the constraint for excitons in quantum
wire (2D) or quantum well (1D). In Table 1 the radial expecta-
tion values Æræ and Ærijæ calculated in the different constraints are
also reported. It can be seen that for the ground state, both Æræ or
Ærijæ decrease with the constraint distance for all kind of confine-
ments. The effect of confinement on these quantities is larger for
the 3D than the 2D and 1D constraints.
3.2. Confined Helium Excited State 3S. For excited states the

wave function is more diffuse in the space, and the raise in energy
is expected to be significant at larger values of the constraint than
in the case of the ground state. In Table 2 we report the values of
the energies for the helium He(1s,2s) 3S excited state. These
results are plotted in Figure 1. The raise in energy is significant at
rc = 6 au for 3D constraint and around Fc, zc = 4 au for cylindrical
and planar constrains, respectively. The ionization of the excited
helium atom occurs when the energy of this atom is equal to the
energy of the compressed ion He(1s)+, which is practically equal
to E =�2 au in this range of rc, Fc, zc values. With the help of the

results shown in Figure 1 it can be obtained that this energy value
is reached for rc ≈ 4.5 au, Fc ≈ 4 au and zc ≈ 3 au.
In Figure 2 the expectation value Ærijæ determined for the

different constraints are plotted. For the closed 3D constraint the
Ærijæ values decrease obviously at all the values of rc. But for 2D
and 1D constraint, the space is still infinite, and Ærijæ decreases
down to Fc = 4 au and zc = 3 au and increases again. These values
should be related to the corresponding values of these para-
meters for the ionization as determined above. The situation is
significantly different for the ground state.

Figure 1. Total energy at different confinement distances for the He
atom ground state, gs values, and 23S excited state, ex values. The 3D
stands for spherical, 2D for cylindrical, and 1D for two plane impene-
trable surfaces. The lines are for guiding the eyes. Statistical error is
smaller than the symbol size.

Table 2. Total Energy and Radial Expectation Values of the
23S Excited State of the Helium Atom under Different
Constraints for Some Values of the Constraint Distancea

dc const λ E Æræ Ærijæ

1.0 3D

2D 0.675 1.9839(4) 2.915(2) 5.343(4)

1D 0.475 �0.4736(2) 2.3696(6) 4.179(1)

1.1 3D

2D 0.7 1.1636(4) 3.159(2) 5.808(4)

1D 0.475 �0.8189(2) 2.3754(6) 4.182(1)

1.2 3D

2D 0.7 0.5604(3) 3.167(2) 5.810(4)

1D 0.475 �1.0717(1) 2.3819(6) 4.187(1)

1.3 3D

2D 0.7 0.1053(3) 3.173(2) 5.806(4)

1D 0.5 �1.2610(1) 2.4925(6) 4.396(1)

1.5 3D

2D 0.7 �0.5205(2) 3.179(2) 5.796(4)

1D 0.5 �1.52170(9) 2.5035(6) 4.407(1)

2.0 3D 0 0.7004(2) 0.93115(3) 1.46115(6)

2D 0.6 �1.2916(1) 2.4285(9) 4.279(2)

1D 0.475 �1.84207(6) 2.4180(5) 4.221(1)

2.5 3D 0 �0.72776(7) 1.0919(4) 1.73303(8)

2D 0.55 �1.64206(8) 2.2050(6) 3.822(1)

1D 0.45 �1.98126(3) 2.3449(4) 4.0692(8)

3.0 3D 0 �1.36873(2) 1.22921(5) 1.97062(8)

2D 0.5 �1.83986(5) 2.0632(5) 3.5342(9)

1D 0.45 �2.05443(2) 2.3657(4) 4.1031(8)

4.0 3D 0.4 �1.87388(1) 1.51565(6) 2.4750(1)

2D 0.45 �2.03480(2) 2.0360(3) 3.4668(6)

1D 0.45 �2.12324(1) 2.4141(4) 4.1899(8)

5.0 3D 0.475 �2.04758(1) 1.75936(8) 2.9210(1)

2D 0.45 �2.11193(1) 2.1447(3) 3.6683(6)

1D 0.45 �2.15081(1) 2.4645(4) 4.2844(7)

6.0 3D 0.5 �2.11740(1) 1.9631(1) 3.3035(2)

2D 0.475 �2.14463(1) 2.3067(3) 3.9769(5)

1D 0.45 �2.16287(1) 2.5124(4) 4.3761(8)

10.0 3D 0.5 �2.17191(1) 2.4563(2) 4.2545(4)

2D 0.45 �2.17235(1) 2.5157(3) 4.3804(6)

1D 0.425 �2.17290(1) 2.6387(4) 4.6204(7)

20.0 3D 0.45 �2.17442(1) 2.6045(4) 4.5457(8)

2D 0.425 �2.17410(1) 2.5927(4) 4.5309(8)

1D 0.425 �2.17400(1) 2.6159(4) 4.5762(7)
a 3D stands for spherical, 2D for cylindrical, and 1D for two plane
impenetrable surfaces. In parentheses we show the statistical error in the
last digit.
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3.3. Confined Lithium Atom. The results for this three-
electron system, ground state 2S and excited states 2P and 2D,
confined in an impenetrable sphere are determined by using fully
correlated wave function given by eq 15 are presented in Table 3
and also displayed in Figure 3. The results have been obtained
with a = 0.7, which has been fixed by performing a calculation for
a very large value of rc. Like two-electron systems we do not
observe any significant change in the optimized value of the
parameter a when rc is varied, and consequently we use the same
value of parameter a (a = 0.7) for all the calculations. Only few
calculations are available in the literature for the ground state and
to the best of our knowledge none exist for excited states. The
ground-state energies of ref 24 obtained by using the Hartree�
Fock approach are reported in Table 3. We note from Table 3
and Figure 3 that our results for the energy are significantly
lower than theHartree�Fock ones for rc > 2 au. In order to check
the accuracy of the correlated wave function, the energy of a
confined Li atom with rc = ∞ (uncompressed atom) has been
calculated. The ground-state energy obtained with the simple
wave function of eq 15 E = �7.47360(3) au is in very a good
agreement with the high-precision variational results of Yan and
Drake25 E =�7.478060 au calculated by using multiple basis sets
in Hylleraas coordinates. As stated above, the optimized value of
the parameter a remains constant at all confinement radii. This
suggests that the electron�electron interaction is almost indepen-
dent of the confinement. This finding is in agreement with a
conclusion already drawn by Gimarc26 who noted that in the case
of helium the correlation energy is largely independent of the size
of the enclosing sphere.
The λ values are strongly dependent on the confinement as

illustrated by the changes in the values of λ in Table 3. Like the
confined H� ion and the He atom, the value of the parameter λ
also tends to zero for a strongly confined Li atom. Thus the
electronic screening of the nuclear charge by the electrons
decreases when the confinement radius becomes small.
The results for the confined lithium atom in the excited state

2P are reported in Table 3 and plotted in the Figure 3. The energy
of the free atom in this state obtained by the present method is
E = �7.40315(4) au to be compared to the accurate value25

E =�7.410157 au.When the confinement is stronger, the energy
increases. A crossing with the ground state occurs at rc = 3.3 au.

Changes of the order of the atomic levels and the ordering of
filling of the shells are observed in compressed atoms as already
found by different authors, see refs 1 and 3 and references
therein.
The results for the confined lithium atom in the excited state

2D are reported in Table 3 and plotted in the Figure 3. The
energy of the free atom in this state obtained form the variational
wave function of this work is E =�7.32579(4) au to be compared
to the accurate value25 E = �7.335524 au. It is interesting to
remark that the rise in energy versus rc is important and becomes
significant at relatively large values of rc = 8 au.
3.4. Confined Carbon Atom. It is well-known that the carbon

atom needs a rearrangement of its electronic ground-state
configuration 2s22p2 in order to account for molecules such as
CH4. In basic text books an ad hoc hypothesis is made that
consists to mix the 2s and 2p orbitals to form four new hybridized

Figure 2. Expectation value of the interelectronic distance as a function
of the confinement parameter for the 23S excited state of the He atom.
The 3D stands for spherical, 2D for cylindrical, and 1D for two planes
impenetrable surfaces. The lines are for guiding the eyes. Statistical error
is smaller than the symbol size.

Table 3. Total Energy and Radial Expectation Values of the
Ground State (1s22s) 2S and (1s22p) 2P and (1s23d) 2DExcited
State in Spherical Confinement as a Function of the Radiusa

rc λ Æræ Ærijæ E ESCF

(1s22s) 2S

1.5 0 0.61113(2) 0.93871(3) �1.9805(3) �2.2281

2.0 0.3 0.72939(3) 1.13934(4) �5.1305(2) �5.1782

3.0 0.675 0.94861(4) 1.52472(7) �6.83046(6) �6.8027

4.0 0.775 1.12640(6) 1.8524(1) �7.24481(4) �7.2046

5.0 0.8 1.26424(8) 2.1143(2) �7.38155(4) �7.3395

6.0 0.825 1.3853(1) 2.3469(2) �7.43428(3) �7.3925

8.0 0.825 1.5370(2) 2.6430(3) �7.46581(3) �7.4249

10.0 0.825 1.6289(2) 2.8215(4) �7.47176(3)

∞ 0.775 1.6855(3) 2.9380(5) �7.47360(3) �7.4327

∞ Hyll 1.66317 2.88947 �7.478060

(1s22p) 2P

1.5 0.48 0.60585(2) 0.93232(4) �3.9142(2)

2.0 0.7 0.73002(3) 1.13783(4) �5.7740(1)

3.0 0.83 0.93032(4) 1.48703(7) �6.85948(6)

4.0 0.88 1.09853(7) 1.7956(1) �7.16837(3)

5.0 0.92 1.2542(1) 2.0890(2) �7.28902(3)

6.0 0.94 1.3888(1) 2.3471(2) �7.34415(4)

8.0 0.96 1.6028(2) 2.7628(3) �7.38536(3)

10.0 0.96 1.7366(2) 3.0256(5) �7.39724(4)

∞ 0.95 1.9918(5) 3.5303(9) �7.40315(4)

∞ Hyll 1.95712 3.47070 �7.410157

(1s23d) 2D

2.0 0 0.77719(3) 1.21442(5) �3.6126(3)

3.0 0 0.97962(4) 1.58763(7) �5.9095(1)

4.0 0.35 1.18591(6) 1.9778(1) �6.61559(9)

5.0 0.46 1.39216(7) 2.3754(1) �6.92147(6)

6.0 0.52 1.5925(1) 2.7664(2) �7.07723(6)

8.0 0.60 1.9887(2) 3.5457(4) �7.21916(5)

10.0 0.63 2.3322(3) 4.2261(5) �7.27530(4)

∞ 0.65 3.825(2) 7.201(3) �7.32579(4)

∞ Hyll 3.87641 7.28852 �7.335524
aThe ground-state results are compared with the self consistent field
energy, ESCF of Lude~na,24 and the results for the unconfined state
(rc =∞) are compared with the very precision values of Yan and Drake,25

Hyll, calculated by using multiple basis set in Hylleraas coordinates.
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orbitals sp3, where the four electrons can be placed to form the
right number of chemical bounds. This hypothesis is often said to
be a purely mathematical device, but necessary, to describe the
basic chemical properties of the carbon atom.
We propose here an analysis that might be of pedagogical

interest and gives some more physical insight of mechanism of
this electronic rearrangement. In this section we show that the
mixing of the 2s and 2p orbitals to form the four sp3 orbitals could
be interpreted as a natural consequence of the constraints induced
by the surrounding of the carbon, i.e., the protons of hydrogen
atoms close to this atom.
The present approach, not dependent on the self consistent

field approach, is convenient to calculate the consequence of the
confinement by impenetrable sphere on the ground state C
(1s22s22p2) 3P or hybridized C (1s2(2sp3)4) on the same footing.
The values of the energies of the carbon atom in the 3P and
hybridized state sp3 using the VMC approach are reported at
different values of the confinement radii rc in Table 4. For the free
system (no constraint) the ground-state energy of the 3P
calculated with the present simple wave function of eq 21 is
E(3P) = �37.6786(2) au to be compared to the self consistent
field energy E =�37.6886 au, and the estimated exact energy27 is

E =�37.8450 au. The energy of the hybridized configuration sp3

calculated by the present approach is E(sp3) = �37.4793(2) au,
i.e., 0.199 au above the ground-state energy. When confinement,
measured by the cutoff radius rc, becomes stronger, the energies
are raised.
In order to improve the energy of the carbon atom obtained

through the VMC approach, we made further calculations using
the DMC approach both for the ground state (1s22s22p2) 3P and
the hybridized C (1s2(2sp3)4) under confinement. The results
are displayed in Table 4. It can be noticed that within this ap-
proach, the energies are significantly improved respectively
E(3P) = �37.7996(9) au and E(sp3) = �37.6333(5) au for the
free systems, i.e., 0.166 au above the ground-state energy.
In Figure 4 the energy difference ΔE = E(3P) � E(3sp3), i.e.,

the threshold of the transition from the ground state to the
hybridized one deducedwith the VMC and theDMCmethods, is
plotted versus rc. A crossing (ΔE = 0) is found in the neighbor-
hood of rc = 1.6 au. It can be said that the differences between
both approaches are small, and the VMC method is able to
describe correctly the behavior of the carbon atom under

Figure 3. Ground- and excited-state energies of the lithium atom under
spherical as a function of the confinement radius, rc. The lines are for
guiding the eyes. Statistical error is smaller than the symbol size.

Table 4. Ground-State Energy of the Carbon Atom in Spherical Confinement As a Function of the Radiusa

rc ESCF(
3P) EVMC(

3P) EDMC(
3P) EVMC(sp

3) EDMC(sp
3) λ(3P) λ(sp3)

1.0 �10.9178 �10.9832(4) �11.1042(5) �13.8081(5) �14.183(1) 0.008 0.026

1.2 �22.3683(3) �23.4792(3) 0.040 0.070

1.4 �28.3927(2) �28.7694(2) 0.25 0.41

1.5 �30.2169 �30.3303(2) �30.3856(6) �30.5048(5) �30.572(3) 0.43 0.52

1.6 �31.8184(2) �31.8647(2) 0.57 0.62

1.7 �32.9704(2) �32.9269(2) 0.63 0.69

1.8 �33.8709(4) �33.7692(2) 0.70 0.74

1.9 �34.5829(8) �34.4364(2) 0.74 0.79

2.0 �35.0588 �35.1435(2) �35.2084(6) �34.9722(2) �35.0526(9) 0.79 0.83

2.5 �36.6548 �36.6681(3) �36.7939(6) �36.4604(3) �36.6023(8) 0.89 0.93

3.0 �37.2570 �37.2441(3) �37.3906(7) �37.0227(3) �37.200(1) 0.92 0.96

∞ �37.6885 �37.6786(2) �37.7996(9) �37.4793(2) �37.6333(5) 0.84 0.88
a In column 3P columnwe report the results obtained fromCoulomb orbitals, while in sp3 columnwe show the energy obtained from hybridized orbitals.
In parentheses we show the statistical error in the last figure. The λ parameter in the correlation factor in each calculation is reported. The results are
compared with the self consistent field energy, ESCF, of Lude~na.

24

Figure 4. Difference of energy obtained from wave functions built from
atomic and orbitals hybrid orbitals for the ground state of the carbon
atom surrounded by a nonpenetrable spherical surface of radius rc. The
lines are for guiding the eyes. Statistical error is smaller than the
symbol size.
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confinement. The present model, based on a simple impene-
trable sphere confinement, shows that the carbon hybridization
sp3 might be understood as due to the confinement by the
surrounding atoms when it becomes sufficiently strong. Briefly
stated, the spherical confinement has induced a raise in the
energy, corresponding to the symmetry group of the 3P state,
equal to the energy of carbon atom in the symmetry group Td at
rc around 1.6 au.
As explained previously the choice of pure hydrogenic orbitals

in the present wave function allows a direct calculation of the
nonspectroscopic state. However for the carbon atom the energy
calculated within the VMC is a little bit degraded. For the ground
state of the unconfined atom, the VMC obtained by using
self consistent field orbitals and a more complex correlation
factor11 is E = �37.8064(3), and the fixed node DMC value is
E = �37.8297(2).
It is of interest to recall here that the first spectroscopic excited

state 2s2p3 5So with four unpaired electrons in the carbon atom is
about 0.1537 au above the ground state,28 and it could be a
candidate to account for the electronic rearrangement in the
carbon atom. However the spin value, S = 2, of this term precludes
the transition from the, S = 1, ground state. The nearest triplet
states with four unpaired electrons are28 the, 2s2p3 3Do and
2s2p3 3Po, terms with excitation energies of E = 0.2920 and
0.3429 au, respectively. Thus as a consequence of this energy gap
they cannot easily be populated from the ground state.
The present model suggests that the constraint by the

surrounding atoms induces first a transitory state in the carbon
atom, the hybridized state, followed by the chemical binding
resulting in a stable four bond molecule.

4. CONCLUSIONS

In the present work a functional of the energy has been derived
in the framework of the VMCmethod to study confined systems
by nonpenetrable surfaces of different symmetries. The func-
tional has been applied to study ground and excited states of
some atoms under different constraints. In all cases the energies
of the systems, He, Li, and C, are raised when the confinement
parameter becomes stronger. Average values of the interparticle
distances (electron�nucleus Æræ and electron�electron Ærijæ) are
also determined.

It is observed that for the first excited 3S of helium atom, the
values of Ærijæ versus the constraint parameter present a minimum
when the confinement results from impenetrable cylinder or
planes at values corresponding to the ionization threshold of this
excited atom.

The study of the confined carbon atom suggests a possible
mechanism responsible of the hybridization of the s,p orbitals of
this atom in order to explain the four chemical bonds generally
observed with the carbon atom.

We hope that the present extension of the VMC to confined
nonrelativistic systems will be useful to study larger systems
including molecules. In particular the confinement might play an
important role in the chemical reactivity of molecules, even in
biology, for example, in enzymatic reactions when the substrate is
enclosed in the active site of the enzyme.
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ABSTRACT: Accurate evaluation of the total energy difference between different spin states in molecular magnetic systems is
currently a great challenge in theoretical chemistry. In this work we assess the performance of the density functional theory plus the
Hubbard U (DFT+U) approach for the first-principles description of the high spin-low spin (HS-LS) splitting and the exchange
coupling constant, corresponding to the intra- and interatomic spin interactions, respectively. The former is investigated using a set
of mononuclear ion complexes with different HS-LS splitting, including seven spin-crossover (SCO) compounds, while the latter is
investigated in a series of binuclear copper complexes covering both ferromagnetic and antiferromagnetic interactions. We find that
the DFT+U approach can reproduce experimental data as accurately as the hybrid functionals approach but with much lower
computational efforts. We further analyze the effect of U in terms of spin density on magnetic centers, and we find that the main
effect of the U correction can be attributed to the enhanced localization of magnetic orbitals. Even taking the uncertainty related to
the determination of U into account, we think the DFT+U approach is an efficient and predictive first-principles method for the
SCO phenomenon and interatomic magnetic interactions.

1. INTRODUCTION

Recent years have seen a remarkable revival of interest in mol-
ecular magnetism1,2 due to the unique role it plays in molecule-
based spintronics.3,4 By exploiting electronic charge and spin
degrees of freedom simultaneously at the molecular level, mol-
ecular spintronics holds great hope on a wide range of applica-
tions, such as molecule-based memory,5 switches,6 and quantum
computation.7,8 A large number of molecular magnetic systems
have been discovered and brought under intensive investigation.
Among them two kinds of materials, spin-crossover (SCO)9 com-
pounds and single-molecule magnets (SMMs),10 are of particular
interest. Their uniquemagnetic bistable states and spin transition
(reversal) behavior make them promising candidates for data
storage materials, switching devices, displays, and sensors.5,6,11,12

A SCO compound is one in which an intra-atomic, reversible low
spin-high spin (LS-HS) transition, often occurring in octahedral
coordinated d4�7 transition-metal complexes, can be readily in-
duced by a variety of external stimuli, such as temperature,
pressure, and light irradiation. The necessary condition for the
spin transition to occur is that the perturbation energy is ap-
proximately equal to the energy splitting between the LS and the
HS states:

ΔEH-L � EHS � ELS ð1Þ

The energy splittingΔEH-L largely determines the critical param-
eter characterizing the transition, such as the spin transition
temperature (Tc).

9,13 Physically ΔEH-L is mainly determined by
the two competing factors, the effective electron-pairing energy
(P) of the d electrons and the crystal-field splitting (Δo), which,
when dominant, favors HS and LS ground states, respectively.14

The magnitude of ΔEH-L in typical SCO compounds is usually

quite small, falling in the range of 0�0.3 eV (i.e., 0�
30 kJ/mol).13 An accurate evaluation of this quantity is therefore
highly challenging from a theoretical point of view. While the
SCO phenomenon is mainly determined by the intra-atomic spin
coupling, a SMM is characterized by a strong interatomic spin
interaction, which gives rise to a large collective ground-state spin
(S). When the large spin is combined with a large magnetic
anisotropy as a result of the spin�orbit coupling (SOC), the
spin-reversal process between spin-up and spin-down configura-
tions will be blocked by an energy barrier DS2 (D, axial zero-field
splitting parameter), which eventually determines the blocking
temperature (TB).

10,15 A room-temperature TB is required for a
SMM system to be practically useful, for which a large S and/or a
largeD are needed. Large ground-state spins can be formed from
strong collective interactions among local magnetic moments in
polynuclear molecular clusters (e.g., Mn12O12).

10 The intera-
tomic spin�spin interaction is usually described by a phenom-
enological Heisenberg Hamiltonian:16

Ĥ ¼ � JŜi 3 Ŝj ð2Þ
Here Ŝi and Ŝj represent the spin operators of the coupling
magnetic centers i and j, respectively, and J is the intersite
exchange coupling constant that characterizes the type
[positive J, ferromagnetic (FM); negative J, antiferromagnetic
(AFM)] and the strength of the magnetic interactions between
neighboring magnetic centers. Compared to S, it is even more
challenging to attain a large D, which depends on both strong
spin�orbit coupling and constructive alignment of individual
anisotropy axes on different magnetic centers. To make things

Received: May 2, 2011
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more complicated, there is clear evidence from both theory and
experiment that the total magnetic anisotropy of a polynuclear
cluster can often be dramatically reduced as a result of mutual
cancellation of the local anisotropies so that a large ground-state
spin S is often accompanied by a very small zero-field splitting.17

Accurate evaluation of the two key parameters, ΔEH-L and J, is
currently a great challenge in theoretical chemistry. Both quantities
are determined by the energy difference between different spin
configurations of open-shell (i.e., with unpaired electrons) systems,
for which theoretical chemistry is much less well developed than
that of closed-shell systems. For open-shell systems, the electronic
ground state in general cannot be described based on the single
Slater determinant-based approaches, like Hartree�Fock (HF) or
Kohn�Sham (KS) density functional theory (DFT). A theoreti-
cally rigorous treatment of them requires using correlated wave
function-based approaches, such as the multireference perturba-
tion theory (e.g., CASPT2), configuration interaction (MRCI), or
coupled cluster (MRCC) methods.18�22 They are, however, too
expensive to be applied routinely for practically interesting molec-
ular magnetic systems with tens or even hundreds of atoms. It is
even more difficult to apply the correlated wave function-based
approaches to crystalline systems, the form in which molecular
magnetic systems are usually studied experimentally. Currently
most first-principles studies of molecular magnetic systems are
based on HF or KS DFT. As a result of their single-determinant
framework, additional approximations are often needed to relate
theoretically calculated quantities to ΔEH-L and J.

Although sharing a similar single-configuration framework,
HF andDFT exhibit very different performances in terms of their
descriptions of magnetic properties, owing to their different
treatment of the exchange�correlation (xc) interaction. Due
to the lack of dynamicCoulomb correlation, electrons inHF tend
to get too close to each other so that the electron-pairing energy
(denoted as P henceforth) is often overestimated. Therefore, HF
favors the HS ground state.13 On the other hand, KS DFT in the
local density or generalized gradient approximation (LDA or
GGA, respectively) to the xc energy functionals suffers from the
self-interaction error (SIE) problem.23 As a result, electrons tend
to repel each other artificially, leading to a tendency to stabilize
the LS state,24,25 and the local magnetic orbitals (singly occupied
molecular orbitals) are delocalized, thus overestimating the
magnetic interactions.26 The SIE problem of LDA or GGA can
be partially remedied by mixing a fraction of the HF (exact)
exchange with the standard LDA or GGA xc functionals,27,28

hence termed the hybrid functionals approach, which has
become the most successful DFT method for molecular
systems.29 The hybrid functionals approach has also been applied
to molecular magnetic systems recently, and the overall perfor-
mance is very promising.30�32 It has, however, at least two
drawbacks. The results often depend quite sensitively on the
parameters used in these functionals, including in particular the
percentage of the exact exchange that is included. Different
materials (or properties) need different parameters to obtain
optimal results.30�32 From a practical point of view, the hybrid
functionals approach, when implemented with the periodic
boundary condition that is used in most popular first-principles
DFT packages, is computationally much more expensive than
standard LDA or GGA. Therefore, although the hybrid func-
tionals approach has become popular in computational chem-
istry since two decades ago,29 its use in computational materials
science is muchmore limited, and it becomes available in popular
DFT packages only very recently.33,34

For systems with partially occupied d- or f-states, a simple and
effective approach that can overcome the major failure of LDA or
GGA is to introduce a local correction characterized by the
Hubbard Coulomb interaction term U,35 hence termed LDA
(GGA)+U (or more generally DFT+U).36�38 Physically the U
correction has the effect of introducing a penalty for fractional
occupation that is favored by LDA or GGA. DFT+U was
originally developed to describe Mott insulators39 properly in
the band theory framework and has become a popular first-
principlesmethod for strongly correlatedmaterials during the past
decade.40 Only recently have a few attempts been made to apply
the approach in molecular magnetic systems.41�45 It was found
that the DFT+U method can in general improve the description
of magnetic interactions considerably, but its overall performance
is still inconclusive.41�45 Rivero et al.44 applied the plane wave-
based DFT+U approach to investigate magnetic coupling con-
stants of a series of binuclear copper complexes. They showed that
the description of AFM systems was significantly improved by
DFT+U but that of FM ones was still quite poor.

Themain goal of this work is to investigate the performance of
the DFT+U method for the evaluation of ΔEH-L and J in a sys-
tematic manner. For ΔEH-L, we consider a set of mononuclear
iron complexes including seven SCO compounds. For J, we study
a group of binuclear copper complexes that cover both FM and
AFM intersite interactions. The paper is organized as follows. In
the next section, Section 2, we present the method used in our
investigation and some computational details. In Section 3, we
first show that the DFT+U method is able to describe the SCO
phenomenon and exchange interactions with an accuracy that is
comparable to the state-of-the-art hybrid functionals approaches.
Then the physical effect ofU is analyzed in terms of the variation
of local spin density projected on magnetic centers, from which
we argue that the Hubbard U correction can effectively induce
localization of magnetic orbitals to eliminate their erroneous
overlap with other orbitals. In Section 4 we conclude the work
with a few general remarks regarding the limitation of the DFT
+U approach for molecular magnetic systems.

2. COMPUTATIONAL DETAILS

To investigate the performance of DFT+U for the description
of intra-atomic spin interaction, we consider seven iron(II)
complexes46�50 with different ground spin states and seven iron
SCO compounds51�64 for which experimental data for the en-
thalpy difference ΔH between different spin states (iron(II): LS,
S=0;HS, S=2 and iron(III): LS, S=1/2;HS, S=5/2) are available.
We calculateΔEH-L in terms of eq 1, where the total energies in the
HS and LS states are obtained from standard spin-unrestricted KS
DFT calculations with fully optimized molecular structures.

For the calculation of J that characterizes the interatomic spin
coupling, we use the “broken symmetry” (BS) approach:65,66 J is
related to the total energy difference between the HS state, in
which the neighboring magnetic ions have parallel spin align-
ment (vv) and a constructed BS state with the corresponding
antiparallel spin alignment (vV). By assuming fully localized
magnetic orbitals and using the Heisenberg Hamiltonian
(eq 2),66 one obtains

EBS � EHS ¼ ÆvVj � JŜi 3 ŜjjvVæ� Ævvj � JŜi 3 Ŝjjvvæ ¼ 2JSiSj

ð3Þ
where Si and Sj are the spin quantum numbers of the two
interacting local magnetic centers. We consider only binuclear
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copper(II) complexes,67�77 which have Si = Sj = 1/2, so that the
exchange coupling constant can be calculated by

J ¼ 2ðEBS � EHSÞ ð4Þ

We use the molecular structures extracted from the crystal data
without further structural optimization, which is a common
practice in the studies of exchange coupling constants to avoid
additional uncertainty.26

All calculations are performed using the SIESTA code78,79

(with the DFT+U extension80), which is based on numerical
atomic basis78 and norm-conserving pseudopotentials (NCPPs).81

The capability of the code to treat molecular magnetic systems
has been well verified by Ruiz et al.82 We use the triple-ζ plus
polarization (TZP) basis for magnetic ions (Fe, Cu), and the
double-ζ plus polarization (DZP) basis for the other atoms. Both
LDA23 and Perdew�Burke�Erzernhof (PBE)83 GGA func-
tionals are used in our calculations.

The DFT+U calculations are based on the simplified rota-
tionally invariant scheme by Dudarev et al.37 in which the para-
meter U corresponds to U�J in the original formulas proposed
by Anisimov et al.,36 with J here being the onsite exchange
interaction. Considering the important role of U, a few com-
ments on the choice of U are in order. U is defined physically as
the effective on-site Coulomb interaction among localized elec-
trons in partially occupied d- or f-shells, which is determined
mainly by the nature of localized d or f electrons and their
chemical environments. TheHubbardU correction is introduced
in DFT+Umainly to overcome the severe SIE among localized d
or f electrons. In practice, however, U is often regarded as an
adjustable parameter, whose value is determined by fitting to
experiment. This is in some sense to useU to correct not only SIE
but also all other errors of a particular LDA or GGA functional.
Such empiricism in the DFT+U approach is certainly useful to
greatly enhance its applicability to a wide range of complicated
materials for which more accurate and theoretically more rigor-
ous methods are infeasible. On the other hand, the predictive
power of DFT+U can be impaired, and more importantly, the
physical significance of U can be lost if the adjustability of U is
overused. Using different target properties for fitting may result
in significantly different values ofU, and the situation can become
more complicated if the experimental data used for fitting have
significant uncertainty (error bar). Therefore, we think U should
be chosen based on physical considerations, either by fitting to
the experimental data that carry the information of on-site
Coulomb interaction, such as photoemission spectroscopic
(PES) data,84,85 or calculated from first-principles approaches,
such as the constrained DFT.38,86�88 Although a unique deter-
mination of U is difficult, a physical range of U can be easily
established for a particular transition-metal ion. Guided by these
considerations, we use in this work U = 4.0 eV for Fe(II) and
Fe(III) and U = 6.5 eV for Cu(II) based on previous constrained
DFT calculations and PES experimental data for some simple
Fe(II)38,85,88 and Cu(II)85,89 inorganic materials. Rigorously
speaking, the value of U should depend on the oxidation state
and the chemical environments of the transition-metal ion, which
are, however, secondary factors. We leave further investigation of
this issue to the future. Finally we note that although the
dependence on U introduces uncertainty when interpreting the
results from DFT+U, we can also take advantage of such
dependence in the spirit of a Gendanken experiment; since U
characterizes the strength of onsite Coulomb interaction, we can

obtain insights on physical mechanisms underlying different spin
interactions by investigating how physical properties under study
depend on the value of U.

We use the NCPPs taken from ABINIT’s pseudopotential
database,90 as provided by the SIESTA group,80 for all elements
involved in our calculations except for iron. For the latter, a NCPP
with nonlinear core correction (NLCC)81 is generated based on
the nonrelativistic spin-polarized atomic calculations ([Ar]3d64s2)
with a cutoff radius of 2.0 Bohr for all the angular components. The
inclusion ofNLCC in the pseudopotential is found to be crucial for
the accurate description of the Fe 3d states.

To check the accuracy of the pseudopotentials as well as the
numerical atomic basis functions used in our calculations, we
compare ΔEH-L of [Fe(2-A)3]

2+ (2-A = 2-picolylamine)58 cal-
culated by SIESTA with that by GAUSSIAN0991 using both
all-electron and effective core potential (ECP) basis (see
Table 1). The results from SIESTA are in excellent agreement
with all-electron and small-core ECP results, which confirms the
accuracy of the method used in our calculations.

3. RESULTS AND DISCUSSION

3.1. Spin-Crossover of Iron Complexes. We begin the
analysis by inspecting a series of iron(II) complexes with sig-
nificantly different ground-state spin properties (Table 2). This
list of compounds is ordered in terms of the magnitude ofΔo that
is determined by the coordination nature of the ligands. Since
ΔEH-L depends onΔo linearly, the results are expected to change
from large positive values for the compounds coordinated with
NO+ andCO to negative ones for those with NH3 andH2O. This
trend is indeed well delivered by all theoretical methods except
GGA+U, which overstabilizes the HS state dramatically such that
it completely loses the ability to distinguish between HS and
LS states. We note that GGA+U with a significantly smaller U
(∼ 1.0 eV) would give much improved results, but using
such a small U is physically not well founded. A more quantitat-
ive assessment is however not straightforward, since the only
experimental information available is the nature (HS or LS) of
the ground state, i.e., the sign ofΔEH-L.Wewill therefore take the
results obtained from CASPT218 as the benchmark. In general,
GGA yields quite accurate results, but its performance is not
systematic. In particular, for [Fe(N2H4)(NHS4)] and [Fe(NH3)-
(NHS4)] (NHS4

2� = 2,20-bis(2-mercaptophenylthio)),49 ΔEH-L
calculated by GGA is about ten times larger than that by
CASPT2. Compared to GGA, LDA tends to favor the LS states
more strongly, and therefore, ΔEH-L is significantly overesti-
mated. Overall the best performance is obtained by LDA+U,
which gives results closely comparable with those from the

Table 1. Assessment of the Pseudopotentials and Basis Used
in This Work by Comparing the Calculated ΔEH-L (kJ/mol)a

of [Fe(2-A)3]
2+ with That Obtained Using ECP and All-

Electron Basis

basisb TZP Lanl2dz 6-311+G(d)

LDA 544 533 552

GGA 447 428 450
a Structures determined at 12 and 298 K are used as in LS and HS states,
respectively. bDifferent basis sets are employed for iron: TZP in SIESTA
(DZP for the other atoms) and Lanl2dz and 6-311+G(d) in GAUSS-
IAN09 (6-31G(d) for the others).
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hybrid functional (TPSSh) approach reported by Ye and
Neese.92

We further investigate the performance of the DFT+U
approach in describing ΔEH-L of real SCO complexes. Table 3
showsΔEH-L’s of the seven iron SCO compounds obtained from
LDA(+U) andGGA(+U), together with the results fromTPSSh31

and the enthalpy differences determined experimentally. Rigor-
ously speaking, ΔH contains, in addition to the electronic energy
change ΔEH-L, the contributions from the change of volume
(pΔV) and the vibrational part (ΔEvib). While the former is
expected to be marginal, the latter, mainly the difference in zero-
point energies between LS andHS states, is non-negligible because
of significantly different metal�ligand (M�L) binding strength in
LS and HS states. Nevertheless, the contribution of ΔEvib is
typically a few kJ/mol,31 which is smaller than ΔEH-L in typical
SCO compounds and comparable to the uncertainty (error bar) in
the experimental data of ΔH. Most importantly, ΔEvib is nearly
constant for different systems.25 It is therefore reasonable to
compare theoretical results of ΔEH-L to experimental ΔH. For
these SCO compounds, ΔEH-L’s from LDA are overestimated
dramatically, by nearly 1 order of magnitude. GGA results,
however, are only slightly overestimated. The U correction added
to GGA again results in qualitatively wrong ground states for all
SCO compounds considered. On the other hand, the LDA+U
approach gives results very similar to those from TPSSh, both in
good agreement with experimental enthalpy differences. We note
that for [Fe(HB(pz)3)2] (HB(pz)3 = hydro-tris(1-pyrazolyl)-
borato),60 both LDA+U and TPSSh overestimate ΔEH-L signifi-
cantly. On the whole, the LDA+U approach delivers a comparable
accuracy as the hybrid functionals approach for the description of
the SCO phenomenon.

Besides an accurate evaluation of ΔEH-L, a reliable prediction
of equilibrium molecular structures in different spin states is also
of great importance for the simulation of SCO compounds. To
assess the performance of the DFT+U approach for that, we
consider [Fe(2-A)3]

2+ (Figure 1), whose experimental crystal
structural data in both LS and HS states are available.58 We note
that crystal and finite-temperature effects are not taken into
account in our calculations, a common practice in theoretical
studies of SCO compounds.13,31 Optimized M�L bond lengths
obtained from different theoretical approaches are compared to
experimental ones in Table 4. In the LS state, which is stable at
low temperature, the M�L bonds from LDA are systematically
shorter than those from experiment, a feature that has been
well recognized for transition-metal complexes.29 LDA+U

Table 3. Calculated ΔEH-L (kJ/mol) in Comparison with the Enthalpy Difference ΔH (kJ/mol) Obtained from TPSSh and
Experiment

ΔEH-L (kJ/mol) ΔH (kJ/mol)a

compound LDA LDA+U GGA GGA+U TPSShb expt ref

[FeIII(acac)2trien]
+ 126 18 32 �68 33 7�17 51 and 52

[FeII(papth)2]
2+ 177 23 51 �95 15 16 53 and 54

[FeII(tacn)2]
2+ 141 5 30 �94 16 21�24 55 and 56

[FeII(2-A)3]
2+ 174 20 46 �98 14 18�25 57 and 58

[FeII(HB(pz)3)2] 218 47 75 �80 51 16�22 59 and 60

[FeII(py(bzimH))3]
2+ 191 28 55 �96 26 20�21 61 and 62

[FeII(tppn)]2+ 186 29 58 �88 31 25�30 63 and 64

aΔH = ΔEH-L + ΔEvib + pΔV, where the vibrational part ΔEvib contributes to the enthalpy difference a few kJ/mol (negative) but is basically
independent of the system; the last term pΔV can be ignored. bRef 31.

Figure 1. Molecular structure of [Fe(2-A)3]
2+.

Table 2. Calculated ΔEH-L (kJ/mol) Compared with Results Obtained by TPSSh and CASPT2

compound LDA LDA+U GGA GGA+U TPSSha CASPT2b exptc ref

[FeII(NO+)(NHS4)]
d 204 71 123 �42 102 178 LS 46

[FeII(CO)(NHS4)] 236 73 139 �35 103 122 LS 47

[FeII(PMe3)(NHS4)] 208 36 92 �81 63 81 LS 48

[FeII(N2H4)(NHS4)] 155 3 49 �104 5 4 HS 49

[FeII(NH3)(NHS4)] 145 �5 40 �107 �53 5 HS 49

[FeII(NH3)6]
2+ 93 �32 �21 �134 �24 �86 HS �

[FeII(H2O)6]
2+ �76 �153 �163 �232 �114 �195 HS 50

aRef 92. bRef 18. c Experimental ground spin states: LS, S = 0; HS, S = 2. dNHS4
2� = 2,20-bis(2-mercaptophenylthio) diethylamine dianion.
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significantly improves the LDA results, reducing the mean
absolute error (MAE) from 0.061 to 0.015 Å. On the other
hand, since pure GGA already describesM�L bond lengths quite
well, the inclusion of the U correction, which tends to increase
the M�L bond lengths, results in systematically overestimated
bond lengths with a MAE of 0.057 Å with respect to experiment.
For the HS state, the overall trend is still similar: LDA+U gives
results that are generally in better agreement with experiment
than LDA, and GGA+U tends to overestimate the M�L bond
lengths systematically. On the other hand, the agreement be-
tween theory (LDA+U and GGA) and experiment is noticeably
poorer in the HS state than that in the LS state. A likely cause for
this is that the experimental data for the HS state are obtained
from crystallographic structures measured at room temperature,
in contrast to those for the LS state, which is measured at low
temperature. We can therefore expect that structural data in the
HS state are influenced by crystal and finite-temperature effects
more strongly than those in the LS state.
Optimized M�L bond lengths for other SCO compounds

considered in this work can be found in the Supporting Informa-
tion, and they exhibit very similar features. Overall, both PBE-
GGA and LDA+U give equilibrium structures with an accuracy
comparable to that from BP86-GGA. The latter was shown to
give optimal structural properties of transition-metal complexes.31

Therefore, by using LDA+U, both electronic and structural
properties of SCO systems can be described accurately by the
same theoretical approach. In contrast, GGA (BP86 or PBE) can

only describe structural properties accurately but not electronic
properties.
In the followingwewill take [Fe(papth)2]

2+ (papth = 2-(pyridin-
2-ylamino)-4-(pyridin-2-yl)thiazole)54 as an example to analyze
how the Hubbard U works. According to the crystal field theory,
ΔEH-L can be roughly determined by the difference between the
crystal field splitting Δo and the mean electron pairing energy P
among the localized d electrons,14 the latter being closely related
to the on-site Coulomb repulsion U. This simplified picture is
confirmed in Figure 2, which shows that ΔEH-L from LDA+U
and GGA+U both decrease linearly as a function of U, but GGA
+U results are systematically smaller by a constant difference of
∼125 kJ/mol. These features can be rationalized from the
viewpoint of chemical bonding. Pure LDA (i.e., U = 0) drama-
tically favors the LS state characterized by the fully occupied t2g
(bonding) orbitals and strong M�L bonds. This tendency along
with the underestimation of the M�L bond lengths can be
attributed to two drawbacks of LDA:29 one is the local formula-
tion based on the uniform electron gas, which poorly describes
coordination bonds, and the other is the SIE that causes artificial
delocalization. The U term tackles the on-site Coulomb interac-
tion to eliminate the severe SIE among localized d-electrons.39

By increasing U, a large portion or the whole part of the artificial
delocalization contribution can be removed from the real hy-
bridization responsible for the M�L bonding. As shown in the
inset of Figure 2, the local spin density projected on the iron
center increases as a function of U, indicating enhanced localiza-
tion of the magnetic orbitals. The latter in turn tends to weaken
the M�L bonding and reduce the energy bias for the LS states.
When an appropriate U (4.0 eV) is used, LDA+U reproduces
experimental geometries (in Table S1, Supporting Information)
as well as the SCO behavior of the compound. On the other
hand, a too large U (>∼ 5.0 eV) would bring unphysical
localization error and therefore overstabilize the HS state.
In the case of GGA+U, the pure GGA (U = 0) already gives

results in a good agreement with experiment. This is likely due to
the fact that the first drawback of LDA has been largely over-
comed by introducing the gradient correction.29 It also means
that GGA+U is vulnerable to overcorrection. With U = 4.0 eV,
indeed GGA+U gives qualitatively wrong ground-state spin
(negative ΔEH-L) and significantly overestimated M�L bond
lengths. Using a smaller U, GGA+U would also be able to give
reasonable results. Leb�egue et al.43 reproduced the experimental
adiabatic ΔEH-L of a prototype SCO compound [Fe(phen)2-
(NCS)2] using GGA+U with U = 2.5 eV. For our molecular
model system, GGA+U with U = ∼1.0 eV gives ΔEH-L and the

Table 4. Experimental and Optimized M�L Bond Lengths (Å) of [Fe(2-A)3]
2+ in the LS and HS States

LS (S = 0) HS (S = 2)

M�L bond crystal LDA LDA+U GGA GGA+U crystal LDA LDA+U GGA GGA+U

Fe�N10 2.024 1.975 2.018 2.030 2.082 2.179 2.220 2.232 2.265 2.303

Fe�N13 1.991 1.924 1.975 1.978 2.049 2.196 2.100 2.162 2.191 2.242

Fe�N2 2.020 1.976 2.017 2.033 2.088 2.180 2.218 2.237 2.290 2.280

Fe�N5 2.004 1.936 1.982 2.001 2.061 2.220 2.113 2.164 2.204 2.292

Fe�N6 2.034 1.966 2.011 2.024 2.084 2.183 2.210 2.225 2.250 2.272

Fe�N9 1.998 1.927 1.978 1.990 2.049 2.213 2.097 2.160 2.193 2.258

MAEa 0.061 0.015 0.009 0.057 0.071 0.049 0.051 0.079
aMAE with respect to the corresponding experimental structures (12 K, LS; 298 K, HS).

Figure 2. Calculated ΔEH-L of [Fe(papth)2]
2+ as a function of U

employing LDA+U [green line, solid squares (9)] and GGA+U [red line,
solid circles (b)]. Dash line: bottom line of qualitatively correct results.
The vertical line refers to theU value used in this work. Inset: spin density
nv of iron (Mulliken population analysis) in HS state versus U [blue line,
triangle (2), LDA+U; pink line, inverse-triangle (1), GGA+U].
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local spin density (see the inset in Figure 2) that are close to those
from LDA+U with U = 4.0 eV.
From a physical point of view, the Hubbard U plays a similar

role as the weight of the exact (HF) exchange in the hybrid
functionals approach in the sense that both can correct the severe
SIE among localized d-electrons. The connection betweenDFT+U
and the hybrid functionals approach is clearly demonstrated in
the recent work by Tran et al.,93 in which the hybrid functional is
implemented only for strongly correlated electrons in localized d
or f states as in DFT+U, and it gives results very similar to
those from DFT+U. For SCO compounds, inclusion of the HF
exchange stabilizes the HS state, so the accuracy of the hybrid
functionals approach forΔEH-L depends on the percentage of the
HF exchange. The popular B3LYP including 20% exact exchange
fails to predict the correct ground spin states of the SCO
compounds,13,92 while its modified variant, B3LYP*, which
reduces the HF percentage to 15%, delivers reasonable ΔEH-L
values.94,95

3.2. Exchange Interactions of Binuclear Copper Com-
plexes. Table 5 shows the calculated exchange interaction
constants J of the selected binuclear copper complexes in com-
parison with the results by B3LYP96�98 and experiment.67�77

Neither LDA nor GGA can provide acceptable results since the
deviations are far beyond the uncertainty in the experimental
data (∼ 10 cm�1). In particular, they even predict the wrong
interaction types for some compounds. In contrast, B3LYP
generally yields qualitatively correct values, indicating clearly
the importance of the HF exchange for the description of the
intersite exchange interactions. Consistent with the preceding
observation on the relation between theU correction and the HF
exchange, LDA+U and GGA+U systematically improve the
predictions of LDA and GGA, respectively, and give results that
are very similar to those of B3LYP. We note in particular that
GGA+U is able to describe magnetic interactions of both AFM
and FM dicopper complexes.
In a plane-wave based study, Rivero et al.44 reported that J in

FM complexes could not be properly described by DFT+U,
which contradicts the finding in this work. They found that theU
correction reduced the overestimated results obtained using both
LDA and PW91 by no more than 20% (with U = 6.0 eV),
resulting in J still 3�8 times larger than experimental values.
A precise explanation for this discrepancy is difficult without
more detailed information. Here we give some speculation on the
possible causes. The BS state in a FM system is metastable and

therefore more difficult to reach than that in the AFM case. To
find the metastable BS state, it is necessary to start the calculation
from a tailored initial guess and caution is needed to ensure the
true BS state is found when the self-consistent field (SCF)
iteration converges. This issue has been paid particular attention
in our calculations. As far as we know, the DFT+U approach has
been widely used to study exchange coupling constants of bulk
inorganic magnetic systems, where comparable accuracy has
been reached for FM and AFM systems (see, e.g., ref 99). We
see no particular reasons that molecular magnetic systems should
be different in this aspect.
Weuse [Cu2(bpy)2(H2O)2(μ-C2O4)]

2+ (bpy=2, 20-bipyridyl)67

as a model system to investigate the effect of U in more detail.
Figure 3a shows J from LDA (GGA)+U as a function of U. LDA
overestimates the absolute value of J by a factor of 7, and GGA
only shows a slight improvement, overestimating the result by
more than four times. This is again associated with the unphysical
delocalization of magnetic orbitals that can be characterized
by the local spin density projected on copper centers (see
Figure 3b). In fact, the BS approach to the evaluation of
J (eqs 3 and 4) is formulated based on the strict localization
limit,100 which can, however, be partly invalidated by the
delocalization error of LDA and GGA. The Hubbard U correc-
tion included in LDA (GGA)+U improves the situation by
suppressing the delocalization, as indicated by the increase of
the local spin density on copper ions (Figure 3b). This is
reminiscent of Kahn’s valence bond model,101,102 which goes
back to theHeitler�London’s view of the chemical bond and for-
mulates the exchange coupling constant in terms of natural
magnetic orbitals:26

J ¼ JFM þ JAFM≈2Kab þ 4habSab ð5Þ

where Kab, hab, and Sab refer to the exchange, one-electron, and
overlap integrals in terms of certain fragment orbitals (denoted as
a and b), respectively.26 The constant J is therefore governed by
the competition between the two terms: the positive FM part
2Kab (denoted as JFM) and the negative AFM part 4habSab
(denoted as JAFM). Increasing localization of the magnetic
orbitals lowers absolute values of both terms, thus in most cases
reducing the absolute value of J whatever the interaction type
may be.
We can also interpret the effects of theU correction in terms of

the error cancellation. According to the BS model, J is obtained

Table 5. CuII�CuII Exchange Coupling Constants J (cm�1)a of the Model Compounds

compound LDA LDA+U GGA GGA+U B3LYP expt ref

[Cu2(bpy)2(H2O)2(C2O4)]
2+ �2951 �908 �1765 �464 �634d �382 67

[Cu2(petdien)2(C2O4)]
2+ �207 �79 �121 �63 �21d �19 68

[Cu2(H2O)2(AcO)4] �1374 �433 �863 �230 �429d �286 69

[Cu2(dmen)2(μ-OMe)(O2C-L
b)]2+ 132 36 150 �71 �61d �11 70

[Cu2(dpt)2(O2C-L
b)2]

2+ 28 13 20 �5 4d 2 71

[Cu2(phen)2(AcO)(μ�OH)(μ�OH2)]
2+ 408 173 223 84 194d 111 72

[Cu2(O2CEt)2
c(μ�OH)(dpyam)2]

+ 207 102 117 44 198e 24 73

[Cu2(O2CEt)(μ�OH)(μ�OH2)(bpy)2]
2+ 341 164 239 90 353e 149 74

[Cu2(Et5dien)2(C2O4)]
2+ �1003 �321 �622 �149 �266f �75 75

[Cu2(bpm)2(μ�OH)2]
2+ 159 184 115 94 224f 114 76

[Cu2(DMPTD)(μ-N3)(μ-Cl)Cl2] �181 101 �4 185 226f 168 77
aHeisenberg Hamiltonian Ĥ = �JŜi 3 Ŝj, where J = 2(EBS � EHS).

b L=(η5-C5H4)Fe
II(η5-C5H5).

cOne of the propionato ligands is in the monatomic
bridging mode (μ-OCOEt). dRef 96. eRef 97. fRef 98.
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from the energy difference between the HS and BS states, which
will benefit from extensive cancellation of the errors, including, in
particular, the SIE. The extent of the spurious spin delocalization
originating from the SIE is slightly different for the HS (vv) and the
BS (vV) states. As shown in Figure 3b, the local spin density on the
copper center in the HS state is larger than that in the BS state,
implying, in some sense, the incomplete cancellation of the SIE in
the two states. The inclusion of U reduces the difference sig-
nificantly. In the localization limit, the local spin density on Cu(II)
in the HS and BS states would become identical, which could be
reached by using a very large U. The latter, however, is also un-
physical considering that in reality the magnetic moments in these
transition-metal complexes are not really local. In other words, the
intersite magnetic interaction characterized by the finite J origi-
nates from the chemical bonding that relies on the overlap of
orbitals on neighboring atoms, i.e., delocalization of electrons. An
alternative approach to cancel the SIE is proposed by Rudra et al.98

in a constrained DFT formalism, in which a binuclear magnetic
molecule is divided into two fragments, and J is obtained in terms
of eq 4 with the total spin in each fragment fixed to the same value
in the HS and BS states. We note, however, that this approach,
although physically very sound, might suffer from the drawback
that the selection of fragments is not uniquely defined.

4. CONCLUDING REMARKS

In summary, we have investigated the performance of theDFT+U
method for the description of both intra-atomic and interatomic
spin interaction, the former characterized by the low spin-high
spin energy splitting (ΔEH-L) and the latter by the exchange
coupling constant J. We found that LDA+U can reproduce the
experimental results in both the electronic and the structural
aspects of the SCO compounds. GGA+U approach consistently
predicts the exchange coupling constants that are well in agree-
ment with experiment. The comparison with more sophisticated
hybrid functionals further confirms the reliability and the applic-
ability of DFT+U approach for the simulation of the SCO sys-
tems and the exchange couplings. In addition, we have inter-
preted the effect ofU through the local spin density analysis. The
Hubbard U imposes the localization of magnetic orbitals and
therefore reduces the overestimated energy splitting between
different spin states provided by LDA or GGA.

We close the paper by a few general comments on the DFT+U
approach for molecular magnetic systems. As we have shown in
this work, the DFT+U approach is quite effective to overcome

the delocalization error of LDA or GGA for the description of
localized d states in transition-metal complexes. It has the advan-
tage of giving a clear physical picture as well as delivering reason-
able accuracy for both intra- and interatomic spin interactions that
is comparable to the hybrid functionals approaches. On the other
hand, the results from DFT+U depend on U quite strongly. By
varying U, electronic states on magnetic centers can change from
strongly localized to significantly delocalized. In practice, it is often
tempting to useU as an adjustable parameter that makes up for all
the possible limitations and uncertainties arising from theoretical
models, xc functionals, geometries, and basis sets as well as error
bars in experimental data.We adopt a different strategy and choose
U based on physical consideration without fitting the target pro-
perties under study. In other words, the Hubbard U is intro-
duced mainly to correct the SIE among localized d-electrons. The
performance of DFT+U with a particular choice of LDA or GGA
then depends not only on the value ofU but also on the accuracy of
the LDAorGGA for other aspects than the description of localized
d states. In this case, it is crucial to establish the overall perfor-
mance of the DFT+U approach for the properties of interest,
based on which reliable prediction can be made, and possible
errors can also be estimated. In this work, we have chosen a fixedU
for the same transition-metal ion disregarding the different nature
of ligands and oxidation states. This is a reasonable first approx-
imation, but a more accurate treatment requires considering the
effects of changing chemical environments on the value of U,
which can be taken into account by using the constrained DFT
approach for the determination of U.38,86�88
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ABSTRACT: The nature of vibrational anharmonicity has been examined for the case of small water clusters using second-order
vibrational perturbation theory (VPT2) applied on second-order Møller�Plesset perturbation theory (MP2) potential energy
surfaces. Using a training set of 16 water clusters (H2O)n=2�6,8,9 with a total of 723 vibrational modes, we determined scaling factors
that map the harmonic frequencies onto anharmonic ones. The intermolecular modes were found to be substantially more
anharmonic than intramolecular bending and stretchingmodes. Due to the varying levels of anharmonicity of the intermolecular and
intramolecular modes, different frequency scaling factors for each region were necessary to achieve the highest accuracy.
Furthermore, new scaling factors for zero-point vibrational energies (ZPVE) and vibrational corrections to the enthalpy (ΔHvib)
and the entropy (Svib) have been determined. All the scaling factors reported in this study are different from previous works in that
they are intended for hydrogen-bonded systems, while others were built using experimental frequencies of covalently bonded
systems. An application of our scaling factors to the vibrational frequencies of water dimer and thermodynamic functions of 11 larger
water clusters highlights the importance of anharmonic effects in hydrogen-bonded systems.

1. INTRODUCTION

It has long been recognized that comparison of calculated
harmonic vibrational frequencies (ω) with observed fundamen-
tal frequencies (ν) requires an empirical correction to account for
vibrational anharmonicity and inherent errors in the electronic
structure calculations.1�12 There are three main reasons for
scaling calculated harmonic vibrational frequencies to approx-
imate experimental frequencies. First, scaling corrects for devia-
tion from the harmonic oscillator model as a consequence of
anharmonicity. The deviation could be mild in the case of high-
frequency stretching modes where the vibrational potential
around the equilibrium geometry of the molecule is deep and
well-described by a harmonic oscillator potential. The difference
between this harmonic potential and the more appropriate
Morse potential is small, and a simple scaling factor goes a long
way in reducing the disparity between the two. However, there
are extreme cases of anharmonicity where the “vibrational”
potential has multiple shallow minima and the motion is better
described as an internal rotation, ring inversion, or a pseudorotation.13�17

This is most common in low-frequency modes and cannot be
easily remedied by introducing scaling factors. In cases where the
harmonic approximation works well, a second reason for using
scaling factors is that they can correct for the incompleteness of
the basis set and electron correlation treatment that is inherent in
the most practical quantum mechanical calculations. Scaling
factors allow one to perform vibrational frequency analysis using
a modest basis set and electron correlation method and to improve
the quality of the calculated frequencies by scaling with a prescribed
multiplicative factor. A third source of error in harmonic vibra-
tional frequencies is the coupling of differentmodes, but accounting
for these requires the calculation of coupled (as opposed to
independent normalmode) vibrational wave functions. In principle,

methods like vibrational configuration interaction (VCI)18�20

and the Huang�Braams�Bowman (HBB)21 potential can give
exact vibrational wave functions, but they are not practical for
systems with more than 10 atoms.

Anharmonic correction for rigid and semirigid systems typically
amounts to 3�5% of harmonic frequencies computed using
second-order Møller�Plesset perturbation theory (MP2) and
Becke, three-parameter, Lee�Yang�Parr (B3LYP) methods and
about 10% using Hartree�Fock (HF) methods with modest basis
sets. Errors in harmonic vibrational frequencies are systematic, and it
is possible to determine scaling factors by comparing calculated
frequencies with experimental ones.Most scaling factors reported in
the literaturemake use of large databases of experimental vibrational
frequencies to systematically improve harmonic frequencies. By
least-squares fitting of harmonic frequencies to experimental fre-
quencies, many scaling factors have been suggested for a host of
methods and basis sets. Radom et al.4,7 have obtained scaling factors
for vibrational frequencies, zero point vibrational energies (ZPVE)
and vibrational enthalpies (ΔHvib) and entropies (Svib). They
suggested different scaling factors for high- and low-frequency
modes, with the high modes being scaled by 0.95�0.97 and the
inverse of the lowmodes being scaled by 1.01�1.04 forMP2 theory
with aug-cc-pVNZ basis sets where N = D� Q. A similar work by
Sinha et al.5 suggests split scaling of fundamental modes and low-
frequencymodes. The recommended fundamental and inverse low-
frequency scaling factors forMP2 theorywere 0.9604 and 1.0999 for
the aug-cc-pVDZ basis set, 0.9557 and 1.0634 for the aug-cc-pVTZ
basis set, and 0.9601 and 1.0698 for the aug-cc-pVQZbasis set.Halls
et al.12 have determined frequency scaling factors for various
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methods along with the Sadlej pVTZ electric property basis set and
found that dual scaling improves agreement between computed and
observed vibrational frequencies better than a single uniform scaling.
Wong11 has looked at the performance of different density func-
tionals and recommended scaling factors for each. As noted by
Irikura et al.,6,8,9 even though the uncertainty in most scaling factors
is larger than typically acknowledged, empirical scaling of frequen-
cies almost universally marks an improvement over plain harmonic
ones. Nevertheless, the effectiveness of emipirical scaling is still
being debated in the literature.22�25

While the works discussed above introduce uniform or separate
scaling factors for different regions of the vibrational spectrum to
correct harmonic vibrational frequency, Borowski’s effective scaling
frequency factor (ESFF)26�28 method and Pulay’s scaled quantum
mechanical (SQM)29 force field approaches scale individual vibra-
tional frequencies or force constants depending on the nature of the
localmodes (ESFF) or the internal coordinates (SQM) contributing
to each vibrational mode. Both ESFF and SQMhave been shown to
reduce the root-mean-square (RMS) deviation between scaled
vibrational frequencies and experimental frequencies impressively
when applied for density functional methods with various basis
sets.26�28,30,31 Even though SQM has been successfully applied to
hydrogen-bonded acid dimers,30�33 its use has been limited to date.

All the empirical scaling schemes described so far are derived
from training sets of small covalently bound molecules for which
experimental frequencies are readily available.Noneof these training
sets include the experimental vibrational frequencies of even water
dimers: the prototypical hydrogen-bonded system with a resolved
vibrational spectrum. Thus, their applicability to hydrogen-bonded
systems, like water clusters, is highly questionable even though they
have been routinely employed in the literature.34�38

Each water cluster (H2O)n has 3n high-frequency intramolecular
vibrational modes corresponding to the symmetric stretch, asym-
metric stretch and bending of each monomer. As water clusters form
from individual monomers, the 6n � 6 translational and rotational
degrees of freedom of the monomers turn into low-frequency
intermolecular vibrational modes. Experimental intramolecular vi-
brational frequencies are available for (H2O)n, however the
intermolecular modes remain murky due to the coupling of low-
frequency vibrational modes with each other and rotational
degrees of freedom. Moreover, the experimental spectra are taken
with the water clusters in different matrices that shift and broaden
the spectral lines of the clusters in ways that are difficult to
interpret. Perhaps the one exception is the water dimer whose
12 experimental vibrational frequencies have been resolved with
the help of theoretical calculations.37,39�41 Therefore, in the
absence of reliable experimental intermolecular frequencies, it is
imperative that one relies on theoretical anharmonic calculations
to correct harmonic vibrational frequencies.

Many approaches have been developed to incorporate anhar-
monic effects in vibrational wave function calculations. One
popular approach is vibrational second-order perturbation the-
ory (VPT2) where anharmonic corrections are calculated from
higher (third and fourth) order derivatives of the potential energy
surface along the normal mode coordinates. The cubic and semi-
diagonal quartic force constants are calculated by finite differentia-
tion of the Hessian along the normal mode coordinates.42,43 It has
the advantage of being affordable (albeit substantially more expen-
sive than a harmonic calculation), and it is often the only practical
approach for most systems of interest. If one has analytical second
derivatives of the energy, then the necessary third and fourth
derivatives can be computed easily using finite differentiation. For

a system withNm normal modes, the cost is 2Nm + 1 times that of a
single harmonic vibrational calculation. Because each of the Hessian
calculations on the 2Nm + 1 displaced geometries can be run
separately, VPT2 calculations are amenable to parallelization. The
main drawback of VPT2 is that it is subject to the problem of near
degeneracies (resonances) just like all other perturbation theory.

In a manner analogous to electronic wave function methods,
grid-based methods start with the vibrational self-consistent field
(VSCF) approach, where each normal mode couples with all
other modes in an average way.44�46 Higher order correlation
between the modes is included via second-order perturbation
theory (VMP2), configuration interaction (VCI), or coupled-
cluster (VCC) theory. These methods give good anharmonic
frequencies for fundamental modes and overtones resulting from
them, and they can account for coupling of different modes. They
can however be expensive as they scale nonlinearly with the
number of normal modes and the number of modes being
correlated.47 The cost of a VPT2 calculation scales linearly with
the number of normal modes, and it is typically at least an order
of magnitude cheaper than VSCF and its correlation corrected
analogs. Another downside of VSCF is that it often gives un-
reasonable anharmonic frequencies for large amplitude, low-
frequency modes, like the intermolecular modes of hydrogen-
bonded systems.48�50 Aside from these two popular schemes,
harmonically coupled anharmonic oscillator (HCAO),51 ab initio
molecular dynamics,52 P_VMWCI2,53 andHBB54 have been used
to account for anharmonicity in hydrogen-bonded systems.

Most of the literature on the vibrational frequencies of water
clusters attempts to look at the red shift in the bonded O�H
stretchingmodes of gas-phase water clusters relative to the gas-phase
monomer.36,55,56 Aside from the water dimer,57 there has been little
work done on the effect of anharmonicity on vibrational modes of
water clusters. Diri at al.58 have evaluated the effect of anharmonic
correction of the binding energy and ZPVE of (H2O)n=2�6 using
MP2 and B3LYP theories with VPT2. Dunn et al.37 showed that
harmonic frequencies calculated usingHF theory aremore amenable
to scaling than those computed using MP2. Njegic and Gordon50

have looked at the effect of the anharmonicity of vibrational modes
on thermodynamic functions of small- and medium-size molecules,
including the water dimer using VSCF. They concluded that
vibrational anharmonicity and coupling of modes have a substantial
effect on the ZPVE as well as thermodynamic functions. They
suggest expressing the normalmode displacement vectors in internal
instead of Cartesian coordinates to get reasonable VSCF anharmo-
nic frequencies formodes that involve bending and torsionalmotion.
For the case of the water dimer, casting the potential energy surface
in internal coordinates improves the agreement between calculated
and experimental low-frequency modes remarkably. Correlation
corrected vibrational mean field theory (cc-VSCF) has also been
applied to hydrogen-bonded systems.48,49 Kjaergaard at al.57 have
examined the performance of VPT2, VSCF, cc-VSCF, and HCAO
for the water dimer. Their results show that VSCF, cc-VSCF, and
HCAO perform well for O�H stretches but are somewhat erratic
for intermolecularmodes. VPT2workswell for all vibrationalmodes,
even though it does not perform as well as HCAO for O�H
stretching frequencies. Begue et al.53 have benchmarked different
anharmonic approaches and found VPT2 to be consistently applic-
able to water clusters, while other approaches had many pitfalls.
Similarly, Torrent-Sucarrat et al.59 have studied the role of vibrational
anharmonicity in hydrogen-bonded complexes formed between the
hydroperoxyl radical and formic, acetic, nitric, and sulfuric acids.
They conclude that VPT2 anharmonic frequencies computed over
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B3LYP/6-31+G(d,p) and B3LYP/6-311+G(2d,2p) PES agree well
with experiment. Watanabe et al.60 used a scaled hypersphere search
(SHS) by polynomial fitting of the intramolecular potential energy
function of water clusters to get fundamental frequencies that were
very close to experimental values. A recent application of these
different anharmonic treatments to (HF)n=2�4 showed that VPT2,
VSCF, and cc-VSCF perform comparably for high-frequency
stretching modes, but the latter two were unreliable for low-
frequency intermolecular modes.47 Dykstra has looked at anharmo-
nic effects on zero point energies of weakly boundmolecular clusters
including the water dimer and trimer and concluded that the effect is
large when there are multiple minima on the intermolecular
potential energy surface.61

Low-frequency modes are generally much more anharmonic
than high-frequency ones. They also couple with each other as well
as rotational degrees of freedom, thus making theoretical treat-
ments and experimental spectral resolutions daunting. Since low-
frequency modes contribute the most to the thermal correction to
the enthalpy and entropy of a system, even small deviations in
these modes lead to large errors in free energies. As a result,
researchers have been somewhat reluctant to use calculated
harmonic frequencies to estimate free energies of weakly bound
clusters, particularly at high temperatures where the errors would
be most pronounced.62

On the basis of existing literature, VPT2 is the most appropriate
and affordable approach for evaluating the role of anharmonicity in
large water clusters. Even though recent works by Barone et al.63,64

advocate the use of density functional methods with modest basis
sets to calculate VPT2 anharmonic frequencies, we chose to use an
MP2 wave function because it has been shown to be the most
affordable and accurate method for studying water clusters. The
aug-cc-pVDZ basis set has the necessary diffuse and polarization
functions to describe hydrogen bondingwell, and it is often used to
determine optimal geometries and harmonic vibrational frequen-
cies. MP2 calculations with correlation consistent basis sets, when
extrapolated to the CBS limit, capture all the important features of
small water clusters.65�80 MP2/aug-cc-pVDZ harmonic vibra-
tional frequencies have been used for benchmark quality works
on water clusters as large as (H2O)17 due to their affordability.

80

Therefore, appropriate scaling factors for the MP2/aug-cc-pVDZ
level of theory are especially important.

In this paper, we demonstrate the need to use separate scaling
factors for intermolecular vibrational modes of hydrogen-bonded
clusters. For the commonly used MP2/aug-cc-pVDZ level of
theory, we provide a set of frequency scaling factors for harmonic
frequencies as well as the ZPVE and vibrational corrections to the
enthalpy and entropy. Using 723 VPT2 anharmonic frequencies
calculated for (H2O)n=2�6,8,9, scaling factors for the harmonic
vibrational frequencies have been determined. The intermole-
cular modes (ω < 1100 cm�1) are found to be substantially
more anharmonic than intramolecular bending (1100 cm�1 <
ω <1800 cm�1) and stretching modes (ω > 1800 cm�1),
suggesting that the use of different frequency scaling factors for
each region in correcting the harmonic vibrational modes is
appropriate. Similarly, by comparing the harmonic and anhar-
monic ZPVE, vibrational contribution to the enthalpy (ΔHvib)
and entropy (Svib), scaling factors are calculated. These different
scaling approaches are applied to the water dimer system in order
to evaluate the importance of anharmonicity and the validity of
the rigid rotor-harmonic oscillator (RRHO) model. The trans-
ferability of the recommended scaling factors to other levels of
theory and hydrogen-bonded systems is also discussed.

2. METHODOLOGY
The clusters included in this study are the water dimer (2-Cs),

trimer (3-UUD), tetramers (4-S4, 4-Ci), pentamer (5-Cyclic),
hexamers (6-Cyclic-chair, 6-Book-1, 6-Cage, 6-Prism, 6-Book-2,
6-Bag, 6-Cyclic-boat-1, 6-Cyclic-boat-2), octamers (8-D2d, 8-S4),
and one nonamer (9-D2dDD). The optimized structures are
shown in Figure 1. These 16 clusters have a total of 723 harmonic
vibrational modes. The geometry optimizations and harmonic
vibrational frequencies were computed using MP2/aug-cc-
pVDZ with analytical gradients and Hessians. To avoid numer-
ical problems in subsequent anharmonic frequency calculations,
tight convergence criteria was enforced for both the geometry
optimization and the Hessian calculations. We denote VPT2
anharmonic calculations onMP2/aug-cc-pVDZ potential energy
function as VPT2/MP2/aVDZ for the sake of brevity. For these
anharmonic calculations, the necessary third and fourth derivatives
were determined by finite differentiation of analytic Hessians with
respect to nuclear displacements along each normal mode. The
default 0.0250 Å43 step size is appropriate for rigid and semirigid
systems, but it gives erratic anharmonic frequencies for the larger
water clusters even after our geometries and energies were
converged very tightly. A step size that gave the most reasonable
anharmonic frequencies for (H2O)n=2�6,8,9 is 0.0050 Å.

One unintended consequence of using small step sizes is that it
reduced the number of resonances encountered in VPT2 calcula-
tion. One of the shortcomings of VPT2 is that it suffers in handling
Fermi (that affect modes coupled by cubic force constants) and
Darling�Dennison resonances (which affect modes coupled by
quartic force constants and Coriolis coupling constants).81We used
the default cutoffs for Fermi and Darling�Dennison resonances.
Gaussian 09 A.0282 removes resonances in an automated way as
prescribed byMartin et al.83,84All computations are performed using
the Gaussian 09 A.0282 software package on a 128-core SGI Altix
3700 Bx2. There are differences in anharmonic frequencies calcu-
lated usingGaussian 03B.02,85Gaussian 09A.02, andCFOUR.86 In
the interest of consistency, all our calculations are performed using
Gaussian 09 A.02.82

Of the 16 clusters we studied, 4 hexamers had one or more
anharmonic frequencies that are abnormally small compared to

Figure 1. The 16 water clusters included in this study.
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the harmonic analog. These outliers have individual scaling
factors (λi = νi/ωi) that lie outside of three standard deviations
(σ) from the average λ of each class. Since these anomalous
frequencies introduce large uncertainty, they have been removed
from the scaling scheme. Scaling factors are calculated in a
manner that is partly different from previous works.3�5,7 First,
while others have used the inverse of frequencies to calculate
scaling factors for low-frequency modes, we find such an
approach to massively skew the scaling factors toward those of
the lowest (and most error prone) frequency modes. Scaling the
inverse of the frequency may be appropriate for covalently
bonded systems where the anharmonicity rarely exceeds 10%
even for low-frequency modes, but it gives unreasonably low-
scaling factors and large errors when applied to the highly
anharmonic intermolecular modes of our water clusters. Since
we preemptively separate low-frequency intermolecular modes
into their own class, deriving the frequency scaling factors using
the normal frequencies works reasonably well. Second, the
ZPVE scaling factors in our case are determined by scaling the
harmonic ZPVE against an estimate of the true ZPVE in a
manner suggested by Barone et al.42 Third, to get scaling factors
for ΔHvib and Svib, previous works used least-squares fitting of
frequencies to minimize the residual between the experimental
and theoreticalΔHvib and Svib. We have looked at two approaches:
(a) scaling the harmonic ΔHvib and Svib against their anharmonic
analogs directly and (b) determining frequency scaling factors that
minimize the residual ofΔHvib and Svib. Themerits and downsides
of both approaches are discussed.

3. RESULTS AND DISCUSSION

3.1. Classification of Vibrational Frequencies. Each water
cluster (H2O)n has 2n high-frequency intramolecular stretching
modes, n intramolecular bending modes, and 6n � 6 low-
frequency intermolecular modes. In this study, there are 723
vibrational modes of which 182 correspond to monomer stretch-
ing, 91 to monomer bending, and 450 to low-frequency inter-
molecular motion. Removing a few anomalous anharmonic
frequencies leaves us with 703 vibrational frequencies of which
435, 271, 88, and 178 are intermolecular, intramolecular, bend-
ing, and stretching modes, respectively. As illustrated in Figure 2,
the distribution of the ratio of anharmonic to harmonic frequen-
cies (λ = νf/ωh) for the water clusters in this study shows three

distinct groupings. The stretching modes which lie above
3000 cm�1 are not particularly anharmonic; as can be seen from
the λ∼ 0.95, one would need to match the harmonic frequencies
to the fundamentals. The bending modes are even less anhar-
monic, needing a scaling factor of λ ∼ 0.97 to match funda-
mentals. In contrast, the low-frequency intermolecular modes
have a larger and more spread anharmonicity. Figure 2 demon-
strates the need to use separate multiplicative factors to scale
the different classes of frequencies. Johnson et al.9 outline the
three conditions that need to be met to form a class of
frequencies as “(1) the bias (λ) for the target frequency is
believed to be of similar value to those in the class; (2) the
(estimated) biases in the class have an approximately normal and
acceptably narrow distribution; (3) the number of vibrational
frequencies in the class is reasonably large.” Our grouping of the
water clusters frequencies into two or three classes satisfies the
conditions listed above. The frequencies can be classified into
intermolecular (ωh < 1100 cm�1) and intramolecular (ωh >
1100 cm�1) modes, and that scheme will be designated as two-
split scaling. Alternatively, the frequencies can be grouped into
intermolecular (ωh < 1100 cm�1), bending (1100 cm�1 < ωh <
1800 cm�1), and stretching (ωh > 1800 cm�1)modes, in a scheme
we will call three-split scaling. A comparison of uniform scaling
with the two- and three-split scaling schemes is performed below.
3.2. Scaling Vibrational Frequencies. Given NMP2/aVDZ

harmonic frequencies (ωh) and VPT2/MP2/aVDZ anharmonic
fundamental frequencies (νf), an optimal scaling factor, λ can be
found by using the least-squares procedure minimizing the
residual (Δ) which is defined as

Δ ¼ ∑
N

i¼ 1
ðλωh

i � νfi Þ2 ð1Þ

The λ that minimizes the residual is

λ ¼
∑
N

i¼ 1
ωh

i ν
f
i

∑
N

i¼ 1
ðωh

i Þ2
ð2Þ

How well this scaling factor improves the harmonic frequen-
cies is assessed by evaluating the root-mean-square error
(RMSE) of the scaled frequency relative to the anharmonic
fundamental:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N ∑

N

i¼ 1
ðλωh

i � νfi Þ2
s

RMSE ¼
ffiffiffiffi
Δ

N

r ð3Þ

The uncertainty associated with the scaling factor λ is a critical
measure of the confidence and applicability of the scaling
scheme, as shown repeatedly by Irikura et al.6,8,9 The uncertainty
σ(λ) is defined as

σðλÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ

∑
N

i¼ 1
ðωh

i Þ2

vuuut ð4Þ

As noted already, there are many ways to calculate frequency
scaling factors. Table 1 shows the scaling factors for uniform,
two- and three-split scaling schemes for each separate water

Figure 2. The differing anharmonicity in the three classes of VPT2/
MP2/aug-cc-pVDZ vibrational modes of water clusters (H2O)2�6,8,9.
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cluster and all 15 clusters combined. The individual scaling
factors do not vary substantially among the clusters, with the
dimer and the trimer being slight outliers. The overall scaling
factors are given in Table 2. Applying a uniform scaling factor of
0.948 ( 0.019 leads to an RMSE of 39 cm�1. It is clear that the
high-frequency stretching modes are dominating this scaling
factor, as evidenced by the scaling factor of 0.949 ( 0.007 we get
just for the stretching modes alone. In the two-split scaling scheme,
we get a scaling factor of 0.876( 0.036 for the 435 intermolecular
modes and 0.950 ( 0.012 for the 271 intramolecular modes. The
larger uncertainty in the intermolecular scaling factor is due to the
diverse range of anharmonicity in the low-frequency modes, as can
be seen in the frequency range ωh < 1100 cm�1 in Figure 2. The
RMSE of the two-split scaling scheme is lower than that of the
uniform scaling. In the three-split scaling, we derive values of 0.876

( 0.036 for the 435 intermolecularmodes, 0.975( 0.010 for the 88
intramolecular bending modes, and 0.949 ( 0.007 for the 178
intramolecular stretching modes. The RMSE for this scheme is
lower than that of the uniform and two-split scaling approaches. The
distribution of the error in each scheme, defined as the difference
between the scaled harmonic and anharmonic frequency, is shown
in Figure 3. Figure 3a shows that the harmonic frequencies exceed
anharmonic ones by asmuch as 260 cm�1, and the error distribution
is large. Applying the scaling schemes substantially improves the
agreement with the anharmonic frequencies, as illustrated in
Figure 3b. The three-split scaling has the lowest average error and
narrowest error distribution.
Our scaling factors for the intramolecularmodes (0.950( 0.012)

in the two-split scaling scheme are comparable to those in the
literature which are constructed by least-squares fitting of theoretical

Table 1. Individual Scaling Factors for MP2/aug-cc-pVDZ Harmonic Frequencies Relative to VPT2/MP2/aug-cc-pVDZ
Anharmonic Frequencies of (H2O)n=2�6,8,9

uniform two-split scaling three-split scaling

λ (all) λ (ω < 1100) λ (ω > 1100) λ (ω < 1100) λ (1100 < ω < 1800) λ (ω > 1800)

2-Cs 0.954 0.831 0.955 0.831 0.972 0.953

3-UUD 0.951 0.811 0.955 0.811 0.970 0.953

4-Ci 0.952 0.875 0.955 0.875 0.976 0.952

4-S4 0.952 0.878 0.954 0.878 0.980 0.952

5-Cyclic 0.950 0.880 0.952 0.880 0.972 0.950

6-Cyclic-chaira 0.950 0.876 0.953 0.876 0.971 0.951

6-Book-1 0.950 0.880 0.953 0.880 0.979 0.950

6-Cage 0.948 0.864 0.951 0.864 0.974 0.949

6-Prism 0.947 0.872 0.950 0.872 0.983 0.946

6-Book-2a 0.947 0.878 0.949 0.878 0.969 0.947

6-Bag 0.947 0.876 0.950 0.876 0.975 0.947

6-Cyclic-boat-1a 0.949 0.864 0.952 0.864 0.967 0.951

6-Cyclic-boat-2a 0.949 0.863 0.952 0.863 0.964 0.950

8-S4 0.944 0.888 0.946 0.888 0.982 0.943

8-D2d 0.944 0.885 0.947 0.885 0.983 0.943

9-D2dDD
a 0.944 0.884 0.946 0.884 0.978 0.943

overall 0.948 0.876 0.950 0.876 0.975 0.949
aHave individual scaling factors (λi = νi /ωi) that lie outside 3σ of the average λ.

Table 2. Collective Scaling Factors for MP2/aug-cc-pVDZ Harmonic Frequencies Relative to VPT2/MP2/aug-cc-pVDZ
Anharmonic Frequencies of (H2O)n=2�6,8,9

a

nature of mode scaling factor (λ) uncertainty [σ(λ)] RMSE (cm�1)

Uniform Scaling

λ (all) all 0.948 0.019 39

Two-Split Scaling

λ (ω < 1100) intermolecular 0.876 0.036 17

λ (ω > 1100) intramolecular 0.950 0.012 36

Three-Split Scaling

λ (ω < 1100) intermolecular 0.876 0.036 17

λ (1100 < ω < 1800) intramol. bending 0.975 0.010 17

λ (ω > 1800) intramol. stretching 0.949 0.007 25
aUsing 703, 435, 271, 88, and 178 frequencies for all, intermolecular, intramolecular, bending, and stretching modes, respectively, after removing
outlying frequencies from an initial set of 723, 450, 273, 91, and 182 modes.
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harmonic vibrational frequencies to experimental fundamental
frequencies of covalently bonded molecules. For the MP2/aVDZ
level of theory, Merrick et al. report scaling factors of 0.9615 and
0.9614 for fundamental frequencies using the F1 and F100 set of
frequencies.7 Sinha et al. similarly recommend a scaling factor of
0.9604 based on a database of 41 common organic molecules.5

There are two reasons for the slight differences between our scaling
factors and those from the literature. First, we are comparing
harmonic frequencies against calculated anharmonic frequencies,
while the literature references compare against experimental funda-
mental frequencies. Second, we are using a database of hydrogen-
bonded water clusters, while those in the literature rely on a set of
small covalently bonded molecules.
The most stark difference between our scaling scheme and

others is the scaling factor for the low-frequency intermolecular
modes. Merrick et al. use inverse frequency scaling and obtain
scaling factors of 1.0418 and 1.0338 for the F1 and F100 set of
frequencies for the MP2/aVDZ level of theory.7 Using the same
approach on a database of 41 organic molecules, Sinha at al. get
scaling factors for MP2/aVDZ low frequencies (ωh < 1000 cm�1)
of 1.0999.5 We did not use inverse frequency scaling because it is
unduly biased toward the lowest frequency modes which are very
anharmonic and error prone. For the database of covalently bonded
molecules that Merrick and Sinha used, the level of anharmonicity in

the lowest frequencymodes is not as severe as ours. So, it wouldmake
sense to use an inverse frequency scaling factor to overcome the
dominance of the high-frequencymodes in the direct scaling scheme.
We circumvent that dominance by grouping our frequencies into
three classes and determining separate scaling factors for each class.
3.3. Scaling of ZPVE. Provided how important quantum me-

chanical ZPVE corrections are to most chemical systems, a proper
scaling factor for ZPVEs is crucial. As demonstrated by Grev et al.,2

ZPVE scaling factors are different from plain frequency scaling factors
due to the presence of anharmonicity. The harmonic and funda-
mental ZPVE for a molecule withNm vibrational modes are given by

ZPVEh ¼ 1
2 ∑

Nm

i¼ 1
ωh

i ð5Þ

ZPVEf ¼ 1
2 ∑

Nm

i¼ 1
νfi ð6Þ

Since our calculated anharmonic fundamental corresponds to the
ν(0f1) transition frequency and not the energy of ν(0), we cannot
get the anharmonic ZPVE by simply plugging the fundamental
frequency into the ZPVE expression in eq 6. The true ZPVE lies
somewhere in between ZPVEh and ZPVEf and various approxima-
tions to it have been given in the literature.2,87 A commonly used
estimate of the true ZPVE is

ZPVE ¼ χ0 þ 1
2
ðZPVEh þ ZPVEf Þ � 1

4 ∑
Nm

i¼ 1
χii ð7Þ

where χ0 is a small anharmonic correction and χii are the diagonal
elements of the anharmonicity matrix. With an estimate of the true
ZPVE in hand, we can derive a scaling factor that maps the harmonic
ZPVE to it. For a database of Nmols molecules, the residual of the
harmonic and true ZPVE is

Δ ¼ ∑
Nmols

i¼ 1
ðλðZPVEhi Þ � ZPVEiÞ2 ð8Þ

The λ that minimizes the residual is

λ ¼
∑
Nmols

i¼ 1
ðZPVEhi ÞðZPVEiÞ

∑
Nmols

i¼ 1
ðZPVEhi Þ2

ð9Þ

The RMSE and uncertainty are then given by

RMSE ¼
ffiffiffiffiffiffiffiffiffi
Δ

Nmols

s
ð10Þ

σðλÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ

∑
Nmols

i¼ 1
ðZPVEhi Þ2

vuuut ð11Þ

The anharmonic fundamental (νi
f), χ0, and χii terms can be

determined from the quadratic, cubic, and semidiagonal quartic
force constants calculated using VPT2. Of the 16 clusters in our
training set, we have removed 5 because they had one or more
abnormally low anharmonic frequencies. For the remaining 11
water clusters, Table 3 shows the scaling factor for each cluster
and the set overall. All the scaling factors are in a narrow range

Figure 3. Error distribution of unscaled (a) and scaled (b) MP2/aVDZ
harmonic vibrational frequencies of (H2O)2�6,8,9 relative to VPT2/
MP2/aVDZ anharmonic frequencies. Please note that different abscissa
scales are used in (a) and (b).
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between 0.97 and 0.98. Our overall scaling factor of 0.976( 0.002
is close to the 0.9675

5

and 0.98787 reported in the literature from
databases of small covalently bonded molecules. Considering
that ZPVE is dominated by high-frequency modes, the proxi-
mity between our scaling factors and those from the literature
(which have a larger number of high-frequency modes) is not
surprising.
3.4. Scaling of Vibrational Corrections to the Enthalpy and

Entropy. Given the vibrational energy levels of a molecule, we
can calculate the vibrational partition function Qvib(T) and the

finite temperature vibrational correction to the enthalpy
[ΔHvib(T) = Hvib(T) � Hvib(0)] and entropy [Svib(T)]. The
vibrational and rotational contributions to the partition function
employ the canonical rigid rotor-harmonic oscillator (RRHO)
equations.15,88 In the harmonic oscillator model, the vibrational
energy levels of each mode are evenly spaced, and we can get
compact expressions for Qvib(T) and the finite temperature
corrections:

Qvib ¼
Y
i

1
1� e�μi

� �
ð12Þ

ΔHvibðTÞ ¼ RT∑
i

μi
eμi � 1

� �
ð13Þ

SvibðTÞ ¼ R∑
i

μi
eμi � 1

� lnð1� e�μiÞ
� �

ð14Þ

where μi = pcωi/kBT, R is the universal gas constant, p is Planck’s
constant, c is the speed of light, andωi is the harmonic frequency in
wavenumbers. The anharmonic partition function is not amenable
for such simplifications, and it has terms that include the anharmo-
nicity constant. Anharmonic energy levels are not evenly spaced as is
the case for a harmonic oscillator. One would need to sum over all
the anharmonic energy levels to calculate the partition function, but
the perturbation theory is prone to failures in predicting higher
vibrational energy levels. To overcome these limitations, Truhlar
and Isaacson89 have proposed an approximation called simple
perturbation theory (SPT) which retains a form like the harmonic
expression above but uses anharmonic frequencies and ZPVEs:

Qvib ¼
exp

�ZPVE
kBT

� �
Q
i
ð1� e�μiÞ ð15Þ

where μi = pcνi/kBT, p is Planck’s constant, c is the speed of light,
νi is the anharmonic frequency in wavenumbers, and ZPVE is the
true zero point vibrational energy correction shown in eq 7. SPT has
been shown to compare well with methods summing over anhar-
monic energy levels for linear and nonlinear molecules in the small
anharmonicity limit.81,89�91 In modes like torsions, ring inversions,
and internal rotations where the vibrational potential differs mark-
edly from that of a single well harmonic oscillator, the SPT
approximation will not work well. Kurt�en et al.92 have recently
generalized the solution to a one-dimensional system in the small
anharmonicity limit to n-dimensions and successfully applied it to
(H2SO4)(H2O)n=1�2 and (HSO4

�)(H2O)n=1�2. Their more
complicated anharmonic expressions contain terms including the
anharmonicity constant, and they do predict vibrational enthalpies
and entropies that differ substantially from those of SPT for
hydrogen-bonded systems. Nevertheless, since their expressions
have not been rigorously tested on a variety of systems, we will use
the SPT approximation here. The SPT thermal corrections to
the enthalpy and the entropy look similar to their harmonic analogs
except we use the fundamental frequency (μi = pcνi/kBT) in
this case:

ΔHvibðTÞ ¼ RT∑
i

μi
eμi � 1

� �
ð16Þ

Table 3. Scaling Factors for the MP2/aug-cc-pVDZ
Harmonic ZPVE of Water Clustersa,b

ZPVEharmonic ZPVEanharmonic c ZPVEanharmonic/ZPVEharmonic

2-Cs 28.88 28.23 0.978

3-UUD 45.50 44.31 0.974

4-Ci 61.59 60.19 0.977

4-S4 61.78 60.27 0.976

5-Cyclic 77.36 75.40 0.975

6-Book-1 93.59 91.20 0.974

6-Cage 93.96 91.48 0.974

6-Prism 94.16 91.78 0.975

6-Bag 93.38 90.95 0.974

8-S4 127.57 124.76 0.978

8-D2d 127.57 124.90 0.979

λ 0.976

σ(λ) 0.002

RMSE/cluster 0.18
a Four hexamers (Cyclic-chair, Book-2, Cyclic-boat-1, and Cyclic-boat-2)
and the D2dDD nonamer are excluded because they had individual
scaling factors (λi = νi /ωi) that lie outside 3σ of the average λ.

b In kcal/
mol. c Estimate of the true ZPVE calculated using eq 7.

Table 4. Scaling Factors for the MP2/aug-cc-pVDZ
Harmonic ΔHvib(298.15 K) of Watera

ΔHvib
h

(298.15 K)a
ΔHvib

f

(298.15 K)a
ΔHvib

f/ΔHvib
h

(298.15 K)

2-Cs 1.92 2.10 1.096

3-UUD 3.03 3.49 1.154

4-Ci 4.51 5.01 1.112

4-S4 4.40 4.82 1.096

5-Cyclic 6.27 6.95 1.109

6-Book-1 7.74 8.49 1.096

6-Cage 7.51 8.39 1.118

6-Prism 7.46 8.33 1.117

6-Bag 7.82 8.70 1.112

8-S4 9.75 10.71 1.098

8-D2d 9.75 10.69 1.097

λH 1.106

σ(λH) 0.011

RMSE/clusterb 0.07
a Four hexamers (Cyclic-chair, Book-2, Cyclic-boat-1, and Cyclic-boat-2)
and the D2dDD nonamer are excluded because they had individual scaling
factors (λi = νi /ωi) that lie outside 3σ of the average λ. b In kcal/mol.
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SvibðTÞ ¼ R∑
i

μi
eμi � 1

� lnð1� e�μiÞ
� �

ð17Þ

There are two approaches to determine appropriate scaling factors
for ΔHvib(T) and Svib(T). One can calculate the harmonic and
anharmonicΔHvib(T) and Svib(T) for each molecule first and seek
scaling factors (λH and λS) that minimize the residuals:

ΔH ¼ ∑
Nmols

i¼ 1
½λHΔHvib, iðT,ωhÞ �ΔHvib, iðT, νf Þ�2 ð18Þ

ΔS ¼ ∑
Nmols

i¼ 1
½λSSvib, iðT,ωhÞ � Svib, iðT, νf Þ�2 ð19Þ

This method is easy to apply, and below is an analytic form for the
scaling factors:

λH ¼
∑
Nmols

i¼ 1
ΔHvib, iðT,ωhÞΔHvib, iðT, νf Þ

∑
Nmols

i¼ 1
½ΔHvib, iðT,ωhÞ�2

ð20Þ

λS ¼
∑
Nmols

i¼ 1
Svib, iðT,ωhÞSvib, iðT, νf Þ

∑
Nmols

i¼ 1
½Svib, iðT,ωhÞ�2

ð21Þ

The RMSE and uncertainty in the scaling factors are calculated
simply:

RMSEH ¼
ffiffiffiffiffiffiffiffiffiffi
ΔH

Nmols

s
ð22Þ

RMSES ¼
ffiffiffiffiffiffiffiffiffiffi
ΔS

Nmols

s
ð23Þ

σðλHÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔH

∑
Nmols

i¼ 1
½ΔHvib, iðT,ωhÞ�2

vuuut ð24Þ

σðλSÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔS

∑
Nmols

i¼ 1
½Svib, iðT,ωhÞ�2

vuuut ð25Þ

Please note that the thermal correction to the enthalpy here
excludes the ZPVE, since the ZPVE has been scaled separately in
the previous subsection. Here ΔHvib(T) = Hvib(T) � Hvib(0).
Since the ZPVE makes up a large part of the Hvib(T) at most
relevant temperatures, scaling Hvib(T) would closely resemble
scaling of theZPVE.Thus, we are scaling the vibrational correction
to the enthalpy excluding the ZPVE.
Table 4 shows the scaling factors for ΔHvib(T) determined

using the procedure above. With the exception of the water trimer,
the ratio of anharmonic to harmonicΔHvib(298.15 K) is between
1.09 and 1.11. A scaling factor exceeding unity makes sense here
because harmonic vibrational frequencies and ΔHvib(T) have an
inverse relationship; as we scale down the harmonic frequencies,

the ΔHvib(T) is scaled up. The overall scaling factor of 1.106 (
0.011 works well as evidenced by the RMSE of 0.07 kcal/mol for
the 11 clusters in this study. Table 5 shows the scaling factor for
Svib(298.15 K) for the individual clusters and the collective group.
All the scaling factors lie within the range of 1.12�1.21. Consider-
ing how sensitive the entropy is to the low-frequency modes
(which are scaled down by 0.876), it should not come as a surprise
that the entropy is scaled up by 10�20%. The overall scaling factor
for this scheme is 1.150( 0.021 with an RMSE of 0.95 cal/mol/K.
The approach just outlined for scaling ΔHvib(T) and Svib(T)

has the advantage that it gives a simple multiplicative factor that
can be applied directly to harmonic ΔHvib(T) and Svib(T). An
alternative approach that has been advocated in the literature
seeks frequency scaling factors that minimize the residuals:

ΔH ¼ ∑
N

i¼ 1
½ΔHvibðT, λHωh

i Þ �ΔHvibðT, νfi Þ�2 ð26Þ

ΔS ¼ ∑
N

i¼ 1
½SvibðT, λSωh

i Þ � SvibðT, νfi Þ�2 ð27Þ

There is no analytic expression for the scaling factors, and they
have to be determined numerically. The RMSE and uncertainty
in the scaling factors are calculated in the same way as frequencies
and ZPVEs. Along the same lines, it would make sense to
separate the vibrational modes into three classes and scale each
group independently. However, the vibrational corrections to
both the enthalpy and entropy are overwhelmingly dominated by
the low-frequencymodes. Figure 4 shows a plot ofΔHvib(298.15K)
and Svib(298.15 K) as a function of vibrational frequency.
Vibrational modes of frequency exceeding 1100 cm�1 (i.e.,
intramolecular modes) make a very minimal contribution to
ΔHvib(298.15 K) and Svib(298.15 K). The contribution of the
intramolecular modes to the enthalpy and entropy for small
water clusters is typically around 1%, which is below 0.1 kcal/

Table 5. Scaling Factors for the MP2/aug-cc-pVDZ Harmo-
nic Svib(298.15 K) of Water Clustersa,b

Svib
h(298.15 K)b Svib

f(298.15 K)b Svib
f(298.15 K)/Svib

h(298.15 K)

2-Cs 12.17 13.95 1.147

3-UUD 17.59 21.24 1.207

4-Ci 29.16 33.16 1.137

4-S4 27.37 30.63 1.119

5-Cyclic 43.06 50.06 1.163

6-Book-1 52.37 59.84 1.143

6-Cage 48.19 56.21 1.166

6-Prism 47.44 55.44 1.169

6-Bag 52.94 62.54 1.181

8-S4 61.33 69.49 1.133

8-D2d 61.20 68.87 1.125

λS 1.150

σ(λS) 0.021

RMSE 0.945
a Four hexamers (Cyclic-chair, Book-2, Cyclic-boat-1, and Cyclic-boat-
2) and the D2dDD nonamer are excluded because they had individual
scaling factors (λi = νi /ωi) that lie outside 3σ of the average λ. b In cal/
mol/K.
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mol. So, it is not necessary to separate the frequencies into classes
and scale them differently.
Since low-frequency modes are the dominant contributors to

ΔHvib and Svib, the frequency scaling factors that minimizeΔHvib

and Svib residuals are similar to the scaling factor for low-
frequency modes. Tables 6 and 7 show the frequency scaling
factors for ΔHvib and Svib at temperatures ranging from 50 K to
373.15 K. At low temperatures, there is only enough thermal
energy to populate all the ground vibrational levels of all the
modes and the excited vibrational levels of the low-frequency
modes. So, we see ΔHvib and Svib frequency scaling factors that
reflect the scaling factor for low-frequency modes (0.876). As
more thermal energy is available at higher temperatures, the
excited vibrational levels of more modes start contributing, and
the ΔHvib and Svib frequency scaling factors increase. At tem-
peratures below 373.15 K, the ΔHvib and Svib frequency scaling
factors are less than 0.870 and 0.845, respectively.
The uncertainty in theΔHvib frequency scaling factors is large,

particularly at low temperatures, but the RMSE is very small. For
the Svib frequency scaling factors, both the uncertainty and the
RMSE are small. Our scaling factors differ significantly from
those in the literature which are intended for covalently bonded
systems. Unlike ourΔHvib(298.15 K) frequency scaling factor of
0.866 ( 0.040, Sinha et al.5 and Merrick et al.7 report values of
0.9473 and 1.0359, respectively. Our Svib(298.15 K) frequency
scaling factor of 0.841 ( 0.016 is different from Sinha et al.’s5

0.9049 andMerrick et al.’s7 1.0452, respectively. Our RMSE is in
general comparable to the two cited above.
The two approaches we have used to scale ΔHvib and Svib

(scalingΔHvib and Svib themselves or the vibrational frequencies
that enter the ΔHvib and Svib expressions) are equivalent, but
scaling the frequencies is advocated in this case because that
approach is more rigorous. It also happens to be the approach
taken by others in the literature.4,5,7

3.5. Assessment of the Scaling Factors.The performance of
the scaling factors reported above is evaluated in twoways. First, the
vibrational scaling factors are applied to the water dimer, and the
resulting vibrational frequencies are compared with experimental,

harmonic, and anharmonic frequencies. While the small RMSEs
reported in Table 2 and the narrow error distribution shown in

Table 6. Frequency Scaling Factors for ΔHvib(T) for Water
Clusters at the MP2/aug-cc-pVDZ Level of Theorya

T (K) scaling factor (λH) uncertainty [σ(λH)] RMSE (kcal/mol)

50 0.806 0.117 0.00

100 0.835 0.087 0.00

150 0.851 0.069 0.01

200 0.860 0.055 0.01

250 0.865 0.045 0.01

273.15 0.866 0.042 0.01

298.15 0.868 0.039 0.01

300 0.868 0.039 0.01

350 0.871 0.034 0.01

373.15 0.872 0.033 0.01
aUsing 703 frequencies after removing outliers from an initial set of 723
frequencies.

Table 7. Frequency Scaling Factors for Svib(T) for Water
Clusters at the MP2/aug-cc-pVDZ Level of Theorya

T (K) scaling factor (λS) uncertainty [σ(λS)] RMSE (cal/mol/K)

50 0.790 0.040 0.06

100 0.815 0.028 0.08

150 0.828 0.023 0.09

200 0.836 0.020 0.10

250 0.841 0.018 0.10

273.15 0.843 0.017 0.11

298.15 0.844 0.016 0.11

300 0.844 0.016 0.11

350 0.847 0.015 0.11

373.15 0.848 0.014 0.11
aUsing 703 frequencies after removing outliers from an initial set of 723
frequencies.

Figure 4. ΔHvib and Svib as a function of frequency atT = 298.15 K. Low-frequencymodes contribute most greatly toΔHvib (left axis) and Svib (right axis).
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Figure 3 speak to the reliability of our scaling approach, a com-
parison with experimental frequencies answers questions about
the validity of using calculated anharmonic frequencies as proxies
for experimental ones. Second, the ZPVE,ΔHvib, and Svib scaling
factors are applied to 11 water clusters, and their effectiveness in
reproducing anharmonic numbers is assessed.
3.5.1. Vibrational Scaling Factors Applied to (H2O)2.Thewater

dimer is a prototypical hydrogen-bonding system that has been the
subject of extensive theoretical and experimental investigations. It
remains the only water cluster for which all the experimental
vibrational frequencies are available. Thus, it serves as an ideal
system for assessing the performance of the harmonic, anharmo-
nic, and scaled harmonic approaches outlined in Section 3.2.
A comparison of the theoretical harmonic and anharmonic

frequencies and intensities of the water dimer against the experi-
mental analogs has been performed by the research groups of
Shields,37 Jordan,58 and Kjaergaard57 among others. We perform a
similar assessment on the MP2/aVDZ frequencies and scaling
schemes in Table 8. The RMSE in the harmonic frequencies relative
to experiment is large (98 cm�1), but scaling it by different factors
brings sizable improvements. As discussed earlier, using uniform
scaling factors does not correct for the varying anharmonicity in the
harmonic frequencies. Using the two- and three-split scalings gives
substantially better agreement with experiment, with RMSEs of 41
and 36 cm�1, respectively. The experimental frequencies are closer
to the anharmonic frequencies (RMSE = 25 cm�1) than they are to
the harmonic ones (RMSE = 98 cm�1). That observation further
validates our decision to use calculated anharmonic frequencies as
proxies for experimental frequencies. In the case of larger water
clusters whose vibrational spectra are not resolved fully, calculated
anharmonic frequencies serve an indispensible role.
3.5.2. ZPVE, ΔHvib, and ΔSvib Scaling Factors Applied to

(H2O)n=2�6,8. Here, we want to evaluate: (a) the ability of our
scaling factors to map harmonic values onto anharmonic ones and
(b) the magnitude of the anharmonic correction to the ZPVE,

ΔHvib, and Svib. The scaled harmonic ZPVE is calculated by
multiplying the harmonic ZPVE by 0.976 (see Table 3), while
the harmonic and anharmonic values are determined using eqs 5
and 7, respectively. For ΔHvib and Svib, the harmonic and
anharmonic values are computed using eqs 16 and 17. The scaled
harmonic values require proper frequency factors forT= 298.15K.
Looking at Tables 6 and 7, those factors are λH = 0.868 and λS =
0.844 for ΔHvib and Svib. The harmonic frequencies are scaled by
these factors before being input into eqs 16 and 17 to get the scaled
harmonic ΔHvib and Svib.
Figure 5a�c displays a comparison of ZPVE,ΔHvib(298.15 K),

and Svib(298.15 K) for 11 water clusters. It is quite evident
that application of our scaling factors works remarkably well
in mapping the harmonic values to their anharmonic analogs.
Starting with the ZPVE, the largest absolute difference between
the scaled harmonic and anharmonic value is only 0.39 kcal/mol
for the S4 octamer. This difference is small compared to the
largest absolute difference between the harmonic and anhar-
monic ZPVE, which is 2.82 kcal/mol for the same S4 octamer.
The absolute difference between the scaled harmonic and anhar-
monic ZPVE ranges from 0.05 to 0.39 kcal/mol, while that between
the harmonic and anharmonic values is 0.65 to 2.82 kcal/mol.
Considering the magnitude of the ZPVE spans ∼28 kcal/mol for
the water dimer to ∼125 kcal/mol for the octamer, the scaled
harmonic value is matching the anharmonic one within 0.5% or less.
For ΔHvib(298.15 K), we again see that our scaled harmonic

value agrees remarkably well with the anharmonic value. The
absolute difference between the scaled harmonic and anharmo-
nic values ranges from 0.01 to 0.16 kcal/mol, while that between
the harmonic and anharmonic values is 0.18 to 0.96 kcal/mol.
Likewise, our scaled harmonic Svib(298.15 K) is in great agree-
ment with the anharmonic values. The absolute difference
between the scaled harmonic and anharmonic value is in the
range of 0.01�2.68 cal/mol/K, while the harmonic and anhar-
monic values differ by as much as 9.60 cal/mol/K.

Table 8. Comparison of Calculated Harmonic,a Scaled Harmonic,b�d and Anharmonice Frequenciesf with Experimentalg Values
for the Water Dimer

scaled

modeh harmonica uniformb two-splitc three-splitd anharmonice experimentg

donor torsion 127 121 112 112 108 88

acceptor wag 148 140 130 130 123 103

acceptor twist 151 143 132 132 124 108

intermol. stretch 184 174 161 161 152 143

in-plane bend 358 339 313 313 328 311

out-of-plane bend 639 605 560 560 514 523

ν2(a) 1624 1539 1543 1583 1581 1599

ν2(d) 1643 1557 1561 1601 1593 1616

ν1(d) 3704 3511 3520 3515 3554 3601

ν1(a) 3796 3597 3607 3602 3614 3660

ν3(d) 3904 3700 3710 3705 3720 3735

ν3(a) 3925 3720 3730 3725 3730 3745

RMSE 98 53 41 36 25
aMP2/aug-cc-pVDZ harmonic frequencies. bMP2/aug-cc-pVDZ harmonic frequencies scaled by 0.948. cMP2/aug-cc-pVDZ harmonic frequencies
scaled by 0.876 and 0.950 for the inter- and intramolecular modes, respectively. dMP2/aug-cc-pVDZ harmonic frequencies scaled by 0.876, 0.975, and
0.949 for the intermolecular, bending, and stretching modes, respectively. eVPT2/MP2/aug-cc-pVDZ anharmonic frequencies. f In cm�1. g See ref 37
and references therein. h ν1 for symmetric stretching; ν2 for bending; and ν3 for asymmetric stretching. The use of (a) signifies hydrogen-bond acceptor
water, and the (d) signifies the hydrogen-bond donor water.
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The apparent gap between the harmonic and anharmonic
values for ZPVE andΔHvib and Svib in Figure 5 is indicative of the
importance of anharmonicity. The anharmonic correction, which
we define as the difference between the harmonic and anharmo-
nic values as a percentage of the anharmonic value, is 1.8�2.7%
for the ZPVE, 8.7�13.4% for theΔHvib, and 10.7�17.2% for the
Svib. Given such large anharmonic corrections, it is very impor-
tant that one accounts for them. More importantly, when scaling
factors are used to correct for anharmonicity, it is essential that
the proper scaling factors are used. Applying scaling factors
intended for covalently bonded systems to hydrogen-bonded
clusters could lead to large errors, even though we have not
attempted to quantify them here.
3.6. Transferability of the Scaling Factors. The vibrational

scaling factors we have determined are strictly intended for
application to the MP2/aVDZ harmonic vibrational frequencies
of water clusters. Even though our training set contains vibra-
tional frequencies for (H2O)n=2�6,8,9, the scaling factors should
be applicable to larger water clusters. At the very least, they
should perform better than conventional frequency scaling
factors that are based on training sets of covalently bonded
systems. The transferability of these scaling factors to other

hydrogen-bonded systems requires further investigation. Our
preliminary look at sulfuric acid hydrates, H2SO4(H2O)n=1�2

yielded reasonable VPT2 fundamental frequencies (see Tables
S17 and S18 of the Supporting Information) indicating that a
scaling scheme similar to that we devised for water clusters can be
developed. However, it is not as trivial to partition the vibrational
frequencies into physically meaningful classes (such as intramo-
lecular stretching, intramolecular bending, and intermolecular
modes) as it is for water clusters. That is because nine of H2SO4

vibrational modes lie below 1000 cm�1, which is in the same
region as the hydrogen-bonded intermolecular modes. Thus, one
would need to develop an algorithm to determine whether
certain low-frequency modes are primarily intramolecular
H2SO4 modes or intermolecular modes. While such an approach
is certainly possible, it borders on the territory of other scaling
methods like SQM and ESFF which are better equipped to
handle such cases.

4. CONCLUSION

Using a training set of 16 water clusters with a combined 723
vibrational frequencies, we have determined scaling factors for
vibrational frequencies, ZPVEs, ΔHvib(T), and Svib(T) at the
MP2/aug-cc-pVDZ level of theory. Our scaling factors were
determined by comparing harmonic vibrational frequencies with
VPT2 anharmonic fundamentals. For vibrational frequencies, it
is important to separate the modes into different classes because
of the varying range of anharmonicities. The disparity between
our scaling factors and those derived from databases of covalently
bonded systems highlights the need to use different scaling
factors for hydrogen-bonded systems. The application of our
scaling factors to the water dimer binding energy illustrates the
importance of accounting for anharmonic effects. Our scaling
factors can readily be applied to calculations on water clusters
using theMP2/aug-cc-pVDZ level of theory, but their applicability
to other hydrogen-bonded systems has yet to be tested. While
VPT2 or the three-split scaling methods are the most reliable
techniques for calculating anharmonic frequencies, the relatively
good agreement using a single scaling factor supports the conclu-
sions obtained from past studies of water cluster free energies.93,94
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Figure 5. Comparison of harmonic, scaled harmonic and anharmonic
ZPVE(a), ΔHvib(b) and Svib(c) for 11 water clusters at 298.15 K. The
harmonic and anharmonic frequencies are calculated using [VPT2]/
MP2/aug-cc-pVDZ level of theory. We used a scaling factor of 0.976 to
get the scaled harmonic ZPVE. The scaled harmonic ΔHvib and Svib are
calculated using harmonic vibrational frequencies scaled by 0.868 and
0.844, respectively.
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ABSTRACT: A parallel implementation is presented for the evaluation of local second-order Møller�Plesset perturbation theory
(LMP2) energies in periodic, nonconducting crystalline systems with a density-fitting approximation of two-electron repulsion
integrals. Peculiarities of the periodic case with respect to parallel LMP2 implementations in molecular codes, such as the use of
translational and point symmetry, impose different strategies in order to achieve good parallel performance. The implementation is
benchmarked on a few systems, representing a choice of the most interesting solid state quantum-chemistry problems where the
MP2 approach can be decisive. Good parallel efficiency of the algorithms is demonstrated for up to 54 processors. Test systems
include a metal organic framework (MOF-5) 3D crystalline structure with a triple-ζ-quality basis set: this is the largest calculation
performed so far with 106 atoms, 532 correlated electrons, and 2884 atomic orbitals per unit cell.

1. INTRODUCTION

Molecular quantum chemistry has undergone a significant
revolution in recent years. Thanks to the implementation of fast
electron correlation techniques in modern quantum chemistry
codes,1,2 accurate post-Hartree�Fock methods are now applic-
able to very large molecular complexes3 at a reasonable computa-
tional cost, thus becoming a serious competitor to DFT also for
routine calculations. This has become possible after the assess-
ment of fast integral evaluation techniques, like multipole-based
screening,4�6 resolution of identity (RI),7 or density fitting
(DF),8�10 and due to the introduction of approximate yet effi-
cient variants of the traditional quantum chemistry methods, like
local correlation11�13 and Laplace transform14 techniques. The
efficient parallelization of the algorithms had, and still has, a
central role in this process,15�24 following the growing avail-
ability of cheap and powerful multicore machines.

The progress of solid state quantum chemistry along this path
is a few years behind. Several groups, in the past decade, have
proposed different and often complementary approaches, suc-
cessfully taking up the challenge of evaluating ab initio electron
correlation in periodic systems.25�31 Still, the application of such
methods has mainly played a benchmark role, since it has been
limited, up to date, to the study of simple model systems, with a
small number of atoms in the reference cell.32�34

The present work presents a step forward in the direction of
the assessment of a powerful and usable tool for real-life quantum
chemical calculations at the correlated level for crystalline solids.
The Cryscor program,35 jointly developed by the theoretical
chemistry groups of Torino and Regensburg, is part of a project
aimed at implementing local correlationmethods for the study of
crystalline periodic systems. The first public (serial) version of
the code36 implements density-fitted local Møller-Plesset per-
turbative correction at second order (DF-LMP2) to theHartree�
Fock (HF) solution provided by the Crystal code.37,38 Both
programs adopt a local basis set consisting of Gaussian-type
atomic orbitals.

The implementedmethod is an adaptation to the periodic case
of the LMP2 method first proposed by Pulay11,13 and then
efficiently implemented for molecules by Sch€utz and Werner
in the Molpro code.1,39,40 Periodic LMP2 relies on a localized
solution of the HF equations, expressed in terms of symmetry-
adaptedWannier functions (WF),41,42 and on a representation of
the virtual space by projected atomic orbitals (PAO; vide infra).
The adoption of approximate integrals evaluation techniques like
the DF approximation allows one to speed up the calculation by
several orders of magnitude.43 The serial periodic LMP2 code
has already been successfully applied to the study of cohesive
energy of molecular crystals44�46 and rare gas crystals,34 surface
adsorption,47,48 the relative stability of crystalline polymorphs,49

pressure-induced phase transitions,50 and simulation of Compton
scattering experiments.51 The largest calculations performed so
far with Cryscor on a single processor have been a CO2 bulk
crystal with the aug(d,f)-cc-pVQZ basis set (12 atoms, 696 basis
functions in the reference cell)45 and a sodalite crystal with a
triple-ζ-quality basis set52 (36 atoms, 1128 basis functions in the
reference cell).

A great amount of literature exists concerning implementation of
electronic structuremethods for molecules, a good review of which
can be found in ref 21. In particular, a number of parallel MP2
implementations have been reported in the past 10 years.53�56

Among these, a massively parallel implementation of the local
MP2 method for molecules, which is of particular relevance to
the scopes of the present work, has been presented by Nielsen
and Janssen.20 In that work, it is shown that due to peculiarities
of the local approach, it is very difficult to obtain a good parallel
efficiency. Earlier work on local MP2 parallel implementation,
using nonorthogonal occupied orbitals, has been reported by
Nakao and Hirao.55 Finally, parallel implementation of canonical
MP2 with RI approximation of two-electron repulsion integrals
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has been proposed by H€attig et al.56 and by Katouda and
Nagase.24

The presentation of the periodic LMP2 algorithms is struc-
tured as follows: In section, 2 the main strategies for parallel
efficiency and I/O are presented. In section 3, the structure of the
parallel implementation is described and discussed in detail, with
reference to the main formalism of the periodic LMP2 method.
In section 4, benchmark calculations are reported; the perfor-
mance of the different parts of the parallel code is analyzed.

2. PARALLELIZATION STRATEGIES AND I/O

The main priority, when implementing a parallel version of a
quantum chemistry algorithm, is to extend its applicability to
larger and more complex systems. In this sense, saving memory
resources is the most important goal to achieve. General princi-
ples, which have been followed in the development, are as
follows. (i) Code linearity: parallel instructions should not be
too invasive—only the outermost loops of very complex routines
are parallelized. (ii) Code maintainability: when possible the
parallel code source is the same as the serial, and parallel libraries
can be linked or not at the compilation stage. (iii) Code port-
ability: pure MPI instructions have been used throughout, with
no use of OpenMP.

Since the periodic DF-LMP2 code is very heterogeneous, with
distinct features and peculiarities in its different parts, different
strategies have been followed for distributing CPU load and
memory:
• Distributed memory linear algebra. The use of Scalapack
routines has been necessary in the PAO generation step,
where the size of the matrices involved scales quadratically
with the number of atoms in the unit cell. In all other parts,
the peculiarities of the local method allow for the use of
matrices whose size is not closely related to the number of
atoms in the system (though it depends on basis set choice
and local domain definition).

• Parallelization according to atomic index in the unit cell. This is
the strategy followed for the parallelization of the different
steps of the Periodic Density Fitting code and in the evalua-
tion of integrals for the multipolar expansion. The advan-
tages of such a coarse grain parallelization are a clean
and straightforward implementation and a good efficiency

(see section 4). Drawbacks such as load unbalancing arise if
the number of processors is larger than the number of atoms
in the unit cell, or in the case of atoms with very different
numbers of electrons.

• Parallelization according to pair index. The LMP2 equations
can be conveniently factorized in terms of WF pair con-
tributions. Given the large number of WF pairs involved in a
fairly large calculation (several thousands), load balancing
issues are not likely to appear at this stage.

Local post-Hartree�Fock methods are characterized by the
huge amount of intermediate data produced, especially if density
fitting techniques are adopted. Data (i.e., integrals, MP2 ampli-
tudes) is by far too large to be kept in memory even for fairly
simple calculations. Efficient strategies have to be devised in
order to keep the I/O overhead under control and, at the same
time, reduce communication among processors. Discussion of
such strategies will be covered in the remainder of this section.
2.1. Bucket Sort Algorithm. As will become clear in the

remainder of this paper, the parallelized bucket sort plays a
central role in the implementation of periodic density fitting.
Bucket sort, also known in quantum chemistry as the bin sort,

is a standard, well-known algorithm that allows one to efficiently
sort arrays, which must be kept on disk because it is considerably
larger than the available system memory. For a recent discussion
on this algorithm, see for instance ref 57. Bucket sort was first
introduced in electron correlation theory by Yoshimine,58 and a

Figure 1. Standard scheme of bucket sort algorithm.

Figure 2. Modified bucket sort algorithm with symmetry exploitation
and data redistribution. The lines colored in red and marked by a p letter
on the left are specific of the parallel implementation. The instruction
lines colored in blue and marked by an asterisk on the left perform
exploitation of symmetry.
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parallel implementation was described in 2002 by Baker and
Pulay in the context of canonical MP2 energy calculation.54 In
the present LMP2 implementation, a new parallel version of
this algorithm is introduced, which features redistribution of
data among processors and exploitation of symmetry at the
same time.
The serial algorithm, which has been adapted from the cor-

responding one in the Molpro code, is sketched in Figure 1. A set
of N “segments” is defined such that the length of a single
segment is equal to the available memory. A buffer is allocated
and formally divided in a set of N empty “buckets”. In a first step,
atomic integral blocks are read from the disk, one at a time, and
assigned to the corresponding destination bucket.When a bucket
is full, it is written to disk and emptied. After all blocks have been
processed, the second step is performed: all buckets correspond-
ing to the first segment are loaded inmemory, sorted, and written
to disk. By repeating the process for all segments, the file with the
sorted elements is generated. If memory is large enough to hold
full segments, no intermediate buckets are written to disk. In this
case, the sort is O (n) scaling (since the final order is known
a priori); otherwise the scaling depends on the amount of avai-
lable memory.
The parallel version of this algorithm is reported in Figure 2;

instructions which are specific for symmetry and parallelization
are highlighted as explained in the caption. After the processor,
which has computed symmetry irreducible block b, has read it, all
symmetry operators are applied to it (this includes identity),
generating several b0 new objects. It is checked whether b0 is
actually needed or if it has already been obtained by some other
rotation. b0 is then sent to the processor to which it is assigned
according to memory distribution strategies (this happens only if
the target processor is not the same as b). The target processor
receives b0 and puts it in its bucket. The routine proceeds as for
the serial one: step 2 is performed by each processor on the
quantities it holds, and no further communication takes place.
Note that parallel step 1 is not globally blocking, since only one-

to-one (or one-to-many) communications take place, and pro-
cessors which are neither owners of a given b nor targets for the
rotated b0 are allowed to proceed independently. Still, it is not
completely asynchronous like the algorithm outlined by Baker and
Pulay, who achieved this result through spawning of additional
“listening” processes per each node, dedicated to I/O.
In the present context, the bucket sort is used in two parts of the

DF procedure. The symmetry is applied only in the second sort.
2.2. Paging Algorithm. A paging strategy has been imple-

mented to deal with matrices that are too large to fit into the
available memory. A buffer, as large as the available memory, is
allocated. The big matrix is divided in blocks, having the size of all
shells belonging to a pair of atoms. Initially, the buffer is empty.
During the program execution, when a block is needed, it is
loaded in memory and fills an empty part of this buffer. If the
buffer is full and a new block must be loaded, a suitable portion of
it is freed by discarding one block. The choice is made according
to a scoring system: every time a block is used, it gains one point.
The block, currently in memory, which has the lowest score is
discarded. If this block has changed in the meantime (this is the
case of the updated LMP2 amplitudes), it is written back to disk;
otherwise (most frequently), its memory slot is just overwritten.
The blocks used more frequently are thus always kept in
memory, if possible.
2.3. Disk Sharing. In addition to the paging algorithm just

described, a further scheme has been set up to efficiently handle

large, replicated matrices. If two or more nodes share the
same disk space, the disk itself can be used as a communication
medium among them instead of message passing. The CPUs are
classified according to groups, where each group is formed by
those processors sharing the same disk, and one processor of
each group is nominated the “leader” of the group. The proces-
sors automatically recognize if they are sharing the disk with
others (no input is required by the user in this sense).
Direct writes can be done, within a group, to the same physical

file, and information is accessible by all processors of that group.
Replication of data on the disk is avoided, and all-to-all commu-
nication steps are reduced to a communication among group
leaders. In the case of the SP6 AIX machine, used for the bench-
mark calculations in this work, all of the processors share the
same disk. As a consequence, message passing instructions are
avoided when this scheme is applied. Although not as advanced
as the Array Files system,59 this very simple technique can be
quite effective in achieving good overall parallel performance.
The disk sharing strategy is adopted for the two-index density
fitting integrals (section 3.3.1) and for excitation amplitudes
(section 3.4). In combination with the paging algorithm de-
scribed in section 2.2, it represents a powerful tool to improve the
parallel efficiency of the LMP2 equations.

3. THE PARALLEL CODE AND PERIODIC LMP2 ESSEN-
TIAL FORMALISM

The general scheme of the Cryscor code has been outlined in
our previous works28,60 but will be reported here for ease of
reference and to support the discussion of the parallel algorithms.
After a preliminary stage, in which information of the system is
recovered from Crystal (geometry, symmetry data, basis set, HF
solution expressed in terms of Wannier functions), the main
computational steps of a local MP2 calculation are (i) generation
of the localized functions used to represent the virtual space, that
is projected atomic orbitals (PAO),13 (ii) integrals evaluation
via multipolar expansion and density fitting techniques, and
(iii) periodic LMP2 iterative equations.

The notation adopted in the following is meant to be
consistent with previous papers:28,35

• Greek letters μ, ν, etc. represent an atomic orbital, i.e., a basis
function.

• Letters i, j, etc. represent an occupied orbital, i.e., a Wannier
function.

• Letters a, b, etc. represent a virtual orbital, i.e., a PAO.
• Capital letters P, Q, etc. indicate an auxiliary basis function,
used for density fitting.

• Calligraphic capital letters J ,A ,P , etc. indicate a lattice
vector label, while symbols such as RJ , RA , and RP will
indicate the corresponding vectors. Where no lattice vector
label is indicated, the reference cell is implicitly understood.
Primed lattice vectors J 0,A 0,P 0, etc. indicate that the
corresponding index has been shifted to take advantage of
translational symmetry. The entity of the shifting is always
clear from the context (e.g., (PP |QQ ) = (P|QQ 0) where
Q 0 ¼ QQP ).

The algorithms will be presented in the order they are
executed by the code. For this reason, evaluation of preliminary
quantities and integrals will be discussed before the LMP2 energy
calculation.
3.1. Generation of Local Virtual Space and Related Ma-

trices. Wannier functions are used to represent the occupied
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space. These symmetry-adapted and well-localized objects are
calculated by the Crystal program.37,38 To describe the virtual
manifold, following the proposal of Saebø and Pulay,13 atomic
orbitals projected out from the occupied space (PAO) have to be
generated. Each PAO χa(r) is described by a linear combination
of the AO basis set: χaðrÞ ¼ ∑μM cμMa ϕμM . They form a
redundant nonorthogonal set but at the same time are appreci-
ably well localized and have the symmetry of the parent AOs. The
projection that produces the coefficients of a reciprocal space
image of a PAO, χa

μ(k), can be cast as

cμa ðkÞ ¼ ∑
ν
½δμ, ν � ∑

i
jui,μk æÆui,μk j�S�ν, μðkÞ ð1Þ

where |uk
i,μ> are the occupied Fock eigenvectors and Sν,μ(k) is

the overlap matrix in the AO basis, both expressed in reciprocal
space. The PAOs in direct space are obtained through a back
Fourier transform:

cμ,Ma ¼ ∑
k
cμa ðkÞ eik 3RM ð2Þ

The most demanding steps within this part of the code are the
orbital transformation of overlap (S) and Fock (F) matrices from
the AO to the PAO basis, which is also performed in reciprocal
space,

Xa, b,B ¼ ∑
k
Xa, bðkÞ eik 3RB

¼ ∑
k
½∑
μ
cμa ðkÞ½∑

ν
Xμ, νðkÞ c�νb ðkÞ��eik 3RB ð3Þ

where X = S, F.
This step represents mainly amemory bottleneck, since square

matrices having the full size of the basis functions in the unit cell
are involved. For small and medium-sized systems, eqs 2 and 3
might be conveniently factorized according to the k-mesh sam-
pling points. This approach would imply just a little commu-
nication (a global sum for the inverse Fourier transform at the
end) but would limit the number of processors that can be used
to be equal or less than the number of k points and cause load
balancing problems, without solving the problem of square
matrices to be kept in memory.
When the system grows large, the number of needed k points

reduces considerably, while the user almost certainly strives for a

larger number of CPUs to handle the computational expense of
the calculation. For this reason, this step is parallelized, according
to a distributed memory strategy by means of standard parallel
distributed linear algebra routines.61 All matrices in eqs 2 and 3
are distributed among all processors. In Figure 3, the use of
memory is reported for a test case: deviation of the memory dis-
tribution from ideal behavior is small, showing that 96% of the
allocated arrays are handled through distributed linear algebra
routines.
Thanks to the features of the local approach, the other steps of

the LMP2 code exhibit a need for memory that can be made
independent of the size of the system.
3.2. Fast Integral Evaluation: The Multipolar Expansion.

The main bottleneck of the LMP2 method is constituted by the
calculation of the four index two-electron repulsion integrals in
the basis of WFs and PAOs:

K
ijJ
aA , bB ¼ ðiaA jjJ bBÞ

¼
Z

dr1

Z
dr2 χ

iðr1Þ χaðr1 � RA Þ 1
jr2 � r1j χ

jðr2 � RJ Þ χbðr2 � RBÞ

ð4Þ
Approximate techniques for the evaluation of such integrals must
be devised, which are described in this subsection and the
following.
An efficient multipolar expansion can be applied if the two

FiaA and FjbB product distributions are distant enough that they
can be considered as enclosed in separate spheres. This is a well-
known and widely used technique in quantum chemistry (see for
instance ref 62). The integrals are obtained through the interac-
tion of two sets of point multipoles:

KijJ
aA , bB≈∑

l , l 0
Q l

iaAV l , l 0
i, jJ Q l 0

jbB 0 ð5Þ

where the interaction operator V l l 0
i;jJ is an interaction matrix

which depends only on the relative position rj þ RJ � ri of the
two centers and is easily calculated. The evaluation of the multi-
pole moments of each product distribution with respect to itsWF
centroid ri,

Q l
iaA ¼ ∑

ν,N
cνN

0
a ½ ∑

μ,M
cμMi ϕlμM , νN ðriÞ� ð6Þ

becomes the most demanding step. The index l indicates the
multipole order, and by default it runs up to 4 (hexadecapoles):
a total of 25 multipole moments have to be evaluated for each
iaA product distribution. Note that the multipole moments
ϕlμM , νN ðriÞ are not, in general, translationally invariant, since
they are computed with respect to a center ri. A suitable trans-
lation operator must be applied.63

Parallelization of eq 6 is performed according to the ν index:
each processor computes only a subset of the ϕlμ, νN shell
multipoles and uses them to compute a partial result for all of
the Q l

iaA objects. No intermediate communications are needed,
and through a global sum after the end of the algorithm, all pro-
cessors hold all computed multipole moments. The time re-
quired by eq 5 is negligible. The load is distributed according to
the same strategy as in the LMP2 equation (see below), so that
no further redistribution of the K integrals is required.
3.3. Fast Integral Evaluation: The Density Fitting Approx-

imation. Density fitting (DF) approximation9,10 is a powerful
technique that allows one to speed up the calculation of two
electron repulsion integrals of eq 4 by orders of magnitude, with

Figure 3. Use ofmemory in the PAO generation step, for the largest test
case of this work (MOF-5).
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negligible errors.43,60 The simple idea is to expand each product
distribution between a PAO and a WF in a set of auxiliary basis
functions {ΞP}:

FiaA ¼ χiðrÞ χaðr� RA Þ≈∑
PP

dPPi, aAΞPðr� RP Þ ð7Þ

A mixed auxiliary basis of Gaussian and Poisson functions64 is
used in this work.
Different flavors of the DF approximation have been devel-

oped and implemented for LMP2 in periodic systems (see ref 52
for a complete discussion). Among these, the local direct-space
approach is the most similar to the approach adopted in mole-
cular codes and in some of its aspects is similar to the one imple-
mented by Scuseria and Izmaylov.65 This is the simplest periodic
DF approach, and at the same time, it is themost suitable for large
unit cell systems. Thus, it was the method of choice in the parallel
implementation of the LMP2 code.
The different steps of the implementation are outlined in

Table 1. For each step, the corresponding strategy of paralleliza-
tion is sketched and will be discussed in detail in the following. As
can be seen, parallelization is always performed on the slowest
running index, and MPI communications are almost entirely en-
closed within the bucket sort steps.
3.3.1. Three- and Two-Index Integrals Calculation. Evaluation

of three-index integrals of the type (iaA jPP ) is distributed
according to blocks containing all integrals sharing the same P
index. Each processor computes independently all the needed
(μνN jPP ) three-index integrals in the AO basis, which are
selected by each CPU through prescreening of the set of
(iaA jPP ) owned.35 This coarse grain parallelization totally
avoids communication among processors at this stage.
The number of computed integrals is huge, so they are kept on

disk. Once computed and stored, integrals must be resorted: in
the solve step, the index running the P atom has to be the fastest
index, since to obtain a coefficient dia

P (eq 8) all fitting functions
in a fitting domain are needed at once. This is achieved through
the bucket sort algorithm described in section 2.1. The atomic
object handled by the routine (a block) includes all (ia|P) inte-
grals where all PAOs a belong to the same atom, and all fitting
functions P belong to the same atom. Redistribution of the inte-
grals among processors takes place contextually. No symmetry
operators are applied at this stage.

Two-index integrals of the type (PjQQ ) are treated differently.
These simple objects are evaluated quickly but are large, so the
costly part is to store them on disk. Calculation is distributed
according to the cell index of the second function, following a disk-
sharing strategy (section 2.3), so that all unit cells are computed by
processors of one group. This avoids replication of this matrix on
disk, which can be very large, and totally avoids communication.
3.3.2. The Solve Step. The coefficients dPPiaA of eq 7 are defined

by the linear equation system

∑
PP

dPPiaA ðPjQQ 0Þ ¼ ðiaA jQQ Þ ð8Þ

Both the indices PP andQQ run over all fitting functions in the
fit-domain, which is specific for each separate set of i, a, and A
indices, that is, for all PAOs on a same atom. This allows for fairly
small matrices in eq 8, leading at the same time to a greater
number of different coefficients to be calculated and handled. A
linear equation solver allows one to solve eq 8 efficiently and
stably, given that no linear dependency issues arise in the (P|QQ)
matrix. The eigenvalues of this matrix are thus always computed
beforehand: if they are all above a threshold (10�5 by default),
the linear equation solver is invoked; otherwise, inversion is carried
out through a much more costly singular value decomposition
procedure. Such linear dependency issues are likely to appear in
periodic systems, which are considerably more closely packed
than molecules, since molecular fitting basis sets are adopted.
After the solve step, a second bucket sort procedure is needed,

in which point symmetry is exploited in order to obtain all objects
needed for the assembly step in eq 10. This is applied twice, to the
integrals (iaA jPP ) file and to the coefficients dPPiaA file. Once
more, redistribution of data among processors takes place.
At this stage, dPPiaA coefficients are inmemory and distributed in

the most convenient order, so that the following intermediate
quantities are conveniently evaluated:

DPP
iaA ¼ ∑

QQ
dQQ
iaA ðQ jPP 0Þ ð9Þ

These quantities are needed in the assembly step described in the
next subsection. They are written on disk, and the bucket sort
routine with symmetry and redistribution is applied in the same
way as for three-index integrals and coefficients.
3.3.3. The Assembly Step. According to Dunlap’s robust

expression,9 which guarantees that the error in the integral is
second order with respect to the error in the fitting, the four-
index two-electron integrals are approximated as

KijJ
aA , bB≈∑

PP
ðiaA jPP ÞdPP 0

jbB 0 þ ∑
PP

dPPiaA ½ðPP 0jjbB 0Þ � DPP 0
jbB 0 �

ð10Þ

Table 1. Different Steps of the Periodic Density Fitting
Parallel Codea

section step order of indices parallelization index

3.3.1 two-index integrals Q , P, Q Q
3.3.1 three-index integrals P, i, a, A , P P

2.1 bucket sort

3.3.2 solve for dPPiaA coefficients i, a, A , P, P i, a, A
2.1 bucket sort with symmetry

3.3.3 assembly P, i, a, A , P P
a In the first column, reference is made to the section in the text where
the corresponding algorithm is discussed. Column 3 reports the order
according to which the quantities are evaluated/handled, from slowest to
fastest index. The last column explicitly reports the index according to
which the parallelization is made. In all cases, this coincides with the
slowest index. Bucket sort routines redistribute the quantities among
processors.

Figure 4. Parallel algorithm for the density fitting assembly step.
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with DPP 0
jbB 0 factors as defined in eq 9. The three-index integrals

(and coefficients), after the preceding bucket sort step, are stored
on disk with the fitting function center as the slowest index and
distributed among processors according to the same index.
Symmetry has been exploited as well, so no rotations are needed
at this stage.
The parallel implementation of the algorithm for the first term

of eq 10 is sketched in Figure 4. Each processor performs one
single complete read of integrals and coefficients, thus loading in
memory all the quantities having the same set of P indices in
common. The K integrals, at the end of the procedure, are
distributed among CPUs according to the same strategy as in the
LMP2 equations (next section). A partial sum is performed by
each processor, and an all-to-one global sum is needed for each
pair. This allows each processor to allocate only one K buffer,
which is reused for each pair, and the number of such global sums
depends on the size of the fitting basis set.
The parallel algorithm for the second term is identical, with

“corrected” [ðPP 0jjbB 0Þ �DPP 0
jbB 0] integrals instead of normal

ones. This algorithm guarantees a reasonable memory occupa-
tion: three buffers are allocated by each CPU, one for the three
index integrals, one for the coefficients (these have the size of one
fitting function “block”), and one for the K integrals.
3.4. Local MP2 Equations. Once all of the ingredients are

available (integrals, Fock, and overlap matrices in the PAO basis)
the orbital invariant localMP2 energy per unit cell can computed.
It is expressed as a sum over pair contributions:

ELMP2
cell ¼ ∑

i, j,J
ELMP2
i, j,J ð11Þ

Each pair contribution is obtained as

ELMP2
i, j,J ¼ ∑

a,A , b,B
KijJ
aA , bB ½2TijJ

aA , bB � TijJ
bB , aA � ð12Þ

where TijJ is the amplitude corresponding to a two-electron
excitation from a pair of WFs to a pair of PAOs.
Summations over aA and bB indices are truncated through

the selection of non-negligible excitations according to the locality
Ansatz. To the general WF i, a domainD i is associated, consisting
of a number of atoms close to it.D i is usually defined through a
Boughton�Pulay criterion.66 A pair-domain D ðijÞ, assigned to a
WF pair ij, is defined as the union of the corresponding WF
domains. Only those excitations are retained for which, first, both
PAOs a and b belong to atoms inD ðijÞ and, second, the distance
dij between the centers of the twoWFs is within a certain valueD.
Following the so-called frozen core approximation, only valence
WFs are usually considered.
The unknown amplitudesTijJ

bB , aA are obtained solving a set of
linear equations which imposes on the RijJ

aA , bB residuals to be
zero:

RijJ
aA , bB ¼ KijJ

aA , bB þ AijJ
aA , bB þ BijJaA , bB ¼ 0 ð13Þ

where the matrices A and B incorporate internal and external
contributions to the residual, respectively, and are defined as
follows:

Ai, jJ
aA , bB ¼ ∑

cC , dD
½FC 0

ac T
i, jJ
cC , dDSB

0
db þ SC

0
ac T

i, jJ
cC , dDFB

0
db � ð14Þ

B
i, jJ
aA , bB ¼ ∑

cC , dD
SC

0
ac ∑

kK
½Ti, kK

cC , dDF J 0

kj

þ FKik Tk, jJ 0

cC 0 , dD 0 �SB 0
db ð15Þ

Sab (Fab) denotes the element of the overlap (Fock) matrix
between functions a and b, and the simplifications due to trans-
lational symmetry are implicitly introduced. The range of the
kK summation is suitably truncated according to locality criteria
in order to include only significant contributions.
The condition expressed by eq 13 is reached iteratively by

minimizing a suitable Hylleraas functional. At each step of the
iterative procedure, the residuals are used to update the ampli-
tudes. Due to the redundant character of PAOs, the update must
be performed in the orthogonal basis proper of the pair i, jJ , the
so-called local orthonormal (LON) basis. The matrices to per-
form this unitary transformation are obtained by diagonalizing
the Fock matrix in the local pair domain. The set of transforma-
tions, one for eachWF pair, is generated once before entering the
iterative procedure and stored on disk.
The update is then expressed as

Δ~Ti, jJ
aA , bB ¼

~Ri, jJ
aA , bB

εa þ εb � fii � fjj
ð16Þ

with the tilde symbol indicating that ~T and ~R are in the LON
basis representation. Only symmetry irreducible amplitudes are
computed, updated, and stored during the procedure. The ampli-
tudes needed in eq 14 are obtained on the fly from the irreducible
ones by applying suitable symmetry operators.
Parallelization of the iterative LPM2 equations is conveniently

performed by distributing the workload according to i, jJ pairs
(eq 11), but an efficient parallel algorithm is difficult to achieve.
In fact, in the evaluation of external residuals, term B in eq 14,
which accounts for the majority of the time spent in the iterative
procedure, amplitudes from different WF pairs contribute to
each i, jJ pair. Nielsen and Janssen20 have proposed two dif-
ferent parallel algorithms for the molecular LMP2 equations:
(i) based on replication of the amplitudes and (ii) based on distribu-
tion of the amplitudes according to a smart assignment of the
workload for each processor. They conclude that scheme i is
more load-balanced but less efficient, since it involves a global
summation step, while scheme ii is more efficient, since only a
redistribution of amplitudes is needed but suffers from load im-
balance when a large number of processors is used. A 60% perfor-
mance has been demonstrated for scheme i when 50 processors
are used.
A fundamental feature of periodic LMP2 equations is the

extensive use of translational and point symmetry. This makes
algorithm ii of Nielsen and Janssen not practicable, since a huge
number of additional, globally blocking, communications would
be needed, along with a significant overhead for the bookkeeping
of all these operations. A replicated memory (scheme i) strategy
has therefore been adopted, with a difference: communication
among processors takes place only at the end of one iteration,
and not after each update. This has some drawbacks: the updates
performed by a single processor cannot take advantage of already
updated amplitudes (Gauss�Siedel), and therefore the conver-
gence can be slower. Thanks to the use of disk sharing (and
paging) strategies for the amplitudes, this problem is softened,
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since all processors within a group can read from disk amplitudes
that other members of the group have updated and stored.
Regarding the distribution of data, LON transformation

matrices, R residuals, and K integrals are distributed according
to the pair index, while T amplitudes are replicated—but buf-
fered. Parallelization is straightforward, since no communication
is needed during one iteration.
The implemented algorithm (Figure 5) contains also instruc-

tions to avoid one processor sending the data to its own group
leader. As a consequence of that, in the case of all CPUs sharing
the same disk, no MPI communications are needed but rather a
final I/O step in which all processors write to disk (all in the same
file) the updated amplitudes.

Thanks to paging routines, only the amplitudes that can fit
in memory are loaded. As a limiting case, in case of very small
memory or a very large basis set, only a block of each matrix is
kept in memory at once, and each of these blocks has the size of
the number of functions in a local domain squared—which is
constant with the increasing number of atoms in the unit cell.

4. RESULTS

As discussed in the previous section, the periodic LMP2
program is complex and formed by several parts. The parallel
efficiency of these different parts has been benchmarked on a
small but significative set of periodic crystalline systems, repre-
senting a choice of interesting problems, in the field of solid state
quantum chemistry, in which the LMP2 method can give

Figure 5. Scheme of the communication algorithm for the updated
amplitudes in LMP2 equations.

Figure 6. The systems used for benchmark calculations. In panel b, the repetitive unit is marked by a dashed white box.

Table 2. Information on the Crystalline Systems Used As a
Benchmarka

system natoms
cell nelec

cell basis set nao
cell npairs

MgO slab with “F’’ center 54 210 Mg: [4s3p2d1f] 1916 15663

O: [4s3p3d2f]

double-walled nanotube 144 360 aug(p,d)-cc-pVDZ 1944 14439

aspirin on SiO2 141 652 slab: 88-31G* 2465 72426

molecule: TZP

MOF-5 106 532 cc-pVTZ 2884 28562
a nelec

cell is the number of correlated electrons per unit cell. nao
cell is the

number of basis functions in a unit cell; npairs is the number of Wannier
function pairs included in the calculation with the chosen thresholds for
the LMP2 truncations.
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important answers. The efficiency and features of the scalar algo-
rithm have been discussed in previous works35 and will not be ad-
dressed here. In particular, quasi-linear scaling behavior has been
demonstrated with respect to the number of atoms in the unit
cell.52

4.1. The Test Systems. The set of test systems has been
defined in order to cover many of the several geometrically and
chemically different situations that can be encountered when
dealing with periodic crystals. Systems periodic in one, two, and
three dimensions have been considered. Ionic, covalent, and
weakly bound, closely packed, as well as microporous materials
are included. Let us discuss more in detail the features of each
benchmark system. Pictures of the crystalline structure can be

found in Figure 6, and some reference data about each test case
are reported in Table 2.
Double-Walled Hydrogenated Carbon Nanotube. Graphene

and carbon nanotubes (CNTs) are among the “hot” nanomaterials
in today’s science. One way to tune the chemical and physical
properties of CNTs is by means of chemical functionalization, for
example, by hydrogenation.67 A double-walled CNT, composed of
two fully hydrogenated tubes, has been chosen as an interesting test
case, because of the dispersive interactions that take place among
the two tubes. The unit cell of this 1D periodic system is made of
144 atoms and represents the section perpendicular to the tube
length (see Figure 6a). The basis set adopted is a cc-pVDZ68

augmented with polarization functions for high angular momenta.

Figure 7. Parallel performance of the different parts of the LMP2 algorithm. Dotted lines indicate the ideal performance (100%) and the 70%
performance, considered as an optimal target for the present work.
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MgO Three-Layer Slab with a Defective “F” Center. Magne-
sium oxide, as a bulk crystalline system or as a modeled surface, is
and has been a favorite system for periodic ab initio calculation,
both for its simple crystalline structure and for its interesting
chemical properties. In particular, defective sites on the surface
are the key to many catalysis processes, of great relevance in
modern industry. When modeling a defect in a periodically re-
peated structure, one has to define a supercell in order to mimic
the defect concentration of a real sample. In this way, the compu-
tational cost of the calculation is greatly increased. The thickness
of the slab is an important factor as well, since one wants
generally to reproduce the features of a semi-infinite system.
The test case used in this work is a three-layer slab, commonly

recognized as a reasonable thickness for the modeling of many
surface properties, with a 3 � 3 supercell, resulting in 54 atoms
per cell. One oxygen atom of the upper surface is then removed
and replaced by two paired electrons, thus creating a diamagnetic
F center, one of the most well-known widely diffused defects
in rocksalt structures. The basis set is also a good one, with
[4s3p2d1f] functions on Mg and [4s3p3d2f] on oxygen,52 and
cc-pVTZ for hydrogen on the F center.
Aspirin Molecule on Silica Substrate.Adsorption of molecules

on surfaces is both a technologically interesting process and a
challenge for quantum chemistry, since it is ruled mainly by
dispersive interactions. A particular case is that of the adsorp-
tion of organic or pharmaceutical molecules on biocompatible

Figure 8. Total wall clock timings (reported in logarithmic scale, in seconds) of the different parts of the LMP2 parallel algorithm.
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substrates.69 In the present test, kindly provided by Piero
Ugliengo, the substrate is represented by a ∼10-Å-thick slab of
SiO2, with 141 atoms in the unit cell, and the adsorbate is a
molecule of aspirin, a well-known pharmaceutical compound. A
good basis set has been used: 88�31G* on Si and O atoms in the
slab, TZP on the molecule’s atoms.
Metal�Organic Framework (MOF-5). Storage of small gases

like hydrogen or CO2 inside microporous materials is presently
one of the main technological challenges. In the past few years,
MOFs have become universally popular and recognized as one of
the most promising classes of porous materials, with surface areas
higher than that of commonly used zeolites.70 Sillar et al., in 2009,
wrote: “...use of even the simplest of [post Hartree-Fock meth-
ods], second-order Møller-Plesset perturbation theory (MP2), is
far beyond present computational resources for periodic struc-
tures with large unit cells, such calculations are performed only on
finite-sized models that represent individual structural elements
of the wholeMOF framework”.71 It is here demonstrated that this
is now feasible, with a basis set such as cc-pVTZ with Stuttgart�
Dresden ECPs on the Zn atom, at a reasonable computational
cost. Problems have been encountered though, trying to reach
Hartree�Fock SCF convergence with the unmodified molecular
cc-pVTZ basis; since it is beyond the scope of the present work to
optimize a suitable basis set for periodic calculations, Wannier
functions obtained through a B3LYPHamiltonian have been used
instead of HF ones. The energy results are not to be discussed in
this paper, and since this procedure is totally equivalent from a
computational point of view, this detail is not relevant to the
conclusions on code performance.

4.1.1. Computational Parameters. The parameters relevant
to the following discussion—that is, with a significant impact on
the cost of the LMP2 calculation—are those related to the local
treatment of electron correlation. In all test cases, parameters
compatible with real-life calculations have been chosen. Only
valence electrons are correlated, according to the commonly
accepted frozen core approximation. WF pairs are explicitly in-
cluded up to 10 Å in the smallest cases, 9 Å in the largest. Integrals
are evaluated through density fitting for pairs up to 6 Å and
through multipolar expansion beyond that. Excitation domains
are always defined according to a Boughton�Pulay parameter66

of 0.990, larger than the commonly used value of 0.985.
4.2. Benchmark Calculations.Computations reported in this

section were performed on the IBM SP Power 6 cluster at
CINECA supercomputing facilities in Bologna, Italy. The system
features 4.7 GHz cores, Infiniband network connection, and
shared disk file system. In all calculations, 8 GB of RAMmemory
have been made available to each processor, independently from
the number of processors used.
In Figure 7, the parallel performance of the different parts of the

code is reported. The speedup is defined, for a given number of
processors N, as (tref � Nref)/tN. The reference number of
processors is for all systems set to 4 or 6, since it is not possible
to run these calculations on a smaller number of processors (this
comes out quite clearly from the use of memory in Figure 3). In
Figure 8, thewall clock timings are reported, on a logarithmic scale,
for the same pieces of code, in order to highlight the different
calculation weights and to give a feeling of the relative cost of the
same algorithm on different systems, which can be quite different.

Figure 9. Detail of parallel performance in different steps of the periodic density fitting procedure. See caption of Figure 7 for details.
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At first glance, the reader can notice that the four different test
systems show a very different behavior in the different parts,
especially in panels c, d, and e, which cover most of the execution
time. Despite these differences, the global performance of the
code, evaluated on wall clock timings, is very similar for all the
systems and is comprised between 70% and 80% at the highest
number of processors. Correspondingly, the total execution
times are reduced by almost an order of magnitude.
The first two panels concern the generation of PAOs and

related matrices and the multipolar integrals calculation. The
poor parallel scaling behavior is explained by the small elapsed
time of these pieces of code, since serial code and I/O take a
leading role when the cost of the parallelized part is minor.
Besides, it is known that Scalapack routines do not have an ideal
scaling for this matrix size. As amatter of fact, as already discussed
the purpose of this piece of code is to mostly distribute the
memory load, which is achieved quite efficiently (Figure 3).
Evaluation of integrals through the density fitting approxima-

tion is definitely more relevant to the present discussion. The
cost on a low number of processors ranges from half a day to two
days but is generally very similar, if compared with the large
differences (several order of magnitude) which are observed in
the elapsed time of other parts of the code. The largest calcula-
tion,MOF-5, has the lowest time since in this microporous lattice
the prescreenings are very efficient, and thus the number of inte-
grals to be computed is reduced. The behavior of the test set
when increasing the number of processors is very heterogeneous,
even showing superlinear scaling phenomena, and it needs more
careful examination.

In Figures 9 and 10, speedups and total timings are reported
for the most significant steps of the DF algorithm, in analogy with
Figures 6 and 7. Two-index integrals are quite cheap, and no wor-
ries come from some nonoptimal speedup, which is actually
observed when the CPUs outnumber the unit cells to be com-
puted. The performance of the three-index integrals code is
generally very good and deteriorates at a high number of pro-
cessors only for MOF-5. This system contains different elements
such as zinc and hydrogen and suffers from load-balancing pro-
blems, due to the coarse grain parallelization according to the atomic
center, as discussed in section 3.3.1. The most expensive step, solve
and assembly, shows superlinear scaling behavior for two of out
the four systems. The two-index auxiliary integrals are here handled
through a paging strategy (see section 2.2), and the algorithm
greatly benefits from the larger amount of total memory available.
The analysis of the parallel bucket sort with symmetry

exploitation is quite surprising. First, its cost is non-negligible,
though generally an order of magnitude lower than the most im-
portant DF steps. Second, it scales very well in three out of the
four test cases, with speedups up to 90% at 50 CPUs. This is in
fact a combination of different factors: (i) the better performance
of the algorithm due to the increasing of the total available
memory, which brings superlinear scaling, (ii) sublinear scaling
due to concurrent access to the disk and locally blocking steps,
and (iii) the fact that no all-to-all communications take place, but
always one-to-one, making this step non-globally-blocking. In the
case of a globally blocking algorithm, the speedup would be
constant. In the case of MgO, the overall cost is small, thus
making irrelevant point i above and point ii dominant.

Figure 10. Total wall clock timings (reported in logarithmic scale, in seconds) of the different steps of periodic density fitting procedure.
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The last two steps of the LMP2 algorithm to be discussed are
the LON generation and the LMP2 iterative equations, reported
in panels d and e of Figures 6 and 7. The first is important only in
the case of MOF-5; this fact is a consequence of a very good basis
set (cc-pVTZ) and large excitation domains, since the diagona-
lization of matrices of the size of the number of basis functions in
the domain is involved—which scales asO (n3). Fortunately, the
parallel performance is close to ideal for this system, while it is
worse for others only due to the fact that, since the elapsed time is
small, serial parts of the code or noise become significant.
The LMP2 equations, described in section 3.4, are the most

delicate and complex part of the parallel implementation, and the
same experience is reported for nonperiodic implementations.20

Again, a very heterogeneous behavior is observed in this case,
ranging from superlinear scaling to sublinear. For this reason, let
us analyze separately the four test cases: (i) The CH double-
walled nanotube has a small basis set and is not a dense system.
The pair excitation domains contain few centers and few func-
tions per center; the number of external contributions to the
update of a single amplitude is also small. As a consequence, the
cost of the iterations is not very significant and is mainly domi-
nated by I/O. (ii) The aspirin on SiO2 two-dimensional system is
rather dense, and the calculation involves a high number of
WF�WF pairs (Table 2), but excitation domains are constituted
of few centers, since WFs are very localized, and the cost of eval-
uating a single residual is small. A large part of the time resides
also in this case in the I/O. (iii) MgO is the most dense among
the test cases, and the number of external contributions in eq 14
is very large. The cost of computing residuals then dominates
with respect to I/O, so the performance is close to ideal. (iv)
MOF-5 is a microporous system, so even if it is periodic in three
dimensions, not many pairs are included in the calculation. The
WFs are not well localized though, due to aromatic rings, so large
excitation domains are defined by the chosen Boughton�Pulay
threshold. The local approach is then not at its peak efficiency,
and large matrices have to be handled. For this reason, the paging
algorithm is intensively used, and as already observed for the
solve step of the DF procedure, superlinear scaling is observed
due to the increasing of the global amount of memory when the
number of processors is increased. We recall here that, thanks to
the disk-sharing strategy described in section 2.3, no commu-
nication among processors takes place in all of the LMP2 ite-
rations, since this is substituted by writing on the disk unit shared
by all processors.
As mentioned above, all of the different parts of the code,

behaving differently on the different systems, do average in the
end, resulting in quite similar speedups for all of the test systems.
The performance is satisfactory in all cases, and the total time
required to complete a job ranges from 4 h in the smallest case
(CH nanotube) to 23 h (MOF-5).

5. CONCLUSION AND PROSPECTS

A parallel implementation of the periodic local MP2 code of
the Cryscor program has been presented and thoroughly tested.
It is seen that scaling with the number of processors is favorable
up to more than 50 processors, with parallel performance up to
70�80% with respect to the ideal behavior.

The challenges posed by the full exploitation of symmetry at
different levels present throughout the code have been overcome
by adopting simple yet powerful strategies: (i) to enclose all
communication in well-defined and separate pieces of code, thus

relying on coarse-grain parallelization, and (ii) to fruitfully use
the disk, as far as it is possible, as a communication medium
among CPUs who share the same disk space.

The behavior of the four periodic systems in the test set,
chosen to be different as concerns the number of periodic
dimensions, density, and chemical composition, is very hetero-
geneous in specific parts of the code, while the speedups
evaluated on the total wall clock time are very similar. This can
be a good indication that this general purpose code will perform
reasonably well on any kind of crystalline system.

As a final result, the calculation of MP2 energy of a MOF-5
three-dimensional periodic crystal with a cc-pVTZ basis (106
atoms, 2884 basis functions in the unit cell) is achieved in less
than 24 h on 53 processors. The parallelized LMP2 code will be
soon released as an update to the Cryscor program, making this
work available to the scientific community.

A massive parallel implementation, i.e., capable of efficiently
running on hundreds of processors, would require a complete
recoding of the LMP2 procedure, extending the use of linear
algebra routines (Scalapack) to the whole code. As a perspective,
the power of implementations taking advantage of GPU cores is
emerging nowadays,72 which opens the way to an innovative
concept of the parallelization codes.
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ABSTRACT: A scheme for the rigorous construction of charge-localized diabatic electron�proton vibronic states for proton-
coupled electron transfer (PCET) reactions is presented. The diabatic electronic states are calculated using an adiabatic-to-diabatic
transformation designed to ensure that the first-order nonadiabatic couplings with respect to a specified one-dimensional reaction
coordinate vanish exactly. This scheme is applied to both symmetric and asymmetric PCET systems with several different one-
dimensional reaction coordinates, including the hydrogen transfer coordinate, a normal mode coordinate, and the intrinsic reaction
coordinate. This approach is also extended to describe the three-dimensional motion of the transferring hydrogen. The diabatic
electronic states exhibit relatively invariant charge distributions along the reaction coordinate and are in excellent agreement with the
analogous states obtained from the generalized Mulliken�Hush and Boys localization methods. Furthermore, these diabatic
electronic states are combined with the associated proton vibrational wave functions to generate charge-localized electron�proton
vibronic states that describe one- or three-dimensional hydrogen motion. These electron�proton vibronic states can be used to
calculate the vibronic couplings, rate constants, and kinetic isotope effects of PCET reactions.

I. INTRODUCTION

Proton-coupled electron transfer (PCET) reactions are pre-
valent in many facets of biology, chemistry, and physics.1�5

Concerted PCET reactions, which are characterized by simulta-
neous electron and proton transfer without a stable intermediate,
have been observed in a wide variety of systems, including
enzymatic, photoinduced, and electrochemical processes. Typi-
cally, PCET reactions are characterized as vibronically nonadia-
batic because the subsystem comprised of the electrons and
transferring proton does not respond instantaneously to the
motions of the solvent and other solute nuclei. Within this
nonadiabatic framework, PCET theories require the identifica-
tion of the charge-localized reactant and product diabatic
electron�proton vibronic states corresponding to the transfer-
ring electron and proton localized on their donors and acceptors,
respectively.2,6 These diabatic electron�proton vibronic states
can be used to calculate the vibronic couplings, which are key
quantities in the nonadiabatic PCET rate constant expressions
derived with the golden rule formalism.7,8 Combined with the
solute and solvent reorganization energies, as well as the vibronic
energy level splittings, these vibronic couplings can be used to
calculate experimentally accessible quantities such as rate con-
stants and kinetic isotope effects.

The objective of this paper is to develop amethodology for the
rigorous construction of the charge-localized diabatic electron�
proton vibronic states that form the basis of nonadiabatic PCET
theories. A variety of schemes have been developed to generate
diabatic electronic states, particularly for electron transfer
reactions.9�31 Diabatic electronic states can be defined mathe-
matically as states with vanishing first-order nonadiabatic cou-
plings at all possible nuclear configurations. In the context of

electron transfer reactions, the diabatic electronic states are
associated with the physically meaningful reactant and product
states corresponding to the electron localized on the donor and
acceptor, respectively. These diabatic electronic states are usually
characterized by charge invariance in that the electronic charge
distribution does not change significantly with nuclear motion.
Schemes that have been developed to generate charge-localized
diabatic electronic states for electron transfer reactions include the
minimization of first-order nonadiabatic couplings using an adiabatic
electronic state basis,10�12 the generalized Mulliken�Hush
method13,14 and extensions using Boys localization,25,26 block
diagonalization methods,19,20 approaches enforcing configurational
uniformity,9,16,17,22 constrained density functional theory,29,30

and valence bond theory approaches.15,24

In a previous study,23 we devised a scheme to calculate charge-
localized diabatic electronic states for PCET reactions. In
particular, we used an adiabatic-to-diabatic transformation10 to
generate diabatic electronic states constructed to ensure that the
first-order nonadiabatic couplings with respect to the one-
dimensional transferring hydrogen coordinate vanish exactly.
When this diabatization approach was applied to the phenoxyl�
phenol self-exchange PCET reaction, the diabatic electronic
states were shown to exhibit physically meaningful charge-
localized electronic charge distributions. Moreover, we showed
that this diabatization scheme provides quantitative diagnostics
for the degree of electron�proton nonadiabaticity in PCET
systems.23 Identifying the degree of electron�proton nonadia-
baticity is important because this property impacts the form of

Received: May 27, 2011
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the vibronic coupling and the rate constant and provides insight
into the fundamental mechanism. Specifically, electronically
adiabatic proton transfer is associated with the hydrogen atom
transfer mechanism, which does not involve significant electronic
charge redistribution, and electronically nonadiabatic proton
transfer is associated with the PCET mechanism, which involves
significant electronic charge redistribution.32,33

In the present study, we expand this diabatization scheme in
several directions. We extend this approach to general asym-
metric PCET reactions and to other one-dimensional reaction
coordinates, such as a normal mode coordinate or the intrinsic
reaction coordinate (IRC). We also expand the previous treat-
ment to describe three-dimensional hydrogen motion, where the
component of the first-order nonadiabatic coupling vector along
a specified one-dimensional reaction coordinate vanishes rigor-
ously for all points on the three-dimensional diabatic electronic
surfaces. In addition, we devise a strategy that utilizes the diabatic
electronic states, along with the associated proton vibrational
wave functions, to construct electron�proton vibronic states
that describe either one-dimensional or three-dimensional hy-
drogen motion. These electron�proton vibronic states form the
basis of nonadiabatic PCET theories and enable the calculation
of vibronic couplings, rate constants, and kinetic isotope effects.

In addition to developing these extensions of the diabatization
method for PCET reactions, we compare the diabatic electronic
states obtained with this approach to those obtained with the
generalized Mulliken�Hush (GMH) method13,14 and exten-
sions using Boys localization.25,26 These alternative diabatization
methods generate the diabatic electronic states from the dipole
moments associated with the ground and excited adiabatic
electronic states rather than the first-order nonadiabatic cou-
plings. The application of the GMH and Boys localization
diabatization methods to PCET reactions is straightforward
but, to our knowledge, has not been explored previously. The
similarities among the diabatic electronic states generated with
these three different diabatization methods provide a degree of
validation for the underlying assumptions of the theoretical
treatments.

An outline of this paper is as follows. Section II.A describes the
adiabatic-to-diabatic transformation along a one-dimensional
hydrogen coordinate utilized to generate diabatic electronic
states. In section II.B, we discuss modifications of this diabatiza-
tion protocol to generate diabatic electronic states along general
one-dimensional reaction coordinates, including a normal mode
coordinate and the IRC. Section II.C describes the construction
of diabatic electron�proton vibronic states for both one-dimen-
sional and three-dimensional hydrogen motion. Section II.D
summarizes the GMH and Boys localization methods that are
implemented for comparison. In section III, we provide the
details of the computational methods used to study three model
PCET systems: the phenoxyl�phenol self-exchange reaction,
the asymmetric phenoxyl�quinol reaction, and the amidinium�
carboxylate system representing an experimentally studied
photoinduced PCET reaction.34�36 Section IV.A describes the
generation of the diabatic electronic states for these three model
systems, illustrating the extensions to asymmetric systems and to
alternative one-dimensional reaction coordinates. Section IV.B
presents the strategy for combining the diabatic electronic states
with the associated proton vibrational states to construct diabatic
electron�proton vibronic states. In section IV.C, we provide
a comparison of this diabatization method to the GMH and
Boys localization methods for generating diabatic electronic

states. Finally, conclusions and future direction are discussed in
section V.

II. THEORY

II.A. Adiabatic-to-Diabatic Transformation. Consider a
system comprised of Ne electrons, Np protons, and Ns slow
nuclei with coordinates re, rp, andR andmassesme,mp, and {MI},
respectively, and with potential energy V(re,rp,R). The Hamilto-
nian for the “fast” degrees of freedom (i.e., the electron�proton
subsystem) is

Hq ¼ � ∑
Np

i0 ¼ 1

p2

2mp
∇2

i0 þ He ð1Þ

where the electronic Hamiltonian is

He ¼ � ∑
Ne

i¼ 1

p2

2me
∇2

i þ Vðre, rp,RÞ ð2Þ

For fixed R, the eigenfunctions {Φk(re,rp;R)} of Hq are calcu-
lated by solving

HqΦkðre, rp;RÞ ¼ EkðRÞ Φkðre, rp;RÞ ð3Þ
The adiabatic electronic states for fixed (rp,R) are determined by
solving

Heψiðre; rp,RÞ ¼ εiðrp,RÞ ψiðre; rp,RÞ ð4Þ
Assuming N electronic states, we define ψB to be a column

vector of the N electronic eigenfunctions {ψi(re;rp,R)} of eq 4.
Then, we define an N � N transformation matrix A(rp;R) such
that

ξ~ðre; rp,RÞ ¼ Aðrp;RÞ ψ~ðre; rp,RÞ ð5Þ
where ξB is a column vector of functions satisfying the condition

Æξij∇rpξjæe ¼ 0 for all i, j ð6Þ
Thus, the transformed electronic states {ξi(re;rp,R)} satisfy the
standard definition of diabatic states with respect to the proton
coordinate rp.
As discussed in refs 10 and 23, for a one-dimensional proton

coordinate rp andN = 2 electronic states, the matrix A is given by

Aðrp;RÞ ¼
cos γ �sin γ

sin γ cos γ

0
@

1
A ð7Þ

where

γðrp;RÞ ¼ γðr0;RÞ �
Z rp

r0

dðepÞ12 ðr;RÞ dr ð8Þ

In this expression,

dðepÞ12 ðrp;RÞ ¼
*
ψ1

�����∂ψ2

∂rp

+
e

¼

*
ψ1

�����∂He

∂rp

�����ψ2

+
e

ε2 � ε1
ð9Þ

is the first-order nonadiabatic coupling between adiabatic elec-
tronic states 1 and 2, and γ(r0;R) is an additive constant that must
be specified at someproton coordinate rp = r0. The diabatic potential
energy matrix is given by W = AUA�1, where Uij = εi(rp,R)δij
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is the adiabatic potential energy matrix. Here, W11(rp,R) and
W22(rp,R) are the diabatic electronic energies and W12(rp,R) is
the diabatic electronic coupling.
Previously, we applied this approach to symmetric systems. In

this case, we chose r0 = 0, corresponding to the transition state
geometry, and set γ(r0) = �π/4. This choice ensures that the
adiabatic electronic states mix maximally and the diabatic elec-
tronic states cross at the transition state geometry, where the
nonadiabatic coupling is a maximum. Moreover, the magnitude
of the diabatic electronic coupling, W12, is exactly half the
splitting between the adiabatic electronic energies at this geo-
metry. In the present paper, we extend this treatment to
asymmetric systems, for which the nonadiabatic coupling is not
necessarily a maximum at the transition state geometry. For the
general case, we choose r0 to be the hydrogen position at which
the nonadiabatic coupling is maximum and set γ(r0) = �π/4.
This choice ensures that the diabatic states cross at rp = r0 and
that the adiabatic states mix maximally at the hydrogen position
corresponding to the largest nonadiabatic coupling.
II.B. Diabatization alongOtherOne-Dimensional Reaction

Coordinates. This approach may be extended to other one-
dimensional reaction coordinates, such as a normal mode
coordinate or an IRC. In this subsection, we discuss the genera-
tion of the diabatic electronic states along these types of
alternative one-dimensional reaction coordinates, which typically
are comprised of combinations of the motions of the transferring
hydrogen and other heavy nuclei in the system. The objective is
to calculate diabatic electronic states for which the first-order
nonadiabatic coupling vanishes exactly along a general one-
dimensional reaction coordinate. These diabatic electronic states
will not be used to generate electron�proton vibronic states.
First, we discuss the generation of diabatic electronic states

along a single normal mode coordinate, q, with corresponding
effective mass μ. In this case, we can still utilize eqs 1�4 by
replacing rp with q and mp with μ, where the adiabatic and
diabatic electronic energies depend explicitly on q rather than rp.
In PCET reactions, the relevant normal mode describing the
proton transfer reaction is expected to be dominated by proton
motion, so typically μ ≈ mp. The adiabatic-to-diabatic transforma-
tion given in eq 5 ensures that the component of the nonadiabatic
coupling vector along the normal mode coordinate q vanishes.
Since the normal mode coordinate is a linear combination of
Cartesian displacements of all nuclei, the nonadiabatic coupling
with respect to the normal mode coordinate can be calculated
analytically as a linear combination of the nonadiabatic couplings
with respect to the Cartesian coordinates of all nuclei.
An alternative one-dimensional reaction coordinate is the IRC,

which is generated numerically by following the minimum energy
path from a transition state to the corresponding reactant and
product state minima. In this case, the theoretical formalism
described above is no longer rigorous, but we are able to define
the adiabatic-to-diabatic transformation given in eq 5 so that the
component of the first-order nonadiabatic coupling vector along
the IRC vanishes. Since the IRC is generally not a linear combina-
tion of Cartesian coordinates, the nonadiabatic coupling in eq 9
cannot be calculated analytically. Instead, the component of the
nonadiabatic coupling vector along the IRC can be calculated
numerically as the scalar product of the nonadiabatic coupling
vector with respect to the Cartesian coordinates of all nuclei and
the instantaneous displacement vector of these coordinates with
respect to the IRC approximated at each point using central-point
differentiation. The formal treatment of the IRC in terms of

eqs 1�4 is not rigorously valid because the IRC is not associated
with a specific mass and is not defined to have vanishing kinetic
energy couplings with respect to other nuclear coordinates. As
shown below, however, physically reasonable charge-localized
diabatic electronic states for which the first-order nonadiabatic
coupling vanishes along the IRC can be generated with this
approach. Similarly, this approach may be used to generate these
types of diabatic electronic states along any specified one-dimen-
sional coordinate, such as the reaction path generated by a series of
constrained optimizations, where the relative hydrogen position is
constrained while all other nuclear coordinates are optimized.
II.C. Construction of Electron�Proton Vibronic States.

The diabatic electronic energies and couplings may be used to
construct the electron�proton vibronic states that form the basis
of nonadiabatic PCET theories. In the case of one-dimensional
hydrogen motion with fixed heavy nuclei R, the proton vibra-
tional states for diabatic electronic state i are obtained by solving

� p2

2mp

∂
2

∂r2p
þ Wiiðrp,RÞ

 !
jðiÞ
μ ðrp;RÞ ¼ ε~ðiÞμ ðRÞ jðiÞ

μ ðrp;RÞ

ð10Þ
where ε~μ

(i)(R) is the energy of the electron�proton vibronic state
(i, μ). The diabatic electron�proton vibronic states {ζiμ(re,rp;R)}
are then defined as products of the diabatic electronic wave
functions and associated proton vibrational wave functions:

ζiμðre, rp;RÞ ¼ ξiðre; rp,RÞ jðiÞ
μ ðrp;RÞ ð11Þ

In the electronically nonadiabatic limit, the vibronic coupling
between the reactant and product diabatic vibronic states ζ1μ and
ζ2ν is

23,33,37

V ðnaÞ
μν ¼ Æjð1Þ

μ jW12jjð2Þ
ν æp ð12Þ

which reduces to the familiar form of the diabatic electronic
couplingmultiplied by the Franck�Condon overlap between the
reactant and product proton vibrational wave functions when the
diabatic electronic coupling W12(rp,R) is independent of rp. In
principle, a similar procedure could be applied to the diabatic
electronic states generated along a normal mode coordinate
when this normal mode is dominated by the hydrogen motion.
This treatment can be extended to construct three-dimensional

electron�proton vibronic states that include the three-dimen-
sionalmotion of the transferring hydrogen. In this case, the adiabatic
and diabatic electronic states depend on the three-dimensional
proton coordinate rp = (rp,sp,tp). The diabatic electronic states are
constructed so that the component of the first-order nonadiabatic
coupling vector along rp, as given in eq 9, vanishes exactly for all
points on a three-dimensional proton coordinate grid. Thus, the
adiabatic-to-diabatic transformation can be expressed as

ξ~ðre; rp, sp, tp,RÞ ¼ Aðrp, sp, tp;RÞ ψ~ðre; rp, sp, tp,RÞ ð13Þ
but only the component of the first-order nonadiabatic coupling
vector along rp is used to determine A(rp,sp,tp;R). In practice, the
component of the first-order nonadiabatic coupling vector along
rp is calculated at each grid point (rp,sp,tp). For each value of
(sp,tp), r0 is chosen to be the proton position along the rp slice
at which this nonadiabatic coupling is maximum, and γ(rp,sp,tp)
is determined by calculating the line integral in eq 8 with
γ(r0,sp,tp) = �π/4. This procedure ensures that the first-order
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nonadiabatic couplings with respect to rp vanish exactly for all
points on the three-dimensional proton coordinate grid.
The resulting three-dimensional diabatic potential energy

matrix is given by W = AUA�1, where Uii = εi(rp,sp,tp,R) are
the three-dimensional adiabatic potential energy surfaces and
Wii(rp,sp,tp,R) are the three-dimensional diabatic potential en-
ergy surfaces. For fixed heavy nuclei R, the three-dimensional
proton vibrational wave functions for diabatic electronic state i
are calculated using the three-dimensional analog of eq 10 with
potential energiesWii(rp,sp,tp,R). These wave functions can then be
combined with the associated diabatic electronic states, as in
eq 11, to form three-dimensional electron�proton vibronic states.
We also explored an alternativemore approximate formulation

in which the adiabatic-to-diabatic transformation matrix A de-
fined in eq 7 depends explicitly on only the one-dimensional
proton coordinate rp [i.e., γ(rp) is independent of the orthogonal
coordinates (sp,tp)]. The advantage of this alternative formula-
tion is that it only requires the calculation of the first-order
nonadiabatic couplings along the one-dimensional rp axis corre-
sponding to sp = tp = 0 (i.e., the proton donor�acceptor axis in
the applications discussed below). As a result, however, the first-
order nonadiabatic couplings with respect to rp vanish only along
the one-dimensional rp axis and do not vanish exactly for the
other points on the three-dimensional proton coordinate grid.
II.D. Generalized Mulliken�Hush and Boys Localization.

The GMHmethod13,14 generates diabatic electronic states using
the adiabatic electronic state dipole moments. These dipole
moments are defined in terms of the adiabatic electronic states
as μBij = Æψi|μ̂|ψjæ for i ∈ {1,2}, where μ̂ is the dipole moment
operator. The GMH method utilizes an adiabatic-to-diabatic
transformation matrix analogous to eq 7:

AGMHðrp;RÞ ¼
cos θ �sin θ

sin θ cos θ

0
@

1
A ð14Þ

In this case, θ(rp;R) depends on the adiabatic electronic state
dipole moments:

tanð2θÞ ¼ 2μ~12 3 vB
j vBj2

ð15Þ

where νB = μB11� μB22 and typically μB12 and νB are assumed to be
parallel. Analogous to eq 5, the diabatic electronic states are
determined by

ξ~
GMHðre; rp,RÞ ¼ AGMHðrp;RÞ ~ψðre; rp,RÞ ð16Þ

The GMH expression for the mixing angle in eq 15 is derived by
defining AGMH as the transformation that diagonalizes the
adiabatic dipole moment matrix, ensuring that the diabatic transi-
tion dipole moment is exactly zero, i.e., Æξ1GMH|μ̂|ξ2

GMHæ = 0.
Subotnik et al. demonstrated that the GMH procedure can be

extended to arbitrary geometries and multiple charge centers
using Boys localization.26 The more general expression for θ in
eq 14 is given as26

cosð4θÞ ¼ �Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 þ G2

p ð17Þ

where

F ¼ jμ~12j2 �
jμ~11 � μ~22j2

4
ð18Þ

and

G ¼ μ~12 3 ðμ~11 � μ~22Þ ð19Þ
Invoking the assumption that μB12 and νB are parallel in
eqs 17�19 leads to an expression for θ that coincides with the
GMH expression given in eq 15.

III. COMPUTATIONAL METHODS

We used three systems to test the theoretical methods developed
above. We studied the self-exchange reaction between the phenoxyl
radical and the phenol molecule depicted in Figure 1a. We also
studied the analogous reaction between the phenoxyl radical and
the 1,4-benzenediol (quinol) molecule depicted in Figure 1b.
The transition state geometries for these systems were calculated
using density functional theory (DFT) with the B3LYP
functional38,39 and the 6-31G* basis set.40 We also examined
the amidinium�carboxylate system depicted in Figure 1c. We
followed a similar but not identical geometry optimization
procedure as that described in ref 36. In our procedure, we
optimized the complete neutral amidinium�carboxylate system
at the RHF/6-31G** level of theory, maintaining planarity of the
system except for the three methyl group hydrogen atoms. The
adiabatic and diabatic electronic states were calculated for the
PCET reaction in the negatively charged complex with the lower
proton in Figure 1c being transferred. The geometry optimiza-
tions were performed using Gaussian 09.41

We generated the adiabatic and diabatic electronic energy
curves for the phenoxyl�phenol and phenoxyl�quinol systems
along three different types of one-dimensional reaction coordi-
nates. In the first scheme,23 all nuclei except the transferring
hydrogen atom were fixed at the transition state geometry, and
the hydrogen was displaced along a one-dimensional grid span-
ning the hydrogen donor�acceptor axis. In the second scheme,
all nuclei were displaced according to the normal mode coordi-
nate corresponding to the negative frequency identified at the
transition state geometry. In the third scheme, all nuclei were
displaced according to the IRC calculated using the same level of

Figure 1. Three model systems studied: (a) phenoxyl�phenol, (b)
phenoxyl�quinol, and (c) amidinium�carboxylate systems. The phe-
noxyl�phenol and phenoxyl�quinol systems are neutral, while the
amidinium�carboxylate system has an overall charge of �1.



2835 dx.doi.org/10.1021/ct200356b |J. Chem. Theory Comput. 2011, 7, 2831–2841

Journal of Chemical Theory and Computation ARTICLE

theory as described above. For all three schemes, we generated
128 geometries along the reaction coordinate. We used only the
first scheme, which is based on the one-dimensional hydrogen
coordinate along the hydrogen donor�acceptor axis with all
other nuclei fixed, to study the amidinium�carboxylate system.

For each system, we calculated the two lowest-energy electro-
nically adiabatic potential energy curves using the complete active
space self-consistent field (CASSCF)method. TheCASSCF calcula-
tions of the phenoxyl�phenol and phenoxyl�quinol systems
were performed with the 6-31G* basis set and an active space of
three electrons in six orbitals, state-averaging over the ground
and first excited electronic states with equal weighting. The
CASSCF calculations of the amidinium�carboxylate system
were performed with the 6-31G** basis set and an active space
of one electron in three orbitals, state-averaging over the lowest
three electronic states with equal weighting.36 We also calculated
the two lowest-energy electronically adiabatic potential energy
surfaces in three dimensions by displacing the hydrogen on a
three-dimensional grid consisting of 16 points in each direction,

with all other nuclei remaining fixed. In addition, we obtained the
nonadiabatic coupling vectors with respect to the Cartesian
coordinates of all nuclei directly from the CASSCF calculations.
The GAMESS electronic structure package42 was used to per-
form all CASSCF calculations. Note that these calculations were
performed at a relatively low level of theory because our goal is to
examine only the qualitative features of the various theoretical
approaches.

We constructed the electron�proton vibronic states for one-
dimensional or three-dimensional hydrogen motion with all
other nuclei fixed. This procedure utilized the diabatic electronic
states generated with the first scheme described above. We
calculated one-dimensional proton vibrational wave functions
describing the proton motion on the diabatic electronic energy
surfaces by solving the one-dimensional Schr€odinger equation
given in eq 10. These calculations were performed with the
Fourier grid Hamiltonian (FGH)method43 using 128 grid points
along the hydrogen donor�acceptor axis. We calculated three-
dimensional proton vibrational wave functions using the three-
dimensional analog of eq 10. These calculations were performed
with the FGH�FCI (full configuration interaction) method44

on the three-dimensional diabatic electronic energy surfaces
mentioned above.

To examine the charge transfer properties, we calculated the
dipole moments, atomic charges, and electrostatic potential
maps as functions of the one-dimensional reaction coordinate
for the adiabatic and diabatic electronic states. The properties of
the adiabatic electronic states were calculated directly from the
CASSCF wave functions with GAMESS. For the diabatic elec-
tronic states, we modified a local version of GAMESS to calculate
these properties for the appropriate linear combination of
configuration interaction states following the transformation

Figure 2. Adiabatic and diabatic electronic state properties as functions
of the transferring hydrogen coordinate for the (a) phenoxyl�phenol,
(b) phenoxyl�quinol, and (c) amidinium�carboxylate systems. The left
panels depict the electronically adiabatic and diabatic potential energy
curves. The solid black curves are the ground and first excited adiabatic
state energies ε1(rp,R) and ε2(rp,R), respectively, calculated with the
CASSCF method, and the dashed blue and red curves are the diabatic
electronic energies W11(rp,R) and W22(rp,R), respectively, where the
choice of γ(r0) is described in the text. The right panels depict the
component of the first-order nonadiabatic coupling vector along the
hydrogen donor�acceptor axis, as defined in eq 9.

Figure 3. Electrostatic potential maps for the diabatic electronic states
ξ1 (left) and ξ2 (right) corresponding to a density isosurface value of
0.005 for the (a) phenoxyl�phenol, (b) phenoxyl�quinol, and (c)
amidinium�carboxylate systems at rp = r0. Negatively and positively
charged regions are indicated by red and blue coloring, respectively. The
maps for the amidinium�carboxylate system are difference electrostatic
potential maps with respect to the neutral complex, as described in
the text.
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given in eq 5. The atomic charges were obtained by fitting to the
electrostatic potential calculated at points on the Connolly
surface45 under the constraint of reproducing the total charge
and dipole moment of the electronic state under consideration.46

IV. RESULTS

IV.A. Generating Diabatic Electronic States. In this study, we
applied the adiabatic-to-diabatic transformation methodology23

to the more general case of asymmetric PCET reactions, as
depicted in Figures 1b and c. For each system, we calculated the
ground and first excited adiabatic electronic states and the
nonadiabatic couplings along the one-dimensional hydrogen
coordinate using the CASSCF method. As shown in Figures 2
and 3, the adiabatic-to-diabatic transformation successfully gen-
erated physically meaningful charge-localized diabatic electronic
states for all three systems. In all cases, the diabatic electronic
energies, W11(rp,R) and W22(rp,R) (dashed blue and red

lines, respectively, in the left panels of Figure 2) are virtually
identical to the adiabatic electronic energies, ε1(rp,R) and ε2(rp,R)
(solid black lines in the left panels of Figure 2), over all hydrogen
positions except near rp = r0, where they smoothly cross. All three
systems exhibit a relatively localized region of strong nonadia-
batic coupling, as shown in the right panels of Figure 2.
Figures 2b and c illustrate that the phenoxyl�quinol and the

amidinium�carboxylate systems possess significantly asym-
metric adiabatic electronic energies and nonadiabatic couplings.
In particular, these systems exhibit an energy bias between
geometries corresponding to the hydrogen localized on the
donor molecule and the hydrogen localized on the acceptor
molecule. Furthermore, the maximum of the nonadiabatic cou-
pling along the donor�acceptor axis is shifted from the donor�
acceptor midpoint, which is chosen to be at rp = 0 for all systems.
This shift is more noticeable for the phenoxyl�quinol system.
As mentioned above, we chose r0 to be the hydrogen posi-
tion at which the nonadiabatic coupling is maximum and set

Figure 4. Partial charges determined from electrostatic potential-derived atomic charges for the ground adiabatic electronic state (left), the diabatic
electronic state ξ1 (center), and the diabatic electronic state ξ2 (right) for the phenoxyl�phenol system calculated using various reaction coordinates:
(a) the one-dimensional hydrogen coordinate, (b) the normal mode coordinate corresponding to the negative frequency at the transition state geometry,
and (c) the IRC. Partial charges are shown for the donor molecule (green), acceptor molecule (purple), and transferring hydrogen (gray). Calculated
values of the partial charges for the diabatic electronic states around rp = r0 are omitted due to numerical noise in this region.
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γ(r0) = �π/4 in eq 8 to ensure that the diabatic states cross at
rp = r0 and that the adiabatic statesmixmaximally at the hydrogen
position corresponding to the largest nonadiabatic coupling.
Figure 2 illustrates that the resulting diabatic potential energies
correspond to the transferring hydrogen localized on the donor
molecule inW11(rp,R) and the acceptor molecule inW22(rp,R).
The electrostatic potential maps for diabatic states ξ1 and ξ2 at

rp = r0 are depicted in Figure 3. These electrostatic potential
maps illustrate that the diabatic electronic states possess localized
electronic charge distributions. The corresponding electrostatic
potential maps for other positions of the transferring hydrogen
are provided in the Supporting Information (Figures S1�S3)
and indicate that these electronic charge distributions are rela-
tively invariant along the transferring hydrogen coordinate. The
amidinium�carboxylate system is negatively charged, and the
electrostatic potential maps are strongly influenced by the charge
separation at the hydrogen-bonding interface (see Figure 1c). To
clarify the charge localization of the diabatic electronic states with
respect to the transferring electron, the electrostatic potential of
the neutral amidinium�carboxylate complex was subtracted
from that of the negatively charged complex. The resulting
difference electrostatic potential maps plotted in Figure 3 clearly
demonstrate charge localization with respect to the transferring
electron.
Figures 4a and 5 depict the partial charges on the donor (green)

and acceptor (purple) molecules for the adiabatic (left panels)
and diabatic (center and right panels) electronic states for
the phenoxyl�phenol and amidinium�carboxylate systems,
respectively. The corresponding figure for the phenoxyl�quinol
system is provided in Supporting Information Figure S4. For all
three systems, the partial charges on the donor and acceptor
molecules change significantly along the reaction coordinate for
the adiabatic electronic states but remain relatively constant for
the diabatic electronic states. Analogous to the procedure used
for the electrostatic potential maps, the partial charges for the
donor and acceptor molecules in the amidinium�carboxylate
system are determined by subtracting the corresponding partial
charges calculated for the neutral complex. The partial charges
prior to this subtraction are provided in Supporting Information
Figure S5. As shown in Figure 5, the resulting plots clearly
demonstrate the charge localization of the diabatic electronic
states with respect to the transferring electron. Thus, this
adiabatic-to-diabatic transformation method provides physically

meaningful diabatic electronic states with localized electronic
charge distributions that are relatively invariant along the trans-
ferring hydrogen coordinate for both symmetric and asymmetric
systems.
We also calculated the diabatic electronic states along two

other types of reaction coordinates: the normal mode coordinate
associated with the negative frequency at the transition state and
the IRC. We present the results for the phenoxyl�phenol
system, although the corresponding results for the asymmetric
phenoxyl�quinol system are qualitatively similar to those for
the symmetric case and are included in Supporting Information
Figure S6. Figure 6 depicts the adiabatic and diabatic electronic
energies calculated along the normal mode coordinate and the
IRC. We observed that the normal mode coordinate is domi-
nated by the motion of the transferring hydrogen (i.e., the mass
associated with this normal mode was ∼1.12 amu). For this
reason, the adiabatic and diabatic electronic energies calculated
along the normal mode coordinate (Figure 6a) are very similar to
those calculated along the one-dimensional hydrogen coordinate
(Figure 2a). The adiabatic and diabatic electronic energies
calculated along the IRC (Figure 6b) are qualitatively similar
to those calculated along the one-dimensional hydrogen coordi-
nate near the transition state but plateau in the outer regions after
the IRC reaches the minimum energy geometries.
Figure 4 compares the partial charges on the donor (green)

and acceptor (purple) molecules for the adiabatic (left panels)

Figure 5. Partial charges determined from electrostatic potential-derived atomic charges for the ground adiabatic electronic state (left), the diabatic
electronic state ξ1 (center), and the diabatic electronic state ξ2 (right) as functions of the transferring hydrogen coordinate for the amidi-
nium�carboxylate system. Partial charges are shown for the donor molecule (green) and the acceptor molecule (purple). The partial charges on
the donor and acceptor molecules are obtained after subtracting the corresponding partial charges of the neutral complex, as described in the text. Due to
this subtraction, the transferring hydrogen has no significant charge, although it has a nearly constant charge of ∼0.58e for the adiabatic and diabatic
electronic states prior to this subtraction. Calculated values of the partial charges for the diabatic electronic states around rp = r0 are omitted due to
numerical noise in this region.

Figure 6. Electronically adiabatic and diabatic potential energy curves
for the phenoxyl�phenol system as functions of (a) the normal mode
coordinate corresponding to the negative frequency at the transition
state geometry and (b) the IRC. The solid black curves are the ground
and first excited adiabatic state energies, and the dashed blue and red
curves are the diabatic electronic energies.
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and diabatic (center and right panels) electronic states for the
three different types of reaction coordinates. The partial charges
for the one-dimensional hydrogen coordinate and the normal
mode coordinate, as depicted in Figures 4a and b, respectively,
are very similar. The results for the IRC are also qualitatively
similar. In all cases, the partial charges on the donor and acceptor
molecules remain relatively constant along the reaction coordi-
nate for the diabatic electronic states. Thus, the adiabatic-
to-diabatic transformation method provides charge-localized
diabatic electronic states with electronic charge distributions that
are relatively invariant along all three types of reaction coordinates.
IV.B. Constructing Electron�Proton Vibronic States. We

constructed the electron�proton vibronic states correspond-
ing to the diabatic electronic states generated along the one-
dimensional hydrogen coordinate with all other nuclei fixed.
For this purpose, we calculated the one-dimensional proton
vibrational wave functions by solving eq 10 with each of the
diabatic electronic energies,W11(rp,R) andW22(rp,R), shown in
Figure 2a. The four lowest-energy proton vibrational wave
functions corresponding to each diabatic electronic state for
the phenoxyl�phenol system are depicted in Figure 7. These
proton vibrational wave functions can be combined with the
diabatic electronic wave functions, ξ1 and ξ2, by forming
products as in eq 11 to obtain the electron�proton vibronic
states that comprise the basis of nonadiabatic PCET rate
theories. In particular, these vibronic states can be used directly
to calculate vibronic couplings, which are essential for the
calculation of experimentally accessible quantities such as rate
constants and kinetic isotope effects. The vibronic couplings
calculated using eq 12 will be discussed below.
We also calculated three-dimensional diabatic potential energy

surfaces and the associated proton vibrational wave functions.
For this purpose, we applied the adiabatic-to-diabatic transfor-
mation given by eq 13, where the transformation matrix depends
on the three-dimensional proton coordinate, and the component
of the nonadiabatic coupling vector along rp vanishes exactly
for all points on the three-dimensional proton coordinate grid.
The resulting partial charges for the phenoxyl�phenol system
are given in Table 1. For comparison, we also applied the
more approximate adiabatic-to-diabatic transformation, where
the transformation matrix depends explicitly on only the one-
dimensional proton coordinate rp, and the component of the
nonadiabatic coupling vector along rp vanishes exactly only for
points on the one-dimensional proton donor�acceptor axis.
The resulting partial charges are given in Table S1 of the

Supporting Information and are qualitatively similar to those
provided in Table 1. This more approximate approach may be
useful for larger systems because the computational expense is
significantly lower.
Table 1 demonstrates that the three-dimensional diabatic

electronic states generated for the phenoxyl�phenol system

Figure 7. Four lowest-energy one-dimensional proton vibrational
wave functions (black solid lines) calculated using eq 10 for the
diabatic electronic potential (a)W11 and (b)W22 for the phenoxyl�
phenol system.

Table 1. Average Electrostatic Potential-Derived Partial
Charges Calculated for the Three-Dimensional Ground
Adiabatic and Diabatic Electronic States Reported with
Standard Deviations for the Phenoxyl�Phenol Systema

electronic state donor charge acceptor charge H charge

ψ1 �0.2( 0.4 �0.2( 0.4 0.5( 0.1

ξ1 �0.7( 0.2 0.3( 0.2 0.4( 0.1

ξ2 0.3( 0.2 �0.7( 0.2 0.4( 0.1
aThe tabulated results were computed by averaging over the 163 hydrogen
positions on the three-dimensional grid, where points around rp = r0 were
omitted due to numerical noise in this region. All charges are given in units
of e. Deviation of the total charge from zero is due to numerical noise and
round-off error. The diabatic electronic states were calculated using eq 13,
ensuring that the component of the first-order nonadiabatic coupling vector
along rp vanishes exactly for all points on the three-dimensional grid.

Figure 8. Three lowest-energy three-dimensional proton vibrational
wave functions corresponding to a density isosurface value of 0.002 for
the three-dimensional diabatic potential energy surfacesW11 (blue wave
functions) and W22 (red wave functions) for the phenoxyl�phenol
system. The top figure corresponds to the lowest-energy proton
vibrational state.
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are charge-localized. This table provides the partial charges on
the donor and acceptor molecules, as well as the transferring
hydrogen, averaged over all hydrogen positions on the three-
dimensional grid. As expected, the average donor and acceptor
partial charges for the three-dimensional adiabatic electronic
ground state are identical, and the standard deviations reflect the
changes in the donor and acceptor partial charges that are
consistent with those observed along the one-dimensional
hydrogen coordinate depicted in the left panel of Figure 4a. In
contrast, the three-dimensional diabatic electronic states exhibit
charge-localization: the average charge on the donor is negative
(positive) and the average charge on the acceptor is positive
(negative) when averaged over all hydrogen positions for the
diabatic electronic state ξ1 (ξ2). These results are also consistent
with the partial charges along the one-dimensional hydrogen
coordinate depicted in the center and right panels of Figure 4a.
The standard deviations are slightly larger than would be
predicted from Figure 4 because of numerical fluctuations near
the transition state geometry.
We used these three-dimensional diabatic potential energy

surfaces to calculate the associated three-dimensional proton
vibrational wave functions with the FGH�FCI method. The
three lowest-energy proton vibrational wave functions corre-
sponding to each diabatic electronic state for the phenoxyl�
phenol system are depicted in Figure 8. The proton vibrational
wave functions associated with the diabatic state ξ1 (blue) are
localized near the donor molecule, while the proton vibrational
wave functions associated with the diabatic state ξ2 (red) are
localized near the acceptor molecule. These results are consistent
with the corresponding one-dimensional proton vibrational wave
functions along the donor�acceptor axis depicted in Figure 7.
The three-dimensional proton vibrational wave functions can be
combined with the corresponding diabatic electronic wave
functions to generate three-dimensional diabatic electron�pro-
ton vibronic states, which can be used to calculate vibronic
couplings, rate constants, and kinetic isotope effects of nonadia-
batic PCET reactions.
IV.C. Comparison to Generalized Mulliken�Hush and

Boys Localization. We also used the GMH procedure to
generate charge-localized diabatic electronic states for the phe-
noxyl�phenol and amidinium�carboxylate systems. The adia-
batic state dipole moments were calculated directly from the
CASSCF wave functions. The GMH diabatization produced
qualitatively similar diabatic electronic states to those generated

using the diabatization procedure described in section II.A. In
particular, the diabatic electronic energies depicted in Figures 9a
and b are virtually identical to those depicted in Figures 2a and c,
respectively. Moreover, Figure 10 illustrates that the calculated
diabatic state dipole moments are very similar for the two
diabatization schemes. Thus, these two fundamentally differ-
ent diabatization approaches lead to nearly identical diabatic
electronic states. In principle, proton vibrational wave func-
tions could be calculated using the GMH diabatic potential
energies and combined with the associated diabatic electronic
wave functions to form electron�proton vibronic states, as
described above.
In addition, we used the Boys localization scheme to generate

diabatic electronic states for the phenoxyl�phenol and
amidinium�carboxylate systems. The Boys localization method
produced results that are virtually identical to the GMH results
presented in Figures 9 and 10. This high level of agreement is
attributed to the observation that the vectors μB12 and μB11� μB22

were essentially parallel for all positions of the transferring
hydrogen. In particular, for all rp such that |rp| e 0.5 Å,
|(μB12)

u
3 (μB11 � μB22)

u| g 0.998 for the phenoxyl�phenol
system and |(μB12)

u
3 (μB11 � μB22)

u| g 0.992 for the amidi-
nium�carboxylate system, where the u superscript indicates
the unit vector in the specified direction. Thus, the GMH and
Boys localization methods are in excellent agreement with the
diabatization method presented in section II.A for the systems
studied.
Finally, we calculated the electronic coupling at the geometry

corresponding to the crossing point of the diabatic potential
energy curves for the three systems studied. This quantity,
W12(r0;R), is calculated as the off-diagonal element of the diabatic
potential energy matrix obtained from transforming the adiabatic
potential energy matrix at rp = r0. Table 2 demonstrates that the
electronic couplings calculated using the GMH and Boys localiza-
tion methods agree very well with those obtained from the
diabatization procedure described in section II.A. Table 2 also
provides the vibronic couplings between the ground electron�
proton vibronic states calculated using eq 12 for μ = ν = 0. These
vibronic couplings are significantly smaller than the corresponding
electronic couplings because of the relatively small overlap

Figure 10. Component of the dipole moment vector along the
hydrogen donor�acceptor axis for the ground and first excited
adiabatic electronic states (solid black curves) and the diabatic
electronic states ξ1 (blue) and ξ2 (red) for the (a) phenoxyl�phenol
system and (b) amidinium�carboxylate system calculated using the
GMH method (dotted) and the adiabatic-to-diabatic transformation
method described in section II.A (dashed). A positive (negative)
dipole moment indicates a dipole moment vector pointing toward
the acceptor (donor). The origin was chosen to be rp = 0 for the
amidinium�carboxylate system.

Figure 9. Electronically adiabatic and diabatic potential energy curves
for (a) the phenoxyl�phenol system and (b) the amidinium�
carboxylate system as functions of the hydrogen coordinate calculated
using the GMHmethod. The solid black curves are the ground and first
excited adiabatic state energies, and the dashed blue and red curves are
the diabatic electronic energies.
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between the reactant and product ground state proton vibrational
wave functions.

V. CONCLUSIONS

In this paper, we developed a scheme to generate charge-
localized diabatic electronic states for a wide range of PCET
systems. These charge-localized diabatic electronic states are
obtained from standard electronic structure calculations using an
adiabatic-to-diabatic transformation designed to ensure that the
first-order nonadiabatic couplings with respect to a specified one-
dimensional reaction coordinate vanish exactly. We applied this
protocol to both symmetric and asymmetric PCET systems with
several different one-dimensional reaction coordinates, including
the hydrogen transfer coordinate, a normal mode coordinate, and
the IRC. This approach was also extended to construct three-
dimensional charge-localized diabatic electronic surfaces corre-
sponding to the three-dimensional motion of the transferring
hydrogen. We demonstrated that this methodology leads to
physically meaningful charge-localized diabatic electronic states
with relatively invariant charge distributions along the reaction
coordinate. These diabatic electronic states are in excellent agree-
ment with those obtained from the GMH and Boys localization
methods.

In addition, we combined these diabatic electronic states with the
associated proton vibrational wave functions to generate electron�
proton vibronic states that describe one- or three-dimensional hy-
drogen motion. These electron�proton vibronic states can be used
to calculate the vibronic couplings that enter the nonadiabatic rate
constant expressions for PCET reactions. Within the golden rule
formalism, each term in the nonadiabatic PCET rate constant
expression is proportional to the square of the electron�proton
vibronic coupling for a pair of reactant and product vibronic states.
As a result, the vibronic couplings strongly impact the rate constants
and kinetic isotope effects of PCET reactions. Thus, the construc-
tion of charge-localized electron�proton vibronic states is essential
for the calculation of experimentally measurable quantities such as
the rate constants and kinetic isotope effects of PCET reactions.
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ABSTRACT:All intermolecular interactions involve London dispersion forces. The accurate treatment of dispersion is essential for
the computation of realistic interaction potentials. In general, the most reliable method for computing intermolecular interactions is
coupled-cluster singles and doubles with perturbative triples [CCSD(T)] in conjunction with a sufficiently flexible Gaussian atomic
orbital basis set, a combination which is not routinely applicable due to its excessive computational demands (CPU time, memory,
storage). Recently, many theoretical methods have been developed that attempt to account for dispersion in a more efficient
manner. It is well-known that dispersion interactions are more difficult to compute in some systems than others; for example, π�π
dispersion is notoriously difficult, while alkane�alkane dispersion is relatively simple to compute. In this work, numerous theoretical
methods are tested for their ability to compute reliable interaction energies in particularly challenging systems, namely, the P2,
PCCP, and NCCN dimers. Symmetry-adapted perturbation theory (SAPT) is applied to these dimers to demonstrate their
sensitivity to the treatment of dispersion. Due to the small size of these systems, highly accurate CCSD(T) potential energy curves
could be estimated at the complete basis set limit. Numerous theoretical methods are tested against the reliable CCSD(T)
benchmarks. Methods using a treatment of dispersion that relies on time-dependent density functional theory (TDDFT) response
functions are found to be the most reliable.

1. INTRODUCTION

Molecules with large, delocalized π orbitals are ubiquitous
throughout chemistry. Not surprisingly, noncovalent interac-
tions involving these types of molecules are important in the
stacking of bases in DNA,1�8 interactions between graphene
sheets,9 the structure and energetics of certain organic crystals,10�13

and some side chain interactions within proteins.14�18 Unfortu-
nately, the interactions between these highly polarizable molecules
are notoriously difficult to study. Even seemingly simple systems,
such as the benzene dimer or indole�benzene complex, can
prove extremely challenging for all but the most robust quantum
mechanical methods.19�21 The most reliable standard method
for treating these types of systems is coupled-cluster singles and
doubles with perturbative triples [CCSD(T)].22,23 However, due
to the computational expense associated with this method, it can
only be applied to systems roughly the size of a nucleic acid base
pair (with a medium-sized basis set).

The difficulty, in many cases, is to accurately capture London
dispersion forces, which are critical for the study of noncovalent
interactions. For even a qualitatively correct description of the
interaction of neutral, nonpolar molecules, a reasonable treatment
of dispersion is required. Of the four interaction components
(electrostatics, induction, dispersion, and exchange-repulsion), the
dispersion interaction is themost difficult for quantummechanical
methods to include in a reliable, yet computationally efficient
manner. The quantum mechanical treatment of electrostatics,
exchange-repulsion, and induction proves effective, at least

semiquantitatively, via Hartree�Fock (HF) or density functional
theory (DFT).24�26 Focusing on wave-function-based methods,
second-order Møller�Plesset perturbation theory (MP2) is the
simplest method that contains some account of dispersion. How-
ever, in many cases (especially those involving delocalized π
orbitals), MP2 grossly overestimates the magnitude of dispersion
interactions.27,28 The usually robust coupled-cluster singles and
doubles (CCSD) method22 also struggles to describe dispersion
in difficult cases, usually underestimating itsmagnitude in the cases
whereMP2 overestimates.29 The inclusion of a perturbative triples
correction is required for quantitatively correct results.29

There are many approximate methods that attempt to correct
the description of dispersion by MP2 or CCSD. The spin-com-
ponent scaled (SCS) methods, originally introduced by Grimme,
attempt to correct the correlation energy by empirically scaling
the same- and opposite-spin components.30,31 There are several
different parametrizations ofMP2, including some specifically for
noncovalent interactions;32,33 unfortunately, it is not clear that
any one set of parameters is reliable for all types of interac-
tions.21,26,34 The SCS-CCSD method31 has been shown to be
much more reliable than SCS-MP2 for treating all types of
noncovalent interactions.26 However, this method requires an
iterative O (N6) procedure to compute an interaction energy,
which limits its applicability. The MP2.5 method of Hobza and
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co-workers35 is comparable to SCS-CCSDwith regard to accuracy
and only requires a noniterative O (N6) energy evaluation. Of
the reliable, approximate wave-function-based methods, the least
computationally expensive [noniterative O (N5)] and the most
physically justified is the MP2C method of Hesselmann.36,37 This
method attempts to correct the behavior of MP2 by evaluating
dispersion with frequency-dependent polarizabilities from time-
dependent density functional theory (TDDFT).

For the study of molecular interactions in even larger systems,
much lower-scaling methods need to be applied. One very
popular and effective approach is to augment traditional density
functionals with a damped R�6 term.38�41 This DFT-D ap-
proach uses the density functional to account for short-range
electron correlation and the empirical correction to capture the
long-range correlation that the functional neglects. The recently
developed -D3 correction42 includes R�6 and R�8 terms com-
puted with atomic dispersion coefficients that depend on the
chemical environment (through the steric numbers of the atoms).
A possible improvement to DFT-D methods is to apply the
dispersion correction to long-range corrected functionals that
are parametrized in the presence of the dispersion correction;
ωB97X-D is such a functional43 and appears to be particularly
robust for noncovalent interactions when used with augmented
triple-ζ basis sets.44 The so-called “double hybrid” functionals
contain an MP2-like term that accounts for dispersion. These
functionals also appear well suited to describe noncovalent
interactions. The B2PLYP and XYG3 functionals are two exam-
ples of double hybrid functionals that have been shown to
perform well.44�48

The methods described above are supermolecular approaches
to computing an interaction energy. It is also possible to compute
interaction energies directly through a perturbative approach; the
most rigorous of these methods is the symmetry-adapted per-
turbation theory (SAPT).49 At this point, it should be noted that
MP2C is a hybrid of supermolecular and perturbative approaches.
SAPT exists in both wave-function-based and DFT-based forms
[with the latter termed SAPT(DFT)]. The wave-function-based
SAPT, which relies on a many-body perturbation theory (MBPT)
expansion, has traditionally been too expensive to apply to large
systems, since it scales asO (N7) when all second-order intramo-
nomer correlation terms are included. However, through density-
fitting (DF) and natural orbital (NO) based approximations, it can
be applied to systems with roughly 50 atoms.50,51 The simplest
SAPT method, SAPT0, consists of a Hartree�Fock interaction
energy and an MP2-like dispersion term; this method can be
applied to systems with over 100 atoms.52 The SAPT(DFT)
method53�57 scales as O (N5) after DF approximations are
applied.58�60 SAPT(DFT) is quickly becoming the preferred
method for describing dispersion in difficult systems with as
many as 72 atoms.9

One of the most accurate methods for obtaining a dispersion
energy via a perturbative approach was developed in the mid-
1990s by Williams et al.61 Their CCD-based approach is similar
to the supermolecular CCD+ST(CCD) method developed by
Raghavachari.62 The evaluation of CCD+ST(CCD) dispersion
requires the iterative solution of five sets of doubles amplitudes,
all of which scale as O (N6). Finally, these amplitudes are used
to evaluate a perturbative triples correction scaling O (N7). Due
to the expense of this method, it has remained virtually unused
since its development. Recently, we have implemented the
CCD+ST(CCD) dispersion while taking advantage of modern
DF and NO approximations.63 These approximations allow

CCD+ST(CCD) dispersion energies to be computed for sys-
tems that are orders of magnitude larger than those which were
previously accessible. A similarly accurate method for computing
dispersion energies, due to Korona and Jeziorski, exists; however,
it also scales as O (N7) (if density fitting approximations are
applied).64�66

With the number of recently developed methods aimed at
describing noncovalent interactions, it is important to have
reliable and challenging benchmarks available. One of the most
popular is the S22 test set of Hobza and co-workers.6 This set of
benchmark interaction energies has been used extensively to test
and train new methods.24 For most wave-function-based meth-
ods, two of the most difficult systems in this test set are the
stacked benzene dimer and indole�benzene complexes.21,67

Even the original benchmark energy for the stacked indole�
benzene differs by approximately 15% from the best estimates
currently available.21,67 It is useful to study systems that contain
dispersion interactions similar to the stacked aromatic π�π
complexes in the S22 test set, but for which more accurate
benchmarks can be established.

In this work, we examine NCCN, P2, and PCCP dimers as
such model systems. All three of these systems are much smaller
than the benzene dimer or indole�benzene, allowing for the
computation of the nonrelativistic, electronic interaction energy in
the complete basis set limit. We apply our new CCD+ST(CCD)
SAPT program to examine the nature of the dispersion interac-
tions present in NCCN, P2, and PCCP dimers compared to those
in stacked aromatic π�π complexes. Through this analysis, the
problems encountered by finite-order perturbation theory are
explored. Furthermore, we compare the molecular interaction
between an extensive set of the aforementioned methods and
our new benchmark data over multiple slices of the interaction
potential for these three dimers.

2. METHODS

Rigid, linear monomer geometries were adopted for all computa-
tions. Experimental bond lengths were taken from Herzberg68,69

for P2 and NCCN [R(PP) = 1.8943 Å, R(CC) = 1.3839 Å, and
R(CN) = 1.1578 Å]. Although PCCP has been observed experi-
mentally, structural characterization was not feasible, and no
experimentally inferred geometrical parameters were reported.70

As such, the bond lengths for PCCP used in this study [R(CC) =
1.35560 Å and R(CP) = 1.58597 Å] were obtained from a low-level
geometry optimization (details in the Supporting Information).
These values, however, are entirely consistent with CCSD(T)
optimizations with correlation consistent triple-ζ basis sets.71

Potential energy curves (PECs) of the dimer structures were
computed in three different configurations: cross (X), parallel-
displaced (PD), and T-shaped (T) that belong to the D2d, C2h,
and C2v point groups, respectively. These configurations are
depicted in Figure 1 for (PCCP)2, but the general definitions of
the intermolecular geometrical parameters also apply to (P2)2
and (NCCN)2. TheD2d cross configuration is depicted in Figure 1a,
where the arrow indicates the intermolecular distance (R) between
the midpoints of the central bond of each monomer. For the C2v

T-shaped structures, the arrow shown in Figure 1b denotes the
intermolecular distance (R) from the midpoint of the central
bond that is perpendicular to the C2 rotational axis of symmetry
to the nearest atom in the other monomer that lies on the C2 axis
of symmetry. The C2h parallel displaced structures are defined by
two intermolecular parameters. R is again used to indicate the
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separation between the monomers, specifically the distance
between the two parallel lines defined by the linear monomers
(denoted by the vertical arrow in Figure 1c). The other inter-
molecular geometrical parameter for the PD configurations is the
displacement of the monomers along the aforementioned paral-
lel lines relative to a rectangular (or sandwich) D2h structure. In
Figure 1c, this “horizontal slip” distance is labeledRS and denoted
by the horizontal arrow. The RS coordinate was fixed at a value of
2.80 Å for (NCCN)2, 2.31 Å for (P2)2, and 2.66 Å for (PCCP)2.
These values roughly correspond to the average of MP2 and
CCSD(T) optimized RS parameters (details in the Supporting
Information).

The PECs in this work were generated by scanning over R for
each configuration of the three homogeneous dimers. HF, MP2,
CCSD, and CCSD(T) electronic energies were computed at
each point along the curve with the aug-cc-pVDZ, aug-cc-pVTZ,
and aug-cc-pVQZbasis sets. Larger, aug-cc-pV(X+d)Z-type basis
sets were determined to provide nearly identical results (details
in the Supporting Information). The 1s-like core orbitals of
C andNwere constrained to be doubly occupied during the elec-
tron correlation computations, whereas this constraint was applied
to the 1s-, 2s-, and 2p-like core orbitals of P (i.e., the frozen core
approximation). The electronic energieswere converged to at least
1� 10�10 Eh for the SCF and 1� 10�8 Eh for the coupled-cluster
procedures. The single point energy computations were per-
formed using both the 2006.1 and 2010.1 versions of the Molpro
software package.72

Electronic interaction energies were computed at the com-
plete basis set (CBS) limit along the PECs for the X, PD, and T
configurations of (NCCN)2, (P2)2, and (PCCP)2 by extrapolat-
ing the energy with respect to the cardinal number of the basis
set. Within the supermolecular approach, CBS-limit interaction
energies are computed by subtracting the extrapolated monomer
electronic energies from the extrapolated electronic energies of
the complex. Extrapolations were performed for the monomer
energies in the monomer basis and for the dimer energies in the
dimer basis. The electronic energy was separated into Hartree�
Fock and correlation energies. HF energies were extrapolated
with aug-cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ according
to a three-parameter formula.73,74 The correlation energies
were extrapolated to the CBS limit using the two-point formula
of Halkier et al. with aug-cc-pVTZ and aug-cc-pVQZ basis
sets.75

The simplest wave-function-basedmethods tested in this work
are the spin-component scaled MP2 methods. These methods
have been shown to be capable of accurately computing non-
covalent interactions with a triple-ζ quality basis.30,33,34 In this
work, the original parametrization, SCS-MP2, and a molecular

interaction specific parametrization, SCS(MI)-MP2, are tested.30,33

The SCS- and SCS(MI)-MP2 computations in this work use the
cc-pVTZ basis;76,77 the HF andMP2 computations are performed
under the DF approximation using the cc-pVTZ-JK and cc-pVTZ-
RI auxiliary basis sets, respectively.78,79 The spin-component
scaled CCSD method of Takatani et al., SCS-CCSD,31 and
its recent reparameterization for molecular interactions, SCS-
(MI)-CCSD,80 are also tested. The SCS-CCSD method has
been found to yield excellent results with large basis sets;26 in
the present work, SCS-CCSD/aug-cc-pVQZ and SCS(MI)-
CCSD/aug-cc-pVQZ interaction energies are computed.
The SCS parameters for these methods can be found in the
Supporting Information. The midground in terms of compu-
tation expense between SCS-MP2 and SCS-CCSD is the
scaled MP3 method (MP2.5) of Pito�nak et al.35 This method
includes half of the third-order correction to MP2 (or,
equivalently, averages MP2 and MP3 energies). Similarly to
SCS-CCSD, this method performs well with large basis sets,
and MP2.5/aug-cc-pVQZ interaction energies are reported.
The counterpoise correction is applied to these wave-func-
tion-based methods.81 These computations are performed
with Molpro.72

We also test the promisingMP2Cmethod.36,37 Thismethod is
a composite of a counterpoise corrected MP2 interaction energy
and dispersion energies from intermolecular perturbation theory.
The uncoupled Hartree�Fock (UCHF) dispersion energy con-
tained in MP2 is replaced with a dispersion energy computed
with time-dependent density functional theory (TDDFT) re-
sponse functions.

EMP2C ¼ EMP2 � EdispðUCHFÞ þ EdispðTDDFTÞ ð1Þ

The Edisp(TDDFT) term would be exact if the exact exchange-
correlation potential could be used to evaluate the response
functions.55 In lieu of the exact exchange-correlation potential,
the PBE0 functional in conjuction with the adiabatic local density
approximation (ALDA) kernel has been shown to yield highly
accurate dispersion energies.37 The MP2C interaction energies
are computed with an aug-cc-pVQZ basis and use aug-cc-pVQZ-
JK and aug-cc-pVQZ-RI auxiliary basis sets (details in the
Supporting Information). For the PCCP dimer, aug-cc-pVTZ,
aug-cc-pVTZ-JK, and aug-cc-pVTZ-RI basis sets were used. A
related method (in terms of its description of dispersion) is
density-functional-based symmetry-adapted perturbation theory,
SAPT(DFT).53�57 Here, we use PBE0 with local HF exchange to
describe the monomers. One caveat of SAPT(DFT) is that the
monomer DFT computations need to be asymptotically corrected
in order to produce accurate interaction energies; this requires the
ionization potential of the monomers, which we compute at the
PBE0/TZVPP level. The SAPT(DFT) computations use the DF
approximation and the same basis sets as theMP2C computations.
The MP2C and SAPT(DFT) computations are performed with
Molpro.72

Many DFTmethods have been developed in recent years that
attempt to accurately describe noncovalent interactions.82 Here,
we test two hybrid meta-GGA functionals, M05-2X and M06-
2X.83�85 These functionals have been found to perform well
when paired with the aug-cc-pVDZ and aug-cc-pVTZ basis sets,
respectively.44 Meta-GGA’s are known to be susceptible to
numerical errors related to the integration grid.86 For this reason,
we use a large, 100 302 (radial points, angular points) grid for the
M05-2X and M06-2X computations. The ωB97X-D method of

Figure 1. Three prototypical dimer configurations of NCCN, PCCP,
and P2 dimers included in this study.
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Chai and Head-Gordon43 and Grimme’s B97-D3 method40 are
both evaluated with aug-cc-pVTZ basis sets.44 A dense numerical
integration grid was employed for theωB97X-D computations, a
pruned grid composed of 99 radial shells and 590 angular points
per shell. We also test two double-hybrid DFT methods that
include a perturbativeMP2-like correlation correction, specifically,
B2PLYP-D3/aug-cc-pVTZ and XYG3/6-311+G(3df,2p).44,45,47

The XYG3 functional is evaluated with B3LYP orbitals and
densities.87 Only the ωB97X-D interaction energies are coun-
terpoise-corrected. The M05-2X and M06-2X computations
were performed with QChem 3.2.88 The ωB97X-D computa-
tions were performed with the Gaussian 09 software package.89

The B97-D3, B2PLYP-D3, and XYG3 computations were
performed with NWChem 6.0.90

Wave-function-based SAPT computations were performed
with a development version of the PSI4 program.52,91 All SAPT
computations use the density fitting approximation. SAPT
computations were performed with the aug-cc-pVQZ basis and
use the aug-cc-pVQZ-RI auxiliary basis (with the exception of
the PCCP dimer, where aug-cc-pVTZ and aug-cc-pVTZ-RI sets
were used). To reduce the expense of including triple excita-
tions, a truncated virtual space constructed from MP2 natural
orbitals is used. This approximation has been shown to
greatly improve efficiency without introducing significant
errors.51 A similar approximation can be applied to the
evaluation of the CCD dispersion energy and will be dis-
cussed in a forthcoming publication.63 The highest level of
SAPT applied in this work is denoted SAPT2+3(CCD),
which is defined as follows:

ESAPT2þ3ðCCDÞ ¼ Eð10Þelst, resp þ Eð12Þelst, resp þ Eð13Þelst, resp

þ Eð10Þexch þ Eð11ÞexchðS2Þ þ Eð12ÞexchðS2Þ

þ Eð20Þind, resp þ Eð20Þexch�ind, respðS2Þ

þ Eð30Þind þ Eð30Þexch�indðS2Þ þ tEð22Þind

þ tEð22Þexch�ind

þ εð2Þdisp½CCD þ STðCCDÞ�

þ Eð30Þdisp þ Eð20Þexch�disp þ Eð30Þexch�disp

þ Eð30Þind�disp þ Eð30Þexch�ind�disp ð2Þ

The supermolecular HF interaction energy is not included in the
SAPT energy, since the third-order treatment of induction is
expected to be sufficient when nonpolar monomers are considered.
A thorough discussion of the supermolecular HF interaction
energy in the context of SAPT can be found in ref 92. Approx-
imate exchange terms are scaled according to Eexch

(10)/Eexch
(10)(S2) in

order to account for higher-order exchange effects that are
neglected in the S2 approximation. At equilibrium, this scaling
adds, at most, 0.03 kcal mol�1 of exchange to the interaction
energy. At shorter intermolecular separations, for the first
repulsive configuration considered (the potential energy curves
are computed in 0.1 Å increments), this scaling can add as much
as 1 kcal mol�1 to the exchange energy; the largest contributions
come from scaling the Eexch�ind

(30) (S2) term.

3. RESULTS

3.1. SAPT Analysis of the Dispersion Energy. The SAPT
computations on the NCCN, PCCP, and P2 dimers allow the
dispersion energy to be analyzed separately from the total inter-
action energy. The dependence of interaction energies on the
theoretical treatment of dispersion can be estimated from the
relative importance of the dispersion component. To identify
which systems would most likely be sensitive to the treatment of
dispersion, Table 1 shows themagnitude of the dispersion energy
relative to the total SAPT2+3(CCD) interaction energy com-
puted at the estimated CCSD(T)/CBS limit equilibrium geom-
etry. In the cross configurations of the NCCN, PCCP, and P2
dimers, for example, the magnitude of the dispersion energy is
2�3 times larger than the total interaction energy. The relative
contribution from dispersion is appreciably smaller for the PD
and T-shaped configurations of the NCCN dimer but remains
large for P2 and PCCP dimers. From this simple analysis, one
would expect the PCCP and P2 dimers to bemore sensitive to the
treatment of dispersion than the NCCN dimer.
A more detailed analysis of the dispersion energy in these

complexes can be found in Table 2. Here, the dispersion energy is
reported as computed at various truncations of theMBPT expan-
sion. For the moment, we will consider only the Edisp(2), Edisp(4),
and Edisp(CCD) treatments of the dispersion energy. The Edisp(2)
term is anMP2-like (UCHF) dispersion energy. TheEdisp(4) term
contains perturbative intramonomer correlation corrections to
dispersion through second order. The Edisp(CCD) dispersion is
the most reliable and uses CCD wave functions to correct the
dispersion energy for intramonomer correlation. The dispersion
energies are also presented as a percentage of the Edisp(2) disper-
sion energy. These percentages can be used as ameans of gauging
how difficult the dispersion energies in a given complex are to
compute. For simple systems, there will be little change between
Edisp(2) and Edisp(CCD). For more difficult systems, there will
be a significant difference between Edisp(2) and Edisp(4), but not
Edisp(4) and Edisp(CCD). For the most difficult systems, there
will be large differences between all three of these treatments of
dispersion.
For the sake of comparison with more commonly studied sys-

tems, the methane dimer, methane�benzene, and benzene dimer
dispersion energies are also presented in Table 2. For typical
interactions, such as these, the Edisp(4) treatment of dispersion
has been found previously to be quite reliable.50 The dispersion
interactions between alkanes can be treated accurately with Edisp(2).
The interactions involving π orbitals are more difficult and require,
at least, the Edisp(4) treatment of dispersion. Dispersion within the
NCCNdimer is comparable to the dispersion in the benzene dimer.
There is a large difference between Edisp(2) and Edisp(4) and a
small difference between Edisp(4) and Edisp(CCD). The P2 dimer
differs in that there is an even larger difference between Edisp(2)
and Edisp(4), but the Edisp(CCD) correction is unimportant.

Table 1. Magnitude of the Dispersion Energy Relative to the
Total SAPT2+3(CCD) Interaction Energy at Estimated
CCSD(T)/CBS Limit Equilibrium Geometries

NCCN PCCP P2

cross 333% 205% 240%

PD 116% 216% 250%

T-shaped 96% 194% 234%
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The PCCP dimer has the most difficult dispersion interactions to
compute. In this case, not only is the difference between Edisp(2)
and Edisp(4) large, but the difference between Edisp(4) and Edisp-
(CCD) can be as large as 0.7 kcal mol�1. This analysis shows that
only the most robust methods will be capable of accurately
computing dispersion interactions within the PCCP dimer.
3.2. Performance of Supermolecular Methods. The meth-

ods tested in this work can be grouped in terms of their treat-
ments of the dispersion interaction. We test four methods that
contain highly parametrized dispersion corrections (M05-2X,
M06-2X, B97-D3, and ωB97X-D). We test four methods that
contain empirically corrected MP2-like dispersion terms
(SCS-MP2, SCS(MI)-MP2, XYG3, and B2PLYP-D3). The
other methods compute dispersion with more robust techni-
ques than MP2: MP2.5 contains contributions from MP3;
SCS- and SCS(MI)-CCSD contain a CCSD treatment of
dispersion; and MP2C and SAPT(DFT) use TDDFT-based
dispersion corrections.
First, we will consider the M05-2X and M06-2X density func-

tionals. Although these functionals do not contain the correct
physics to describe long-range dispersion interactions, through
extensive parametrization, they appear to capture “medium-
range” dispersion (up to perhaps 4�5 Å).44,84,93�96 This defi-
ciency is evident in Figures 3�5; M05-2X tends to predict
reasonable interaction energies near equilibrium and underbinds
at long range.M06-2Xoften predicts reasonable interaction energies
but equilibrium distances that are too short; at long range, the
performance of M06-2X degrades quickly. The PD PCCP dimer
(Figure 4) is an example of typical behavior for M05-2X and
M06-2X. Although lacking long-range dispersion interactions,
these functionals can provide reasonable interaction energies for
small, closely interacting complexes with relatively low computa-
tional expense. In Figure 2, the average errors of each method are
presented for the equilibrium configurations of the nine dimers
considered in this work. For these equilibrium geometries, the
performance of M05-2X and M06-2X is slightly better than the
DFT-D methods. Their performance for the difficult dispersion
interactions included in this work is similar to their performance
for less difficult dispersion bound systems included in other test
sets (e.g., the S22 and NBC10 test sets).44 The fact that the
accuracy of these functionals does not degrade for more difficult
systems is a desirable characteristic. These functionals can be a

practical solution for studying near-equilibrium configurations of
dispersion bound complexes.
The B97-D3 and ωB97X-D methods rely entirely on pairwise

C6R
�6 terms to account for dispersion. Therefore, the accuracy

of these functionals for dispersion-bound complexes is tied to
the empirical parametrization of these -D terms. B97-D3 uses C6

coefficients that provide some information about the chemical
environment of each atom.42 This is done through a rather
ingenious atom-typing procedure that is completely black-box
and varies continuously with the molecular geometry. The per-
formance of these DFT-D methods at equilibrium is not as good
as that for the M0N-2X methods; however, at long range, the
behavior of these functionals improves rather than degrades (see
Figure 3�5). ωB97X-D tends to be underbound relative to the
CCSD(T) benchmark, which could be indicative of C6 coefficients
that are not optimal for these highly polarizable molecules. Overall,
the B97-D3 functional outperforms ωB97X-D for the dimers
considered in this work. This is a useful result, since the B97-D3
functional exhibitsO (N3) scaling as opposed to theO (N4) scaling
of the hybrid ωB97X-D method.
Two promising double hybrid density functionals, XYG3 and

B2PLYP-D3, were applied to the NCCN, P2, and PCCP dimers.

Table 2. Dispersion Energies Computed with Various Levels of SAPTa

Edisp(2)
b Edisp(3)

c Edisp(2.5)
d Edisp(4)

e Edisp(CCD)
f

(NCCN)2 cross �2.3 �1.5 (65%) �1.9 (83%) �2.0 (85%) �1.9 (81%)

(NCCN)2 PD �2.9 �1.8 (65%) �2.4 (82%) �2.5 (87%) �2.3 (82%)

(NCCN)2 T-shaped �2.5 �1.6 (66%) �2.1 (83%) �2.3 (92%) �2.2 (87%)

(PCCP)2 cross �8.0 �3.9 (49%) �6.0 (74%) �6.3 (79%) �5.8 (72%)

(PCCP)2 PD �7.9 �3.7 (47%) �5.8 (73%) �6.5 (82%) �5.8 (73%)

(PCCP)2 T-shaped �4.7 �2.6 (55%) �3.7 (77%) �4.0 (85%) �3.7 (78%)

(P2)2 cross �3.2 �1.9 (58%) �2.5 (79%) �2.4 (74%) �2.4 (75%)

(P2)2 PD �3.6 �2.1 (58%) �2.8 (79%) �2.8 (78%) �2.8 (78%)

(P2)2 T-shaped �2.0 �1.2 (58%) �1.6 (79%) �1.7 (82%) �1.6 (79%)

(CH4)2 �1.3 �1.2 (97%) �1.2 (99%) �1.3 (103%) �1.3 (106%)

CH4�Bz �2.9 �2.4 (82%) �2.7 (91%) �2.7 (93%) �2.7 (93%)

(Bz)2 PD �7.9 �5.2 (65%) �6.6 (83%) �6.7 (84%) �6.5 (82%)
aDispersion energies are given in kcal mol�1 and as percentages of Edisp(2).

b Edisp(2) = Edisp
(20). c Edisp(3) = Edisp

(20) + Edisp
(30) + Edisp

(21). d Edisp(2.5) =
Edisp

(20) + (1)/(2)(Edisp
(30) + Edisp

(21)). e Edisp(4) = Edisp
(20) + Edisp

(30) + Edisp
(21) + Edisp

(22). f Edisp(CCD) = Edisp
(2)(CCD) + Edisp

(22)(ST)(CCD).

Figure 2. Errors in interaction energies for NCCN, PCCP, and P2
dimers computed at equilibrium with various methods.
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XYG3 accounts for dispersion with an MP2-like term that is
evaluated using B3LYP orbitals and scaled by 0.3211. This small
scaling parameter is required because short-range correlation is
included elsewhere in the functional; additionally, the DFT
orbitals have, relative to Hartree�Fock orbitals, a smaller
HOMO�LUMO gap, resulting in a larger perturbative correc-
tion. The B2PLYP functional contains a similar scaled perturba-
tive correction but still requires a small empirical dispersion
correction in order to provide accurate results for dispersion
bound complexes. The results for B2PLYP-D3 for these dimers is
very poor. Perhaps the limited data set used to parametrize this
functional, which contains no third row elements, contributes to
this failing. This poor performance is unusual, as the B2PLYP-D3
method is typically reliable for treating dispersion dominated
interactions.44 XYG3 performs as well as any DFT-basedmethod
that was tested; this is consistent with previous findings for other
test sets.44,48 Unfortunately, it merely equals the performance
of M05-2X and M06-2X, which both scale as O (N4), whereas
XYG3 scales as O (N5) due to the perturbative correction. An
important observation is that XYG3 does not inherit the poor

performance of MP2 in its own perturbative correction, even for
these particularly difficult cases. This can be attributed to the
small fraction of the perturbative correction that needs to be
included.
The SCS-MP2 methods we tested offer tremendous improve-

ment over unscaled MP2 interaction energies. However, their
performance is erratic; SCS(MI)-MP2, which was parametrized
against the S22 test set, performs brilliantly for NCCN and P2
dimers but severely overbinds the PCCP dimer. The SCS-MP2
method is more consistent but underbinds every dimer consid-
ered. It is probable that SCS-MP2/aug-cc-pVTZ would provide
better results than SCS-MP2/cc-pVTZ, which is tested here.
However, SCS-MP2 methods have an underlying problem that
prevents any single parametrization from providing accurate
results for a wide variety of dispersion bound complexes. The
leading dispersion term, Edisp

(20), which is included in MP2, is
composed of 1/2 same-spin and 1/2 opposite-spin correlation
(assuming a closed shell reference). For an SCS-MP2 method,
this means that the scaling of the dispersion term is effectively an

Figure 3. T-shaped NCCN dimer potential energy curves computed
with various methods.

Figure 4. Parallel-displaced PCCP dimer potential energy curves
computed with various methods.
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average of the same-spin and opposite-spin parameters, i.e.,

Eð20Þdisp ðSCS�MP2Þ ¼ Sos þ Sss
2

Eð20Þdisp ðMP2Þ ð3Þ

With this in mind, the percentages of Edisp
(20) in Table 2 given for

Edisp(CCD) represent nearly ideal values of (Sos + Sss)/2 for each
dimer considered. For the dimers in Table 2, the ideal value for
(Sos + Sss)/2 ranges from 1.06 to 0.72. In SCS-MP2 and SCS-
(MI)-MP2, these averaged values are 0.77 and 0.96, respectively.
The use of a nonaugmented basis set, cc-pVTZ, essentially has
the same effect as scaling the dispersion energy. The realization that
the dispersion energy is scaled by a single parameter shows that it is
not possible to find one set of SCS parameters that will provide
consistent results for a diverse set of nonbonded interactions.
The problems encountered by SCS-MP2 methods are a result

of the inconsistent behavior of MP2 for treating dispersion
interactions. The SCS-CCSD methods circumvent this problem
by attempting to correct a method that behaves in a much more
consistent manner. Previous benchmarking of SCS-CCSD has
shown that the only drawback is the O (N6) scaling of CCSD;

admittedly, this is a considerable limitation. The tests of SCS- and
SCS(MI)-CCSD for the NCCN dimer were consistent with
previous results; indeed, the SCS-CCSD methods provide inter-
action energies within the uncertainties of the CCSD(T) bench-
marks. For the P2 and PCCP dimers, however, their performance
was not as good. Both parametrizations of SCS-CCSD consis-
tently underbind both of these dimers. Despite this slight problem,
the overall performance of both SCS-CCSD methods was still
excellent. The new SCS(MI) parametrization outperforms the
original SCS-CCSD parameters for nearly all of the test cases, but,
on average, only by a few hundredths of 1 kcal mol�1. The
parameters themselves are very similar: the original opposite-
and same-spin scaling parameters of 1.27 and 1.13, respectively,
and the SCS(MI) parameters of 1.11 and 1.28. The apparent
insensitivity of SCS-CCSD methods to the choice of parameters
is an obvious advantage of SCS-CCSD over SCS-MP2 and a
desirable trait in general for an SCS method to possess.
In a similar spirit to SCS-MP2 and SCS-CCSD,MP2.5 attempts

to correct the behavior of MP2 and MP3 by combining their
energies in an empirical manner. MP2.5 is an average of MP2 and
MP3 interaction energies; equivalently, it is also MP2 plus half of
the third-order correction. The motivation for this method is
obvious from the results in Table 2. The third-order dispersion
energy [Edisp(3)] is always higher than the second-order disper-
sion energy [Edisp(2)]. In the cases where the second-order
dispersion energy is a good estimate of the CCD dispersion
energy [Edisp(CCD)], the third-order correction to the disper-
sion energy is small. Where there is a large difference between the
second-order dispersion energy and the CCD dispersion energy,
there is an even larger difference between the second-order and
third-order dispersion energies. We also report the second-order
dispersion energy with half of the third-order correction included
[Edisp(2.5)]. There is excellent agreement between Edisp(2.5)
and our best estimate of the dispersion energy, Edisp(CCD); this
is the origin of the excellent performance of MP2.5 for disper-
sion-bound complexes. For the complexes considered in this
work, the performance of MP2.5 is slightly better than SCS-MP2
methods and slightly worse than SCS-CCSD methods. MP2.5
tends to overbind somewhat relative to the CCSD(T) bench-
mark. For more typical interactions, the simple averaging of MP2
andMP3 in theMP2.5method provides rather accurate results.26

For these more difficult dispersion bound complexes, a larger
fraction of MP3 would need to be included for similar accuracy.
The least empirical method tested for these complexes is the

MP2C method of Hesselmann.36,37 This method uses TDDFT
response functions to correct the account of dispersion in MP2.
The initial tests of this method have been very promising.26,37

Here, we apply MP2C to more difficult systems than were in-
cluded in the previous tests. The performance of this method,
however, does not degrade for these systems. The performance
of MP2C is slightly better than the SCS-CCSD methods at
greatly reduced cost. A related method, in terms of the treatment
of dispersion, SAPT(DFT) also performs extremely well for
these complexes. These methods perform better than any of the
other approximate methods tested in this work. Additionally,
both MP2C and SAPT(DFT) scale as O (N5), which is better
than or equivalent to all but the DFT methods (excluding the
double hybrids). SAPT(DFT) is slightly better than MP2C, and
this is likely due to a more accurate treatment of dispersion and
a more rigorous treatment of exchange-dispersion. Both of these
methods contain a treatment of the dispersion energy that does
not degrade for more difficult systems. They can both be

Figure 5. Cross P2 dimer potential energy curves computed with
various methods.
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recommended as generally applicable for the study of non-
bonded interactions.

4. CONCLUSIONS

We have introduced the NCCN, P2, and PCCP dimers as
model systems for dispersion dominated π�π interactions.
These dimers involve dispersion interactions that are proble-
matic to study computationally. Dispersion interactions of this
type are typically found in much larger complexes (e.g., benzene
dimer or indole�benzene). SAPT computations show that
the dispersion in the NCCN dimer is similar in nature to the
dispersion in the benzene dimer, while dispersion in P2 and
PCCP dimers is potentially more difficult to accurately char-
acterize. The advantage of these model systems lies in their
relatively small size; near complete basis set limit CCSD(T)
interaction energies were obtained for NCCN, P2, and PCCP
dimers.

The performance of many recently developed quantum
mechanical methods was tested for the NCCN, P2, and PCCP
dimers. DFT-based methods provide reasonable results at rela-
tively low computational expense. An advantage of these meth-
ods is that their performance does not degrade for these more
difficult systems. Spin-component scaledmethods performmuch
better than their unscaled, parent methods; although generally
good, the performance of SCS methods can be somewhat erratic.
The best results for the NCCN, P2, and PCCP dimers come
from the methods that use TDDFT response functions to
describe dispersion interactions, MP2C and SAPT(DFT).
These methods provide accuracy that could otherwise only
be achieved through the inclusion of the effect of triple
excitations on the dispersion energy. However, there are some
limitations for general applicability of MP2C and SAPT(DFT)
due to their roots in intermolecular perturbation theory (i.e.,
the need to fragment the system and the current lack of analytic
gradients). Despite this, both methods are very promising for
accurately characterizing π�π dispersion interactions in ex-
tended systems.
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ABSTRACT: A variety of combinations of B-LYP-based double-hybrid density functional theory (DHDFT) procedures and basis
sets have been examined. A general observation is that the optimal combination of exchange contributions is in the proximity of 30%
Becke 1988 (B88) exchange and 70% Hartree�Fock (HF) exchange, while for the correlation contributions, the use of
independently optimized spin-component-scaled Møller�Plesset second-order perturbation theory (SCS-MP2) parameters
(MP2OS and MP2SS) is beneficial. The triple-ζ Dunning aug0-cc-pVTZ+d and Pople 6-311+G(3df,2p)+d basis sets are found
to be cost-effective for DHDFTmethods. As a result, we have formulated the DuT-D3DHDFT procedure, which employs the aug0-
cc-pVTZ+d basis set and includes 30% B88 and 70% HF exchange energies, 59% LYP, 47% MP2OS, and 36% MP2SS correlation
energies, and a D3 dispersion correction with the parameters s6 = 0.5, sr,6 = 1.569, and s8 = 0.35. Likewise, the PoT-D3 DHDFT
procedure was formulated with the 6-311+G(3df,2p)+d basis set and has 32% B88 and 68% HF exchange energies, 63% LYP, 46%
MP2OS, and 27%MP2SS correlation energies, and the D3 parameters s6 = 0.5, sr,6 = 1.569, and s8 = 0.30. Testing using the large E3
set of 740 energies demonstrates the robustness of these methods. Further comparisons show that the performance of these
methods, particularly DuT-D3, compares favorably with the previously reported DSD-B-LYP and DSD-B-LYP-D3methods used in
conjunction with quadruple-ζ aug0-pc3+d and aug0-def2-QZVP basis sets but at lower computational expense. The previously
reported ωB97X-(LP)/6-311++G(3df,3pd) procedure also performs very well. Our findings highlight the cost-effectiveness of
appropriate- and moderate-sized triple-ζ basis sets in the application of DHDFT procedures.

’ INTRODUCTION

The appearance of the B2-PLYP method1 has sparked consider-
able interest in the further development of double-hybrid density
functional theory (DHDFT) procedures2�13 due to their superior
performancewhen compared with conventional DFTmethods.12,14

The DHDFT procedures contain wave function-type components,
namely Hartree�Fock exchange andMøller�Plesset second-order
perturbation theory (MP2) correlation. For instance, the energy
given by B2-PLYP is evaluated with exchange energies from Becke
1988 (B88, EX

B88) and Hartree�Fock (HF, EX
HF) and correlation

energies from Lee�Yang�Parr (LYP, EC
LYP) and MP2 (EC

MP2),
according to eq 1:

EB2-PLYP ¼ cB88E
B88
X þ cHFE

HF
X þ cLYPE

LYP
C þ cMP2E

MP2
C ð1Þ

The coefficients for the various components were determined1

by fitting to the heats of formation in the G2/97 training set,15

with the conditions cB88 + cHF = 1 and cLYP + cMP2 = 1. The
values recommended for B2-PLYP are cB88 = 0.47, cHF = 0.53,
cLYP = 0.73, and cMP2 = 0.27. A variety of DHDFT procedures
have been subsequently developed with the aim of further
improving the accuracy and the versatility.2�12 These include
the recently reported DSD-B-LYP procedure.11 It makes use of
the spin-component-scaled MP2 (SCS-MP2)16 methodology,
in which opposite-spin (MP2OS) and same-spin (MP2SS)
contributions to the MP2 correlation energy are treated
separately and includes an empirical correction (ED)

17 for

dispersion interactions:

EDSD-B-LYP ¼ cB88E
B88
X þ cHFE

HF
X þ cLYPE

LYP
C þ cOSE

MP2OS
C

þ cSSE
MP2SS
C þ ED ð2Þ

The five scaling coefficients and the parameter in ED in eq 2
were obtained, with the condition cB88 + cHF = 1, by fitting to a
collection of six training sets, comprising atomization energies
(W4/08),4 main-group reaction barriers (DBH24),18 weak
interactions (S22),19 artificially generated species (MB08)20

and transition-metal chemistry (Pd21 and Grubbs).22 We will
refer to this collection as the DSD set hereafter. The recom-
mended scaling coefficients for DSD-B-LYP are cB88 = 0.31,
cB88 = 0.69, cLYP = 0.54, cOS = 0.46, and cSS = 0.37. Recently, a
slightly modified DSD-B-LYP method (DSD-B-LYP-D3)12

has been shown to perform well on the diverse and sizable
GMTKN30 test set.12 This variant uses the D3 scheme23 for
the dispersion term.

The optimized parameters for DHDFT methods have often
been obtained using quadruple-ζ basis sets of different styles.
For instance, the coefficients for the original B2-PLYP1 were
obtained in combination with QZV3P, which is a modified first-
generation Ahlrichs basis set.24 The variants B2T-PLYP,3 B2K-
PLYP,3 and B2GP-PLYP4 were derivedmainly from a quadruple-
ζ polarization-consistent (Jensen) basis set,25 namely aug-pc3. A
correlation-consistent (Dunning) basis set,26 cc-pVQZ, was used

Received: June 10, 2011
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for ROB2-PLYP.7 The ωB97X-2 procedure6 was developed
with the complete-basis-set limit using triple- and quadruple-ζ
Dunning sets for extrapolation. A mixture of aug0-pc3 (aug0
denotes the inclusion of diffuse functions on nonhydrogen
atoms) and second-generation Ahlrichs basis sets,27 def2-QZVP
and def2-QZVPP, were the major basis sets employed for the
development of DSD-B-LYP.11 The recently proposed PTPSS12

and PW-PB9512 procedures were optimized mainly with the
def2-QZVP basis set. Nonetheless, smaller triple-ζ basis sets have
also been employed for the development of DHDFT procedures,
but the resulting procedures show variable performance. Thus,
the B2�P3LYP method5 was optimized for cc-pVTZ, and this
combination leads to a mean absolute deviation (MAD) from
benchmark values of 13.0 kJ mol�1 for the G2/97 set of
atomization energies.15 The Pople basis set 6-311+G(3df,2p)28

was employed in deriving XYG3,8 and it has an MAD of 7.6 kJ
mol�1 for the G3/99 set of heats of formation (ΔHf).

29 In
addition, the ωB97X-2(LP) procedure6 was parametrized with
the 6-311++G(3df,3pd) basis set and yields a very impressive
MAD of 6.4 kJ mol�1 for G3/99 ΔHf.

The large variety of mostly quadruple-ζ basis sets employed in
the development of DHDFT procedures begs the following
questions: (1) Is a quadruple-ζ basis set required for good
performance, or can one utilize more manageable triple-ζ basis
sets without significantly sacrificing accuracy? (2) Do basis sets of
similar size but of different types give comparable results, or is
one type of basis set particularly suitable for DHDFT methods?

Goerigk and Grimme have attempted to answer the first
question by testing a variety of DHDFT procedures on the
GMTKN30 set with the (aug-)def2-TZVPP and (aug-)def2-
QZVP basis sets.12 They find that, for the PW-PB95-D3 proce-
dure for which the basis set dependence is the smallest, the MAD
from benchmark values for the triple-ζ basis set is greater than
that for the quadruple-ζ basis set by 0.2 kcal mol�1 (∼0.8 kJ
mol�1).30 Because DHDFT contains exchange and correlation
components from both DFT and wave function methods, the
second question is particularly interesting. Does DHDFT work
better with the Jensen basis sets, which are designed for DFT
procedures, or with the Dunning sets that are tailored for wave
function correlation methods? How about the performance of
the Ahlrichs sets that are often used in the development of
DHDFT or the popular Pople basis sets?

The aim of the present study is to address these questions. We
also attempt to identify other important components of the
calculations that contribute to the good performance of DHDFT
procedures and features that would broaden their applicability. In
particular, we strive to identify triple-ζ basis sets that yield results
of comparable quality to the larger quadruple-ζ basis sets, thus
reducing the computational cost for performing DHDFT calcu-
lations and enabling their use in situations where the use of a
quadruple-ζ basis set is computationally too demanding.

’COMPUTATIONAL DETAILS

Standard wave function and DFT calculations31 were carried
out with Gaussian 0332 and Gaussian 09.33 D3 dispersion correc-
tions were obtained with the dftd3 program.23 Unless otherwise
noted, geometries were optimized using BMK34 with the 6-31
+G(2df,p) basis set. This level of theory has previously been
shown to represent a cost-effective means for obtaining reliable
geometries.35 Energies at 0 K incorporate zero-point vibrational
energies, obtained with scaled (0.9770) BMK/6-31+G(2df,p)

frequencies, while 298 K enthalpies additionally include thermal
corrections derived from frequencies scaled by 0.9627.35,36

While more detailed descriptions of the various basis sets
employed in the present study will be given within the main text,
for convenience we provide a brief summary here. For the sake of
simplicity, in the tables we abbreviate the Dunning basis sets
cc-pVnZ as VnZ, and the aug-cc-pVnZ basis sets as AVnZ, where
n = T and Q. The use of 0 in a basis set, for example, in aug0-cc-
pVTZ+d and def2-TZVPD0+d, indicates the use of diffuse
functions only on nonhydrogen atoms. The aug0-def2-TZVP
basis set represents the def2-TZVP basis set augmented with
diffuse functions taken from aug0-cc-pVTZ. We have also em-
ployed the aug0-def2-QZVP basis set, in which diffuse functions
from aug0-cc-pVQZ are added to the def2-QZVP basis set. Our
baseline basis set for the purpose of comparison is the Dunning
(aug-)cc-pVTZ basis set, in which (aug-) denotes the inclusion
of diffuse functions only for the calculation of electron affini-
ties. The corresponding selectively augmented triple-ζ Pople,
Ahlrichs, and Jensen basis sets are denoted 6-311(++)G(3df,2p),
def2-TZVP(D), and (aug-)pc2, respectively. They are derived
from the combinations 6-311G(3df,2p)/6-311++G(3df,2p),
def2-TZVP/def2-TZVPD,37 and pc2/aug-pc2.

Basis sets that are external to the Gaussian 03 and 09 programs
were obtained from the Environmental Molecular Sciences
Laboratory (EMSL) basis set library.38 The inclusion of tight d
functions for the elements Al�Ar is indicated by the suffix +d, as,
for example, in aug0-cc-pVTZ+d and 6-311+G(3df,2p)+d. We
derived the tight d functions for use in the aug0-pc2+d and aug0-
pc3+d basis sets according to the recommendation by Martin.39

Thus, the exponents were obtained by scaling the existing largest
d exponents by 2.5. We also employ the same approach for
obtaining tight d functions for use in the def2-TZVPD0+d, aug0-
def2-TZVP+d, and 6-311+G(3df,2p)+d basis sets.

The frozen-core approximation is employed in the evaluation
of the MP2 correlation energy, unless otherwise noted. Para-
meters for the quantum mechanical DHDFT procedures that
were reoptimized in the present study were obtained by fitting to
the G2/97 training set, while the parameters for the empirical D3
dispersion correction were determined by adjustment for the
larger E3 set, as we find that this is necessary in order to provide
further robustness for a more diverse range of systems. Following
previous practice,35 our optimization procedures involved mini-
mizing the average of the mean absolute deviation (MAD) from
benchmark values and the standard deviation (SD) of these
deviations. All relative energies are reported in kJ mol�1.

’RESULTS AND DISCUSSION

In the present study, we focus on the B-LYP functional as the
DFT component, as this is by far the most commonly employed
functional in DHDFT procedures.1,3�5,7�11 For most of the
study, we examine three forms of DHDFT methods: (1) B2-
PLYP-type procedures where the DHDFT energy is derived
from eq 1 and satisfies the conditions cB88 + cHF = 1 and cLYP +
cMP2 = 1. Included in this category are B2-PLYP, B2T-PLYP,
B2GP-PLYP, and B2K-PLYP, which offer increasing wave func-
tion contributions to the DHDFT energy in the above order. We
term such procedures STD-DHDFT, where STD denotes “stan-
dard”; (2) DHDFT procedures that are similar to B2-PLYP but
with cMP2 reoptimized independently of the default value of cLYP,
whichmeans that cLYP + cMP2 is no longer constrained to be equal
to 1. We term such procedures UCMP-DHDFT, where UCMP
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signifies “unconstrainedMP2 correlation”; and (3) DSD-B-LYP-
like procedures11 in which the energy is given by eq 2 with cOS
and cSS optimized but without the D correction. We term such
procedures SCS-DHDFT. While we will examine the effect of
dispersion corrections at a later stage, we attempt initially to
recover the maximum amount of long-range effects using quan-
tum mechanics and employ the dispersion correction to provide
further improvement to the procedure.
Important Components for DHDFT Procedures. In this

section, we use frozen-core B2-PLYP/(aug-)cc-pVTZ as our
baseline method to examine a variety of options for improving
the performance. The (aug-)cc-pVTZ basis set includes dif-
fuse functions only for the evaluation of electron affinities
(EAs), which we deem a minimal requirement for obtaining
reliable energies. The MADs for the G2/97 set and its subsets
are given in Table 1.
We first note that, regardless of the basis set used, the MADs

for the three different types of DHDFT procedures generally
decrease in the order STD-DHDFT > UCMP-DHDFT∼ SCS-
DHDFT. In particular, STD-DHDFT generally yields signifi-
cantly poorer performance for ΔHf than is obtained for the
corresponding UCMP-DHDFT and SCS-DHDFT procedures.
We have examined the values of the reoptimized cMP2 parameters
in the UCMP-DHDFT procedures (Supporting Information,
Table S1) and find that they are all larger than their originally

recommended values. In other words, the imposed constraint of
cLYP + cMP2 = 1 in the original B2-PLYP formalism appears to
lead to insufficient incorporation of electron correlation.
Grimme has suggested that the inclusion of a relatively large
amount of nonlocal correlation is the major contributing factor
for the good performance of the XYG3 procedure.12 Our finding
of an optimal correlation energy in excess of cLYP + cMP2 = 1 is
consistent with such a proposition. It is also noteworthy that the
added flexibility in the SCS-DHDFT scheme does not lead to a
significant improvement over UCMP-DHDFT in most cases.
We now examine the various options for improving frozen-

core B2-PLYP, UCMP-B2-PLYP, and SCS-B2-PLYP with the
(aug-)cc-pVTZ basis set for which the MADs are 16.7, 10.2, and
10.1 kJ mol�1, respectively (Table 1, column 1). We find that,
while correlating all electrons for MP2 (column 2) appears to be
beneficial for B2-PLYP, it provides little improvement for
UCMP-B2-PLYP and SCS-B2-PLYP. On the other hand, the
inclusion of tight d functions for second-row atoms leads to
somewhat lower overall MADs for all three variants of B2-PLYP
(column 3). When the quadruple-ζ basis set is used (column 4),
the MADs are all lowered substantially, with values of ∼8.5�
10 kJ mol�1 for the overall G2/97 set. A small overall improve-
ment is also achieved when one includes diffuse functions for the
calculation of heats of formation, ionization energies (IEs), and
proton affinities (PAs) as well as for electron affinities (EAs)

Table 1. MADs From Experimental Values (kJ mol�1) for Various DHDFT Procedures with a Variety of Basis Sets for the G2/97
Set and its Subsets

1 2 3 4 5 6 7 8 9 10 11 12

DHDFT

B2-

PLYP

B2-

PLYPc
B2-

PLYP

B2-

PLYP

B2-

PLYP

B2-

PLYP

B2-

PLYP

B2-

PLYP

B2-

PLYP

B2T-

PLYP

B2GP-

PLYP

B2K-

PLYP

basis seta (A)VTZ (A)VTZ (A)VTZ+d (A)VQZ AVTZ A0VTZ
6-311(++)G

(3df,2p)

def2-

TZVP(D) (aug-)pc2 (A)VTZ (A)VTZ (A)VTZ

STD-DHDFT

G2/97b 16.7 12.6 15.2 9.8 14.3 14.7 14.3 20.4 13.4 19.9 19.8 22.3

ΔHf 22.2 14.1 19.4 10.2 19.0 19.7 16.1 27.4 16.3 28.9 29.5 34.5

IE 14.9 14.6 14.9 11.9 11.8 11.9 15.9 14.3 13.5 13.9 12.9 12.2

EA 7.1 7.0 6.7 6.5 7.1 7.3 8.3 14.1 7.1 8.0 7.9 8.7

PA 4.8 4.7 4.2 3.7 5.9 6.0 7.3 4.2 3.4 5.0 5.2 5.6

UCMP-DHDFTd

G2/97 10.2 10.2 9.1 8.7 9.2 9.3 12.0 11.7 9.3 9.0 8.7 8.7

ΔHf 10.4 10.1 8.4 8.4 9.6 9.8 13.0 12.4 9.0 9.0 8.8 9.1

IE 12.4 13.3 12.6 11.2 10.3 10.3 14.2 11.3 12.1 10.9 10.1 9.1

EA 6.9 6.5 6.4 6.4 6.7 6.8 6.9 11.6 6.7 6.8 7.0 7.4

PA 4.7 4.6 3.9 3.8 6.4 6.5 7.2 4.6 3.5 4.8 4.8 5.0

SCS-DHDFTe

G2/97 10.1 10.2 9.0 8.7 9.1 9.2 11.1 10.8 9.3 9.0 8.7 8.5

ΔHf 10.3 10.1 8.1 8.4 9.6 9.7 11.0 10.6 9.0 8.9 8.8 8.9

IE 12.5 13.3 12.6 11.2 10.2 10.2 14.5 11.3 12.0 10.9 10.1 9.1

EA 6.7 6.4 6.3 6.3 6.6 6.7 6.9 11.5 6.6 6.8 6.8 7.2

PA 4.5 4.6 3.9 3.6 6.1 6.2 6.7 3.5 3.4 4.7 4.7 5.0

timingf 1.0 1.1 1.0 12.1 4.6 2.8 0.9 0.6 1.0 1.0 1.0 1.0
a (A), (++), (D) and (aug-) indicate inclusion of diffuse functions only for the calculation of electron affinities, VnZ = cc-pVnZ, AVnZ = aug-cc-pVnZ,
A0VnZ = VnZ for hydrogen and AVnZ for other elements. bΔHf = heat of formation (298 K), IE = ionization energy (0 K), EA = electron affinity (0 K),
and PA = proton affinity (0 K). cAll electrons are correlated for the MP2 treatment. d Each cMP2 parameter is optimized for the specific procedure and
basis set. eThe cOS and cSS parameters are optimized for each method. fRelative to the total time for B2-PLYP/(A)VTZ calculations for the G2/97 set.
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(column 5). Thus, the MADs for the G2/97 set for B2-PLYP,
UCMP-B2-PLYP and SCS-B2-PLYP, with aug-cc-pVTZ, are
14.3, 9.2, and 9.1 kJ mol�1, respectively. The lowering of the
MADs for ΔHf and IEs is small but significant, while the
performance for PAs is slightly worse. We find that exclusion
of diffuse functions on hydrogen atoms from the aug-cc-pVTZ
basis set, i.e., aug0-cc-pVTZ (column 6), does not lead to a
significant deterioration of performance.
Turning our attention to timing comparisons (Table 1), we

find that, for the G2/97 set, the use of all electrons for the MP2
correlation treatment (column 2) and the inclusion of tight d
functions (column 3) does not significantly affect the timings
when compared with frozen-core (aug-)cc-pVTZ (column 1).
Increasing the basis set size to (aug-)cc-pVQZ (column 4) is
significantly more expensive (12.1�). The use of the aug-
cc-pVTZ basis set (column 5) leads to a less substantial increase
in timing (4.6�), while the omission of diffuse functions for
hydrogen in aug0-cc-pVTZ (column 6) further reduces the
time required (2.8�). Given that (aug-)cc-pVQZ, aug-cc-pVTZ,
and aug0-cc-pVTZ basis sets lead to similar results for UCMP-
B2-PLYP and SCS-B2-PLYP, we consider the use of aug0-cc-
pVTZ a more cost-effective means for improving the perfor-
mance than (aug-)cc-pVQZ. We also deem the inclusion of tight
d functions cost-effective, as it leads to a small but noticeable
improvement in performance, withminimal increase in computa-
tional cost.

We next examine the performance of four different families
of partially augmented triple-ζ basis sets (columns 1 and 7�9)
used in conjunction with the three types of DHDFT proce-
dures, namely B2-PLYP, UCMP-B2-PLYP, and SCS-B2-PLYP
(Table 1). These basis sets include diffuse functions only for the
calculation of EAs. We can see that 6-311(++)G(3df,2p)
(column 7) performs somewhat better than (aug-)cc-pVTZ for
B2-PLYP but does slightly less well for UCMP-B2-PLYP and
SCS-B2-PLYP. The partially augmented Ahlrichs set def2-
TZVP(D) (column 8) comprises the def2-TZVP basis set for
neutral molecules and cations and the recently developed def2-
TZVPD basis set for anions,37 in which a small set of diffuse
functions is added, and they are optimized for the calculation of
polarizability. The use of the def2-TZVP(D) basis set yields
larger MADs for B2-PLYP when compared with (aug-)cc-pVTZ.
Its performance versus the Dunning (aug-)cc-pVTZ set appears
to be only slightly worse when combined with UCMP-B2-PLYP
and SCS-B2-PLYP. The use of the Jensen set (aug-)pc2 (column
9) gives MADs that are lower than those for (aug-)cc-pVTZ,
regardless of the type of DHDFT procedure employed. We also
note that the (aug-)pc2 basis set yields MADs that are not too
different from those obtained with aug-cc-pVTZ (column 5) and
aug0-cc-pVTZ (column 6).
We now examine the effect of the amount of wave function

contribution on the performance of the DHDFT procedures with
the (aug-)cc-pVTZ basis set (Table 1, columns 1 and 10�12).

Table 2. MADs from Experimental Values (kJ mol�1) for the G2/97 Set and its Subsets for B2-PLYP-Type and B2K-PLYP-Type
Procedures with a Variety of Basis Setsa

1 2 3 4 5 6 7 8 9 10

DHDFT

B2-

PLYP

B2-

PLYP

B2-

PLYP

B2-

PLYP

B2-

PLYP

B2K-

PLYP

B2K-

PLYP

B2K-

PLYP

B2K-

PLYP

B2K-

PLYP

basis set

def2-

TZVPD0+d
6-311+G

(3df,2p)+d

aug0-pc2
+d

aug0-def2-
TZVP+d

A0VTZ
+d

def2-

TZVPD0+d
6-311+G

(3df,2p)+d

aug0-pc2
+d

aug0-def2-
TZVP+d

A0VTZ
+d

STD-DHDFT

G2/97 19.6 13.8 11.5 16.3 13.3 26.0 18.5 14.9 21.9 17.6

ΔHf 25.6 17.1 13.1 22.8 17.0 39.3 27.2 20.6 34.7 26.7

IE 12.9 12.4 12.2 12.2 11.8 10.9 10.2 10.1 10.1 9.5

EA 16.2 8.7 7.2 7.2 7.0 17.8 10.4 9.1 8.9 8.5

PA 6.4 5.8 4.8 7.2 5.2 6.5 5.8 4.8 7.2 5.2

UCMP-DHDFTb

G2/97 11.5 10.1 8.9 10.0 8.4 10.4 8.8 7.5 9.2 6.6

ΔHf 11.8 11.0 8.6 11.4 8.1 10.8 9.6 7.0 10.9 5.7

IE 10.3 10.9 11.2 10.1 10.3 8.1 8.4 8.6 8.0 7.9

EA 13.4 6.9 6.8 6.5 6.3 13.7 7.9 7.6 7.2 7.0

PA 7.2 6.3 5.0 7.9 5.7 7.0 6.2 5.0 7.8 5.5

SCS-DHDFTc

G2/97 10.8 9.5 8.7 9.2 8.3 8.4 7.5 7.2 6.8 6.1

ΔHf 10.4 10.0 8.3 9.9 8.1 6.6 7.0 6.4 6.3 5.0

IE 10.2 10.9 11.2 10.0 10.2 7.9 8.3 8.6 7.8 7.7

EA 13.5 6.7 6.6 6.3 6.3 13.9 8.0 7.4 6.7 6.7

PA 5.7 4.9 4.4 6.3 5.1 5.5 4.8 4.4 6.2 4.9

timingd 1.0 1.1 2.9 2.0 2.8 1.0 1.2 3.0 2.0 2.8
aAugmented in each case with diffuse functions for heavy atoms and tight d functions for second-row group 13�18 elements. b Each cMP2 parameter is
optimized for the specific procedure and basis set. cThe cOS and cSS parameters are optimized for each method. dRelative to the total time for B2-
PLYP/(A)VTZ calculations for the G2/97 set.
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We find that, for STD-DHDFT-type procedures, the overall
MADs for the G2/97 set increase in the order B2-PLYP
(column 1) < B2T-PLYP (column 10) ∼ B2GP-PLYP (column
11) <B2K-PLYP (column12), i.e., theMADs increase as the wave
function fraction becomes larger. This ismainly associatedwith the
variation in the performance for ΔHf. For UCMP-DHDFT and
SCS-DHDFT, however, the MADs decrease slightly with increas-
ing wave function contribution.
Favorable Combinations of DHDFT Procedures and Basis

Sets. While the results presented in Table 1 have provided a
useful indication of the variation in the performance of a DHDFT
procedure with respect to its form and the basis set employed, the
most favorable combination is not yet clear. In search of the
optimal and most cost-effective combination of a DHDFT
procedure with a specific basis set, we have further examined
B2-PLYP- and B2K-PLYP-type procedures combined with the
four families of triple-ζ basis sets, in each case augmented with
diffuse functions for nonhydrogen atoms and with tight d
functions for second-row group 13�18 elements.
We choose B2-PLYP and B2K-PLYP as they represent the two

extremes of the DHDFT methods considered, with the former
having the smallest and the latter having the largest wave function
contributions. For the Ahlrichs def2-TZVP basis set, we have
considered two types of diffuse augmentation: (1) the def2-
TZVPD0 basis set, which makes use of the def2-TZVPD diffuse
functions on nonhydrogen atoms; and (2) the aug0-def2-TZVP
basis set, where diffuse functions are taken from the Dunning
aug0-cc-pVTZ set. The MADs for the G2/97 set for these
combinations are shown in Table 2.
A comparison between Tables 1 (columns 1 and 7�9) and 2

(columns 1�5) shows that the inclusion of additional diffuse
functions and tight d functions leads to somewhat lower MADs
for the B2-PLYP, UCMP-B2-PLYP, and SCS-B2-PLYP proce-
dures, with small but noticeable improvements for ΔHf and IE
found inmost cases. We again find that theMADs decrease in the
order STD-DHDFT > UCMP-DHDFT∼ SCS-DHDFT, which
is similar to the trends in Table 1. We also see that the
performance of STD-DHDFT for ΔHf is significantly poorer
than those of the corresponding UCMP-DHDFT and SCS-
DHDFT procedures. We note that the slightly lower MADs
for SCS-DHDFT compared with UCMP-DHDFT are some-
what more obvious in these cases.
We now compare the performance of the different basis sets. It

can be seen that, for the STD-DHDFT procedures B2-PLYP
(columns 1�5) and B2K-PLYP (columns 6�10), the MADs
decrease in the order def2-TZVPD0+d (columns 1 and 6) >
aug0-def2-TZVP+d (columns 4 and 9) > 6-311+G(3df,2p)+d
(columns 2 and 7) > aug0-cc-pVTZ+d (columns 5 and 10) >
aug0-pc2+d (columns 3 and 8). Thus, while (aug-)cc-pVTZ
performs less well than the 6-311(++)G(3df,2p) basis set
(Table 1, columns 1 and 7), the inclusion of extra functions in
the aug0-cc-pVTZ+d basis set leads to comparable results to the
corresponding Pople set. In fact, when we make the comparison
for UCMP-DHDFT and SCS-DHDFT, we find that, although all
basis sets lead to respectable MADs, the Dunning set (columns 5
and 10) somewhat outperforms the other types of basis sets. It is
also noteworthy that the aug0-def2-TZVP+d basis set (columns 4
and 9) yields lower MADs than those for the def2-TZVPD0+d
basis set (columns 1 and 6). Rappoport and Furche have pointed
out the potential difficulty of the smaller set of diffuse functions in
def2-TZVPD for describing more demanding systems, such as
anions.37 Our observation is consistent with such a proposition.

While the aug0-cc-pVTZ+d basis set yields the lowest MADs for
SCS-DHDFT, and we deem its use sufficiently economical for a
wide range of applications, we note that the use of the 6-311
+G(3df,2p)+d basis is also cost-effective. It offers further savings
in computational resources over the Dunning set, but its
performance is slightly worse.
Turning our attention to the effect of the amount of wave

function contribution on the performance of the DHDFT
procedures (Table 2), we find that B2-PLYP gives lower MADs
than those for B2K-PLYP. On the other hand, it can be seen that
UCMP-B2K-PLYP outperforms UCMP-B2-PLYP, and likewise
SCS-B2K-PLYP yields lower MADs than those for SCS-B2-
PLYP. These observations are also consistent with the results in
Table 1 (columns 1 and 12). Overall, we find the combination of
SCS-B2K-PLYP and aug0-cc-pVTZ+d (Table 2, column 10)
gives the lowest MAD of 6.1 kJ mol�1 for the G2/97 set of
energies. At the other end of the spectrum, it is striking that if one
employs B2K-PLYP with the def2-TZVPD0+d basis set (column
6), a substantially larger MAD of 26.0 kJ mol�1 is obtained! This
emphasizes the importance of carefully choosing the combina-
tion of method and basis set.
At this point it is instructive to summarize our observations so

far. We find that the use of diffuse functions is beneficial not only
for EAs but also for the calculation ofΔHf and IE. In addition, we
notice that the inclusion of excess correlation is favorable.
Combining these two main ingredients and other minor details,
we find that the frozen-core SCS-B2K-PLYP/aug0-cc-pVTZ+d
procedure offers a cost-effective means for obtaining reliable
results, with an MAD of 6.1 kJ mol�1 for the G2/97 test set.

Table 3. MADs from Experimental Values (kJ mol�1) for the
G2/97 Set and its Subsets for B2K-PLYP-Type Procedures

frozen core all electron

A0VTZ+d AVQZ+d A0VTZ+d AVQZ+d

B2K-PLYP

G2/97 17.6 9.5 9.7 7.7

ΔHf 26.7 11.2 10.8 7.7

IE 9.5 8.5 9.2 8.3

EA 8.5 7.4 8.4 7.3

PA 5.2 5.2 4.8 4.9

UCMP-B2K-PLYPa

G2/97 6.6 6.6 7.8 7.7

ΔHf 5.7 5.8 7.5 7.7

IE 7.9 7.9 8.5 8.3

EA 7.0 6.7 7.7 7.3

PA 5.5 5.3 4.8 5.0

SCS-B2K-PLYPb

G2/97 6.1 6.4 7.5 7.6

ΔHf 5.0 5.5 7.0 7.5

IE 7.7 7.9 8.6 8.3

EA 6.7 6.6 7.7 7.3

PA 4.9 4.9 4.6 4.7

timingc 2.8 64.5 3.2 70.6
a Each cMP2 parameter is optimized for the specific basis set and core-
correlation options. bThe cOS and cSS parameters are optimized for each
method. cRelative to the total time for B2-PLYP/(A)VTZ calculations
for the G2/97 set.
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On the other hand, from Table 1, we see that the use of (aug-)cc-
pVQZ (column 4) offers a noteworthy improvement over (aug-)
cc-pVTZ. It is reasonable to ask: are we able to further improve
the performance by using aug-cc-pVQZ+d instead of aug0-cc-
pVTZ+d? In order to address this question, we have carried out
investigations in which we have examined both frozen-core and
all-electron B2K-PLYP-type procedures. The results are shown
in Table 3.
We can see that, for frozen-core B2K-PLYP, there is a

substantial improvement in going from aug0-cc-pVTZ+d to
aug-cc-pVQZ+d. This can mainly be attributed to poor ΔHf

predictions with frozen-core B2K-PLYP when the aug0-cc-
pVTZ+d basis set is used. The corresponding improvement
for all-electron B2K-PLYP is much smaller. In particular, all-
electron B2K-PLYP/aug0-cc-pVTZ+d gives an MAD for ΔHf

(10.8 kJ mol�1) that is somewhat larger than that for all-
electron B2K-PLYP/aug-cc-pVQZ+d (7.7 kJ mol�1) but
much smaller than that for frozen-core B2K-PLYP/aug0-cc-
pVTZ+d (26.7 kJ mol�1). For UCMP-B2K-PLYP and SCS-
B2K-PLYP with either frozen-core or all-electron MP2, the
use of aug-cc-pVQZ+d yields results that are very similar to
those obtained with aug0-cc-pVTZ+d. In comparing the
performance of the frozen-core calculations with their all-
electron counterparts, we find that, for B2K-PLYP, the use of
all electrons in the MP2 treatment leads to lower MADs. On
the other hand, the performance in fact slightly deteriorates
for UCMP-B2K-PLYP and SCS-B2K-PLYP when one em-
ploys all-electron MP2. This is consistent with the observa-
tions in Table 1 (columns 1 and 2). Remarkably, the best
combination of correlation treatment, theoretical method,
and basis set remains frozen-core SCS-B2K-PLYP/aug0-cc-
pVTZ+d.

Dependence of Performance on Optimized Parameters.
When the empirical parameters in a procedure are optimized
under a certain set of conditions, one potential pitfall is that the
resulting method may not be able to adapt to a different set of
conditions. For example, does the performance of the SCS-B2K-
PLYP/aug0-cc-pVTZ+d procedure change significantly when a
different basis set is used, but the cOS and cSS parameters
optimized for aug0-cc-pVTZ+d are retained? Indeed, the desir-
ability of using a basis set for which a DHDFT method is
parametrized has been emphasized previously.5,6,11To this end,
we have assessed the sensitivity of the performance of SCS-B2K-
PLYP to different combinations of core-correlation options
(frozen-core or all-electron) and basis sets (aug0-cc-pVTZ+d or
aug-cc-pVQZ+d), with parameters optimized for the various
core-correlation options and basis sets (Table 4).
We find that there is a large variation in the MADs for the G2/

97 set for the different combinations, in which the performance
of the procedure can deteriorate significantly when a set of
mismatched parameters is used with certain combinations of
core-correlation and basis-set options. The situation is worst
when one stretches such “incompatibility” the most. Thus, the
overall G2/97 MAD is largest (17.8 kJ mol�1) when one
employs parameters optimized for frozen-core aug0-cc-pVTZ
+d but uses them in combination with all-electron aug-cc-
pVQZ+d, and (coincidentally) vice versa. However, such large
variations are mainly due to the differences in the performance
for ΔHf, where the use of matched parameters for frozen-core
aug0-cc-pVTZ+d gives an MAD of 5.0 kJ mol�1, but the use of
this set of parameters for all-electron aug-cc-pVQZ+d yields the
largest MAD of 28.7 kJ mol�1.
On the other hand, the variation in performance for other

thermochemical properties in G2/97 (IE, EA, and PA) is small,
with MAD values that span a range of just 2 kJ mol�1. We note
that the smallest MAD for the IE, EA, and PA set of energies
corresponds to the use of parameters optimized for frozen-core
aug0-cc-pVTZ+d, applied to energies obtained from all-electron
aug0-cc-pVTZ+d calculations. Upon inspection of the cOS and cSS
parameters for the four procedures (Supporting Information,
Table S1), we find that there is a larger variation in cOS than in cSS.
In addition, cOS is larger in magnitude than cSS, and EC

MP2OS is,
in general, about three times larger than EC

MP2SS. Thus, it
appears that the variation in the cOSEC

MP2OS term is a major con-
tributing factor to the overall differences in the procedures.
New DuT-D3 Procedure and its Performance. Based on

what we have learned from the previous sections, we have
reoptimized the parameters cB88, cHF, cLYP, cOS, and cSS for a
B-LYP-based frozen-core SCS-DHDFT with the aug0-cc-pVTZ
+d basis set. The new procedure will be referred to as DS-B-LYP/
aug0-cc-pVTZ+d, owing to its similarity to DSD-B-LYP but
without the D correction for dispersion.

EDS-B-LYP ¼ cB88E
B88
X þ cHFE

HF
X þ cLYPE

LYP
C

þ cOSE
MP2OS
C þ cSSE

MP2SS
C ð3Þ

Within the DS label, the D relates to the double-hybrid DFT
procedure, while the S relates to the use of SCS-MP2 correlation.
We then supplement this method with a D3 dispersion correc-
tion and term this procedureDS-B-LYP/aug0-cc-pVTZ+d-D3.We
have also optimized the parameters for the 6-311+G(3df,2p)+d
basis set,40 and the resulting methods are denoted DS-B-LYP/
6-311+G(3df,2p)+d and DS-B-LYP/6-311+G(3df,2p)+d-D3. For
the sake of simplicity, we will refer to DS-B-LYP/aug0-cc-pVTZ+d,

Table 4. MADs from Experimental Values (kJ mol�1) of
Various Combinations of cOS and cSS Parameters, Core-
Correlation Optionsa and Basis Sets for SCS-B2K-PLYP on
the G2/97 Set

basis set and core-correlation options

parameter

optimization

level

A0VTZ+d
(FC)

AVQZ+d

(FC)

A0VTZ+d
(FU)

AVQZ+d

(FU)

G2/97

A0VTZ+d (FC) 6.1 12.6 15.3 17.8

AVQZ+d (FC) 13.0 6.4 8.8 10.1

A0VTZ+d (FU) 13.8 6.5 7.5 9.6

AVQZ+d (FU) 17.8 9.5 8.3 7.6

ΔHf

A0VTZ+d (FC) 5.0 18.2 24.0 28.7

AVQZ+d (FC) 18.1 5.5 9.9 13.0

A0VTZ+d (FU) 19.6 5.6 7.0 12.0

AVQZ+d (FU) 27.1 11.1 8.2 7.5

IE, EA, and PA

A0VTZ+d (FC) 7.2 7.2 6.9 7.3

AVQZ+d (FC) 8.1 7.3 7.7 7.2

A0VTZ+d (FU) 8.2 7.3 8.0 7.3

AVQZ+d (FU) 8.9 7.8 8.5 7.7
a FC = frozen-core, and FU = full, i.e., all electrons.
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DS-B-LYP/aug0-cc-pVTZ+d-D3,DS-B-LYP/6-311+G(3df,2p)+d,
and DS-B-LYP/6-311+G(3df,2p)+d-D3 as the DuT, DuT-D3,
PoT, and PoT-D3 procedures. The DuT denotes that the first
two procedures are matched to the Dunning triple-ζ basis set,
and PoT signifies the use of the Pople triple-ζ basis set in the
latter two.
For DHDFT procedures, the D3 correction has three adjus-

table parameters, namely s6, sr,6, and s8.
12,23 For the DuT-D3 and

PoT-D3 procedures, we initially chose the parameters deter-
mined for the DSD-B-LYP-D3 procedure,12 with values of 0.5,
1.569, and 0.705 for s6, sr,6, and s8, respectively. Examination of
the effect of modifying the three D3 parameters for the DuT-D3
and PoT-D3 procedures shows that the performance of the
method is relatively insensitive to the values of s6 and sr,6. We
have therefore adopted the DSD-B-LYP-D3 s6 and sr,6 values for
both DuT-D3 and PoT-D3. On the other hand, altering the s8
parameter has a greater influence on the results obtained with
DuT-D3 and PoT-D3. In particular, we find that a smaller value
of s8 gives a more uniformly satisfactory description for the range
of thermochemical properties considered in the present study.
Thus, we have chosen values for s8 of 0.35 and 0.30 for the DuT-
D3 and PoT-D3 procedures, respectively.
We have also examined the effect of using the new D3(BJ)

form41 of dispersion correction. It makes use of the damping
function of Becke and Johnson,42 instead of the form of Chai and
Head-Gordon43 that is employed in the original D3 formula-
tion. We find that, in general, D3 and D3(BJ) give comparable
results when used in conjunction with DuT and PoT. The use of
D3(BJ) gives a more noticeable improvement for the MB08 set,
but this comes at the expense of a small but evidently worse
performance on the S22 and Grubbs sets. Taking these results
into account, we have opted for the original Chai and Head-
Gordon approach for the DuT-D3 and PoT-D3 procedures.
While our discussion will mainly focus on DuT-D3 due to its

higher accuracy, we note that, for the largest E3 test set that we
used in the present study (see below), the DuT-D3 procedure is
3.4 times more expensive than the PoT-D3 procedure, while the
latter has an MAD that is only 0.7 kJ mol�1 larger than that for the
former. We thus repeat our recommendation for the use of 6-311
+G(3df,2p)+d, i.e., the PoT-D3 procedure, when the use of aug0-
cc-pVTZ+d in DuT-D3 becomes computationally too demand-
ing. The optimized parameters for DuT-D3 and PoT-D3 are

shown in Table 5, together with those for B2K-PLYP, frozen-
core SCS-B2K-PLYP/aug0-cc-pVTZ+d, and frozen-core DSD-
B-LYP-D3 for comparison.
It is noteworthy that the parameters cB88 and cHF are very

similar for all these methods, despite the fact that they are
determined in combination with different basis sets and fitted to
different training sets. Thus, it appears that the optimal cB88 and
cHF parameters vary within a relatively narrow range for a wide
variety of thermochemical properties, with values of 0.30 (
0.02 and 0.70 ( 0.02, respectively. We can see that there is a
similar proportional variation for the cLYP parameter, with
optimum values in the range 0.60 ( 0.04. A comparison of
SCS-B2K-PLYP, DuT-D3, PoT-D3, and DSD-B-LYP-D3
shows that the optimal value for cOS lies in a relatively narrow
range of 0.46�0.48, but there is a larger variation for the
coefficient for the same-spin component of theMP2 correlation
energy. Thus, cSS has values that lie between 0.27 (PoT-D3) and
0.40 (DSD-B-LYP-D3).
We now assess the performance of DuT-D3 for a wider

range of systems. We employ the E2 set35 of 526 energies as
the main benchmark set. The E2 set includes the W4/08 and
the DBH24 sets that are also part of the DSD set. We have also
included the remaining subsets of DSD, namely the S22,44

MB08, Pd, and Grubbs sets, in our benchmark. While the Pd
and Grubbs sets represent two important applications in

Table 5. Scale Coefficients and Parameters for the D3 Cor-
rections for the B2K-PLYP, SCS-B2K-PLYP, DuT-D3, PoT-
D3, and DSD-B-LYP-D3 Procedures

DHDFT

B2K-

PLYPa
SCS-B2K-

PLYPb,c DuT-D3b,c PoT-D3c,d
DSD-B-

LYP-D3e

cB88 0.28 0.28 0.30 0.32 0.30

cHF 0.72 0.72 0.70 0.68 0.70

cLYP 0.58 0.58 0.59 0.63 0.56

cOS 0.42 0.48 0.47 0.46 0.46

cSS 0.42 0.39 0.36 0.27 0.40

s6 � � 0.5 0.5 0.5

sr,6 � � 1.569 1.569 1.569

s8 � � 0.35 0.30 0.705
aRef 3. bOptimized in conjunction with the aug0-cc-pVTZ+d basis set.
c Frozen-core approximation for MP2 correlation. dOptimized for
6-311+G(3df,2p)+d. e Scale coefficient values for frozen-core DSD-B-
LYP from ref 11 and D3 parameters from ref 12.

Table 6. Performance of the DuT-D3 Procedure for the E3
Test Seta,b

statistics MAD MD LD SD NO

E3 7.9 �4.4 �60.9 11.3 183

E2c 5.9 �1.7 �49.0 8.7 88

E0 6.5 �2.8 �49.0 10.0 26

W4/08 8.5d �4.3 �49.0 11.7 25

DBH24 3.7 �0.3 10.6 4.4 1

HB16 2.0 1.9 4.7 1.4 0

WI9/04 0.8 �0.6 �2.0 0.8 0

G2/970 6.2 �1.2 �42.1 8.7 45

ΔHf 4.6 �1.0 �21.3 6.4 12

IE 7.7 �2.5 �42.1 10.6 23

EA 6.5 1.0 39.8 9.1 9

PA 4.9 �4.1 �10.8 4.6 1

E1 4.7 �1.6 �28.7 7.0 17

G3/990 6.5 �2.4 �28.7 8.8 17

ADD 2.0 1.3 7.2 2.5 0

ABS 1.6 �0.1 �4.7 2.0 0

PR8 6.5 �6.5 �9.8 2.5 0

DSD0 e 12.7 �10.8 �60.9 14.0 95

S22 2.1 2.1 9.2 2.9 0

MB08 15.9 �14.4 �60.9 14.1 95

Pdf 2.2 �1.1 �7.4 2.6 0

Grubbsf 3.8 3.3 8.6 3.9 0
aMAD = mean absolute deviation, MD = mean deviation, LD = largest
deviation, and SD = standard deviation (kJ mol�1); and NO = number
of outliers (deviations >10 kJ mol�1). bGeometries were obtained at the
BMK/6-31+G(2df,p) level, unless otherwise noted. c See ref 35 for the
definition of the E2 set and its subsets E0, G2/970, and E1. dMAD for
nonmultireference systems is 6.2 kJ mol�1. e Literature geometries were
used, see refs 19�22. fThe aug-cc-pVTZ-PP basis set and the corre-
sponding ECP were employed for the elements Pd and Ru.
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transition-metal chemistry, we caution that generalization
requires further investigations, especially for 3d transition
metals that are not covered in the present study. The S22,
MB08, Pd, and Grubbs sets comprise 214 energies, and we will
refer to this collection as the DSD0 set. Thus, we have assessed
the new procedure for a total of 740 energies, and we refer to
this compilation of energies as the E3 set. For Pd and Ru, we
have employed the aug-cc-pVTZ-PP basis set with the corre-
sponding effective core potentials (ECPs),45 in conjunction
with aug0-cc-pVTZ+d for all the other elements. The results
are shown in Table 6.
We can see that, with the exception of MB08, theMADs for all

the subsets of E3 are less than 10 kJ mol�1. Likewise, DuT-D3
affords SDs below 10 kJ mol�1 for most sets except W4/08, G2/
970 IE, and MB08. We find that the MD values for the PR8 and
MB08 sets have magnitudes that are larger than 5 kJ mol�1. In
particular, the MB08 set is associated with an MD of �14.4 kJ
mol�1. This indicates systematic deviations for these sets. There
are a total of 183 outliers in which the deviations are larger than
10 kJmol�1. These are dominated by outliers from theMB08 set,
which account for 95 out of the total.
Figure 1 shows the distribution of the deviations for the E3,

MB08, and E3 sets, excluding MB08. We can see that there are
indeed systematic deviations for the MB08 set. On the other
hand, the deviations for the rest of the subsets in E3 are normally
distributed around zero. Thus, we find that theMD for the E3 set
whenMB08 is excluded is�1.5 kJ mol�1, compared with�4.4 kJ
mol�1 whenMB08 is included in the analysis. Other subsets that
represent substantial challenges to the DuT-D3 procedure, in
terms of the number of outliers and largest deviations, include
W4/08 (atomization energies), G2/970 ΔHf, G3/990 ΔHf, G2/
970 IE, and G2/970 EA.
Comparison of DuT-D3, PoT-D3, DuT, and PoT with DSD-

B-LYP and its Variants. In a recent study,12 Goerigk and
Grimme have formulated the DSD-B-LYP-D3 method and
found it to be one of the best performing DHDFT procedures
for the extensive GMTKN30 test set. In the present study, we
employ DSD-B-LYP andDSD-B-LYP-D3 as yardsticks to further
scrutinize the performance of the DuT-D3 and PoT-D3 proce-
dures and their pure quantum mechanical variants, i.e., DuT and
PoT. We have also examined the effect of removing the disper-
sion term in DSD-B-LYP altogether, and we refer to this method
as DSD-B-LYP(ex D).
We have employed two quadruple-ζ basis sets, namely aug0-

pc3+d and aug0-def2-QZVP, for the calculation of the quantum
mechanical component of DSD-B-LYP and DSD-B-LYP-D3.

The aug0-pc3+d basis set was chosen because it is one of the
major basis sets employed in the original parametrization of
DSD-B-LYP.11 The remaining basis sets utilized in the for-
mulation of DSD-B-LYP are Ahlrichs-style basis sets def2-
TZVP, def2-QZVP, and def2-QZVPP. Among these, the
def2-QZVP basis set was also used for the evaluation of
DSD-B-LYP-D3, and this combination shows promising
results.12 In the present study, we augment the def2-QZVP
basis set with diffuse functions from aug0-cc-pVQZ to arrive at
the aug0-def2-QZVP basis set, and we examine its performance
when used in conjunction with DSD-B-LYP and DSD-B-LYP-
D3. The frozen-core approximation was applied, as the inclu-
sion of all electrons for SCS-MP2 correlation in the context of
the DHDFT procedure has been shown to lead to only a small
improvement in performance (ref 11 and Table 3). The MADs
for the E3 set and its subsets are summarized in Table 7.
We first note that, in general, all combinations of methods and

basis sets perform comparably. Among the two basis sets
employed for the DSD-B-LYP-type procedures, the use of the
aug0-def2-QZVP basis set (columns 6, 8, and 10) typically yields
results that are slightly better than those for aug0-pc3+d (columns
5, 7, and 9). In addition, the use of the aug0-def2-QZVP basis set
offers a notable saving in computational resources compared
with aug0-pc3+d, with timing ratios of 26.4� and 45.9� relative
to PoT, for aug0-def2-QZVP and aug0-pc3+d, respectively, for the
E2 set. While a generalization of the above observations would
require further investigations, nonetheless the aug0-def2-QZVP
basis set appears to be a more suitable and cost-effective
quadruple-ζ basis set for DSD-B-LYP-type procedures than
aug0-pc3+d.
A comparison of DuT-D3 with PoT-D3 and DuT with PoT

shows that, for each subset, theDuTprocedures (columns 1 and 3)
generally outperform the PoT variants (columns 2 and 4), with
MAD values that are lower than those for the corresponding PoT
procedures by up to 2 kJ mol�1. Cases where PoT-D3 and PoT
gives MADs that are larger than those for the respective DuT
procedures by more than 2 kJ mol�1 include W4/08, G3/990, and
theGrubbs set. Among these three sets, the largestMADs occur for
the W4/08 set, in which DuT-D3 yields an MAD of 8.5 kJ mol�1,
while the corresponding value for PoT-D3 is 10.8 kJmol�1. On the
other hand, PoT-D3 performs better than DuT-D3 for the PR8
and MB08 sets. In general, we find that the inclusion of D3
corrections (columns 1 and 2) leads to comparable or lowerMADs
than those for DuT and PoT (columns 3 and 4). Only very minor
deterioration in the performance is observed for the DBH24,
G2/970 ΔHf, and PR8 sets when dispersion corrections are inclu-
ded. Nonetheless, we emphasize the general good performance of
all four DS-B-LYP-type procedures, namely DuT-D3, PoT-D3,
DuT, and PoT, such that a large part of the chemistry can be
captured with quantum mechanics without the requirement for
additional dispersion corrections.
We now compare the performance of DuT-D3 and DuT with

the performances of the three variants of DSD-B-LYP (Table 7).
We find that the procedures that do not include a dispersion
correction, i.e., DuT (column 3) and DSD-B-LYP(ex D)
(columns 9 and 10) generally give MAD values that are similar
to one another for each subset, with the G2/970 ΔHf, G3/990,
S22, and Grubbs sets being notable exceptions. Likewise, the two
dispersion-corrected variants of DSD-B-LYP (columns 5 and 6
for DSD-B-LYP and columns 7 and 8 for DSD-B-LYP-D3) have
performances that are comparable, except for the G3/990 and
Grubbs sets. However, there are more substantial differences

Figure 1. Distribution of the deviations (kJ mol�1) for DuT-D3 for the
E3, MB08, and E3 sets, excluding MB08.
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between DSD-B-LYP(ex D) (columns 9 and 10) and DSD-B-
LYP (columns 5 and 6), notably for the G3/990, S22, and Grubbs
sets. These results highlight the significant contribution of
empirical dispersion corrections to the relative energies in the
DSD-B-LYP method. Overall, we find that there are large
variations for the G3/990, PR8, S22, and Grubbs sets between
the various methods.
What factors contribute to the more significant variations in

these sets? TheG3/990 set containsΔHf values for medium-sized
molecules. One can expect large variations in the performance of
different methods forΔHf, and that the differences grow with the
size of the molecules. In addition, the dispersion correction for
ΔHf would also growwith the size of themolecule, as the product
atoms contain a zero dispersion term. For instance, there is a D
correction (for DSD-B-LYP) of �26.1 kJ mol�1 and a D3
correction (for DSD-B-LYP-D3) of �17.3 kJ mol�1 for the
ΔHf of n-octane.

46 Therefore, we see large variations for G3/990,
and the inclusion of the particular dispersion corrections appears
to lead to larger MADs for DSD-B-LYP and DSD-B-LYP-D3.

The S22 set includes complexation energies between large
monomers, while the PR8 and Grubbs sets comprise barriers and
reaction energies with large reactants. In these cases, we also see the
sizable contributions of large empirical dispersion corrections to the
DSD-B-LYP energies, which lead to larger MADs for PR8 but
smaller MADs for the S22 and the Grubbs sets. To illustrate the
large dispersion corrections for someof the species in the S22 set, for
example, for DSD-B-LYP and DSD-B-LYP-D3, the adenine-thy-
mine stacked dimer has a D correction of�18.0 kJ mol�1 and a D3
correction of�15.2 kJ mol�1 to the binding energy.47 In this case,
the dispersion corrections lead to improved results. In addition, for
the Grubbs set, 6 out of the 7 entries in the set have D contributions
to relative energies that exceed 10 kJmol�1, and theseD corrections
contribute significantly to the difference in theMADsof theDSD-B-
LYP(ex D) and DSD-B-LYP methods.
We now rank the performance of these methods. Overall,

DuT-D3 yields the smallest MAD for the complete E3 set,
although the other procedures follow closely. When compared
with the DSD-B-LYP variants, the better performance of

Table 7. Comparison of MADs from Benchmark Values (kJ mol�1) for the E3 Test Set for DuT-D3, PoT-D3, DuT, PoT, DSD-B-
LYP, DSD-B-LYP-D3, and DSD-B-LYP(ex D)a

1 2 3 4 5 6 7 8 9 10

DHDFT DuT-D3 PoT-D3 DuT PoT DSD-B-LYP DSD-B-LYP-D3 DSD-B-LYP(ex D)

basis set

A0VTZ
+db

6-311+G

(3df,2p)+dc
A0VTZ
+db

6-311+G

(3df,2p)+dc
aug0-pc3

+d

aug0-def2-
QZVP

aug0-pc3
+d

aug0-def2-
QZVP

aug0-pc3
+d

aug0-def2-
QZVP

D Correction D3 D3 nil nil D D3 nil

E3 7.9 8.6 8.4 9.0 9.3 9.0 9.0 8.7 9.2 9.1

E2 5.9 7.3 6.0 7.4 8.4 7.9 7.8 7.4 6.9 6.7

E0 6.5 8.2 6.5 8.2 6.7 6.5 6.6 6.4 6.5 6.3

W4/08 8.5 10.8 8.5 10.8 8.9 8.4 8.8 8.3 8.7 8.3

DBH24 3.7 3.7 3.5 3.7 3.2 3.7 3.2 3.7 3.1 3.4

HB16 2.0 2.6 1.6 2.2 1.8 2.0 1.6 1.8 0.9 1.1

WI9/04 0.8 0.8 1.0 1.0 0.8 0.8 0.8 0.8 1.0 1.0

G2/970 6.2 7.4 6.1 7.4 8.0 7.6 7.7 7.3 7.0 6.8

ΔHf 4.6 6.5 4.4 6.4 9.2 8.5 8.4 7.7 6.7 6.3

IE 7.7 8.4 7.7 8.4 8.0 7.7 8.0 7.7 8.0 7.7

EA 6.5 7.7 6.5 7.7 6.4 6.3 6.4 6.3 6.4 6.3

PA 4.9 5.0 4.9 5.0 4.4 4.8 4.6 5.1 4.6 5.1

E1 4.7 5.9 5.1 6.4 11.0 10.2 9.4 8.7 7.0 6.9

G3/990 6.5 8.8 7.0 9.3 17.4 16.0 14.8 13.4 10.1 9.8

ADD 2.0 3.1 3.1 4.3 2.0 2.1 1.8 1.8 3.9 3.8

ABS 1.6 1.5 1.7 1.7 1.6 1.7 1.6 1.6 1.9 1.8

PR8 6.5 1.9 5.4 1.7 9.2 9.6 7.6 8.0 5.5 5.9

DSD0 12.7 11.9 14.4 13.2 11.8 11.8 15.0

S22 2.1 2.5 4.9 4.8 1.3d,g,h 1.7d,i,h 6.5d,j,h

MB08 15.9 14.4 17.5 15.6 14.6e,g 14.5e,i 17.7e,j

Pd 2.2 3.9 2.5 4.1 2.8f,g 2.9f,i 3.2f,j

Grubbs 3.8 7.5 7.2 11.0 3.6d,g 6.1d,i 13.4d,j

timing (E2)k 2.8 1.0 2.8 1.0 46.4 26.4 46.4 26.4 46.4 26.4

timing (E3)k 3.4 1.0 3.4 1.0 � � � � � �
aThe frozen-core approximation is employed for all methods. bThe aug-cc-pVTZ-PP basis set was used for Pd and Ru. cThe aug-def2-TZVP basis set
was used for Pd andRu. dValues for the def2-TZVP basis set. eValues for the def2-QZVP basis set. fValues for the def2-QZVPP basis set. gObtained from
literature deviations reported in the Supporting Information of ref 11. hRevised for updated benchmark values from ref 19b. iDeviations obtained
by adding the D3�D contributions to the literature values (ref 11). jDeviations obtained by subtracting the D contributions from the literature values
(ref 11). kRelative to the total time for PoT calculations for the designated test set.
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DuT-D3 can primarily be attributed to themuch smaller deviations
for the G3/990 set, while maintaining its robustness for the other
sets. It is thus important to note that, for DHDFT procedures, the
use of appropriate triple-ζ basis sets, such as aug0-cc-pVTZ+d and
6-311+G(3df,2p)+d in this instance, can yield results that are of
comparable reliability to those obtained with quadruple-ζ basis sets
but at considerably lower computational expense.
We have also compared (Table 8) the performance of the very

promising ωB97X-2(LP)/6-311++G(3df,3pd) procedure with
the performances for the methods, listed in Table 7, on a selected
subset of E3, namely G2/97 and G3/99 ΔHf, the G2-1 subsets

15

of G2/97 IE and G2/97 EA, G2/97 PA, and S22. It can be seen
that all three procedures that employ triple-ζ basis sets (columns
1�3) are competitive in performance with the DSD-B-LYP
variants (columns 4�9) that use quadruple-ζ basis sets. This
provides further support for the use of appropriate triple-ζ basis
sets for DHDFT calculations.
It can be seen (Table 8) that the procedures that do not

include an explicit dispersion correction or those that include
dispersion corrections with smaller s8 contributions (columns
1�5) are characterized by smaller MADs for the G2/97 and G3/
99 ΔHfs and, in general, by larger MADs for the S22 set. On the
other hand, the procedures that include a larger dispersion
correction (columns 6�9) are characterized by larger MADs
for the G2/97 and G3/99 ΔHfs and smaller MADs for the S22
set. It is notable that ωB97X-2(LP)/6-311++G(3df,3pd) per-
forms well for both the ΔHf sets and the S22 set, presumably
because of the incorporation of long-range corrections through
its range-separation scheme.6

’CONCLUDING REMARKS

In the present investigation, we have examined a variety of
B-LYP-based DHDFT procedures used in conjunction with a
range of basis sets, particularly triple-ζ basis sets. The following
important points emerge from our study:
(1) We find that the optimal %EX

B88 and %EX
HF are ∼30 and

70%, respectively, and these values are relatively insensi-
tive to the thermochemical properties of interest.We also
find that it is beneficial to include correlation energy in
excess of the amount constrained by the requirement of
%EC

LYP + %EC
MP2 = 100%. For the energies in the G2/97

set, the use of SCS-MP2 yields comparable or slightly

better results than the use of conventional MP2. We find
the optimal %EC

MP2OS to be ∼47%, while %EC
MP2SS lies

between 27 and 40%.
(2) Regarding the basis set, the use of diffuse functions on

nonhydrogen atoms appears to be important not only for
the evaluation of EAs but also for other thermochemical
properties, such asΔHf and IE. However, the inclusion of
diffuse functions on hydrogen is not essential. On the
other hand, we deem the use of tight d functions on
second-row atoms a cost-effective improvement. Among
the different styles of augmented triple-ζ-type basis sets
examined, namely the Pople 6-311+G(3df,2p)+d, Dun-
ning aug0-cc-pVTZ+d, Jensen aug0-pc2+d, and Ahlrichs
def2-TZVPD0+d and aug0-def2-TZVP+d sets, the aug0-
cc-pVTZ+d basis set emerges as the best-performing
basis set for B-LYP-based DHDFT methods. The use of
the 6-311+G(3df,2p)+d basis set gives slightly less
accurate results but offers notable savings in computer
time. When used in conjunction with UCMP-B2K-PLYP
and SCS-B2K-PLYP procedures, aug0-cc-pVTZ+d some-
what outperforms the larger aug-cc-pVQZ+d basis set for
the G2/97 set.

(3) We find that when a set of SCS parameters is optimized
for a specific basis set, its use with a different basis set
can lead to large deviations for heats of formation,
while other relative energies are less sensitive to the
combination of parameters and basis set. We recom-
mend the use in general of matching optimum para-
meters and basis sets.

(4) Using aug0-cc-pVTZ+d, we have formulated the DuT-D3
and DuT DHDFT procedures. For the larger E2 and E3
test sets, DuT-D3 andDuT perform comparably to DSD-
B-LYP-D3 and DSD-B-LYP when the latter are used in
conjunction with the quadruple-ζ basis sets for which
they are developed, namely aug0-pc3+d and aug0-def2-
QZVP. However, the computational expense of DuT-D3
and DuT is significantly lower. This supports the use of
appropriate and cost-effective triple-ζ basis sets for
DHDFT calculations.

(5) We have also formulated the PoT-D3 and PoT DHDFT
procedures with the 6-311+G(3df,2p)+d basis set. These
are only slightly less accurate than the DuT variants, but
the smaller basis set enables calculations on larger systems.

Table 8. Comparison of MADs from Benchmark Values (kJ mol�1) for Selected Subsets of the E3 Test Set for ωB97X-2(LP),
DuT-D3, PoT-D3, DSD-B-LYP(ex D), DSD-B-LYP, and DSD-B-LYP-D3

1a 2 3 4 5 6 7 8 9

DHDFT ωB97X-2(LP) DuT-D3 PoT-D3 DSD-B-LYP(ex D) DSD-B-LYP DSD-B-LYP-D3

basis set

6-311++G

(3df,3pd)

A0VTZ
+d

6-311+G

(3df,2p)+d

aug0-pc3
+d

aug0-def2-
QZVP

aug0-pc3
+d

aug0-def2-
QZVP

aug0-pc3
+d

aug0-def2-
QZVP

D Correction nil D3 D3 nil D D3

G2/97 and G3/99 ΔHf 6.4 5.6 7.7 8.1 7.7 11.6 10.7 10.4 9.6

G2-1 IE 7.2 7.0 7.8 7.3 6.8 7.3 6.8 7.3 6.8

G2-1 EA 6.5 5.8 9.2 6.0 5.4 6.0 5.4 6.0 5.4

G2/97 PA 4.6 4.9 5.0 4.6 5.1 4.4 4.8 4.6 5.1

S22 1.0b 2.3 2.7 6.7 6.7 1.2 1.2 1.7 1.7
aMAD values obtained from ref 6. bValue corresponds to deviations from benchmark values from ref 19a.
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The previously formulated ωB97X-2(LP)/6-311++G-
(3df,3pd) method also performs particularly well.

’ASSOCIATED CONTENT

bS Supporting Information. Optimized MP2 parameters
for the various DHDFT procedures (Table S1), total DuT and
PoT electronic energies and associated D3 corrections (Tables
S2�S17), and deviations from benchmark values for DuT-D3
and PoT-D3 (Tables S18�S32). Also included are the aug0-cc-
pVTZ+d (for the DuT procedure) and 6-311+G(3df,2p)+d)
(for the PoT procedure) basis sets in Gaussian 09 format, along
with input examples for performing DuT and PoT calculations
with Gaussian 09. This material is available free of charge via the
Internet at http://pubs.acs.org.
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ABSTRACT:The orbital-based natural language describing the complexity of chemistry (Stowasser, R.; Hoffmann, R. J. Am. Chem.
Soc. 1999, 121, 3414) was extended by us recently to the definition of spin�orbit natural spinors (Zeng, T. et al. J. Chem. Phys. 2011,
134, 214107). This novel method gives chemical insights into the role of spin�orbit coupling in covalent bonding and in the
Jahn�Teller effect. The natural spinors are used to explain antibonding spin�orbit effects on TlH and Tl2: it is found that the
spin�orbit induced charge transfer from the bonding to the nonbonding or antibonding orbitals has a large effect on the bond
strength. The natural spinors are also used to explain the spin�orbit quenching of the Jahn�Teller effect in WF5: the spin�orbit
interaction can stabilize the totally symmetric electron distribution so that the high-symmetry molecular structure becomes more
stable than its distortions. A general discussion of the role of the spin�orbit coupling in covalent bonding and Jahn�Teller effect is
given in terms of the competition between the rotational nature of the spin�orbit coupling and the directionality of the two effects.
The natural spinors offer the advantage of providing a simple and clear pictorial explanation for the profound relativistic spin-
dependent interactions in chemistry often appearing as a black box answer.

1. INTRODUCTION

The special theory of relativity leads to very profound effects in
chemistry.1�4 The relativistic effects can be divided into two
categories: the scalar-relativistic and the spin-relativistic effects.
The manifestations of the former effect are, for example, the
liquid state ofmercury under ambient temperature and pressure,5 the
golden color of gold,6�8 and the inertness of the 6s2 electron
pair.9 Since the operators describing the scalar-relativistic effects
do not introduce new symmetry, they are relatively easy to
implement in the conventional quantum chemistry programs,
and their interpretation is facilitated by that. The spin-relativistic
effect, however, introduces the double group symmetry10,11

related to the electron spin of 1/2, forms one of the obstacles
in current development of quantum chemistry, and presents
difficulties in the conceptual interpretation of the “black box”
results. The importance of a tool giving a simple representation
of a complex phenomenon cannot be overestimated; a chemist
wants to understand not only what happens but also why and be
able to form a mental picture of the complex chemical processes
caused by complicated physical concepts. Among the spin-related
operators, the spin�orbit coupling typically has the largest
magnitude.12 The circulation of an electron around a nucleus in
the reference frame of the electron can be considered a circulating
motion of the nucleus around the electron, which creates amagnetic
field. On the other hand, the electronic spin creates a magnetic
dipole moment. The coupling between the magnetic field and the
magnetic dipole moment leads to the spin�orbit coupling (see
section 1.3.3 of ref 13 for a detailed discussion). The spin�orbit
couplingmanifests itself in several phenomena in chemistry:12,14 the
fine structure splitting, intersystem crossing, and spin-forbidden
radiative transition. Because this interaction increases with the
nuclear charge,15,16 a proper study of the heavy element chem-
istry often requires taking this interaction into account.

There are two strategies for spin�orbit coupling calculations:
the so-called one-step17�19 and two-step methods.20�25 The
advantage of the one-step coupling scheme is that the spin�orbit
effects are included in the orbital optimization yielding j�j
spinors. The influence of this interaction on the wave function
can be directly analyzed, which is important as the orbitals provide a
natural language26 for the complexity of chemistry. In contrast,
the two-step coupling first generates a set of states (Russell�
Saunders terms) with a definite total spin quantum number S for
the spin part and a point group symmetry label Γ for the spatial
part of the wave function. Subsequently, the spin�orbit coupling
effect is added at a post-Hartree�Fock level taking the Russell�
Saunders terms (Γ-S states) as themultielectron basis functions.16,27

In this way, the two-step coupling scheme can be easily implemen-
ted in typical nonrelativistic quantum-chemical programs, so their
impressive development of the electron correlation methodology
can be easily incorporated into spin�orbit calculations. However,
the action of the spin�orbit operator on the wave function is
represented by the mixing of the Russell�Saunders terms, and
the orbital-based analysis cannot be applied. Recently, we devel-
oped an algorithm28 to calculate the natural orbitals for two-step
coupled wave functions, and these natural spinors have been
shown to closely mimic the corresponding j�j spinors. This new
technique allows one to obtain a j�j spinor analogue in a two-
step coupled wave function, and the advantages of both coupling
schemes are then combined.

Following our recent derivation and algorithm of the natural
spinor methodology, we present here the first chemical applica-
tions of this new technique. There are two interesting problems
related to spin�orbit interaction that have fascinated chemists
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for a long time: the interplay between the spin�orbit and the
bonding interactions29�39 and the interplay between the spin�
orbit and the Jahn�Teller effect.40�51 Spin�orbit interaction
often lifts the electronic degeneracy and transforms the Jahn�
Teller effect into a pseudo-Jahn�Teller effect. In the present
work, we apply the natural spinors to illuminate the details of these
two phenomena. As shown below, the natural spinors capture the
role of spin�orbit coupling both in the covalent bonding and
in the Jahn�Teller effect and provide deep chemical insights.
Although discussions in this work are based mainly on case
studies, the approach based on natural spinor analysis is general
and can be applied to other systems. To be more specific, the
term “bonding” only means covalent bonding interaction in
this work.

This paper is arranged as follows. In section 2, we present a
short review of the natural spinors and some computational
details in this work. In section 3, we use the natural spinors to explain
the spin�orbit antibonding effect, taking TlH and Tl2 as examples.
In section 4, we use the natural spinors to explain the spin�orbit
quenching of the Jahn�Teller distortion, takingWF5 as an example.
Section 5 summarizes this work. Unless further specified, all units
used in this paper are atomic units (a.u.) and “term” and “level” are
used to denote the multielectron states without and with the
spin�orbit interaction being considered, respectively.

2. METHODOLOGY

The concept of natural orbitals dates back well into the past.52�54

In our recent application28 of this concept to a two-step spin�
orbit coupled wave function, the natural spinors are obtained as
the eigenfunctions of the two-step spin�orbit coupled density
operator. The two-step coupled wave functions are generally
complex-valued and mix different spin multiplicities. As a reflec-
tion of this nature, the natural spinors are also generally complex-
valued and mix the two spin components (R and β) of an
electron. If all of the components of a multidimensional irredu-
cible representation of the associated double group are equally
averaged to produce the one-electron reduced density, the
associated density operator is of the totally symmetric irreducible
representation and commutes with all of the symmetry operators.28,54

Consequently, its eigenvectors (natural spinors) must belong to the
irreducible representations of the same double group, i.e., they
must have the same symmetry properties as the j�j spinors. Since
the natural spinors contain the information of the two-step
coupled wave function and are symmetry adapted, they are
perfect candidates for wave function analysis. The details of
the algorithm and test cases of the natural spinors are given in the
previous publication.28

For general polyatomic molecules, the one-electron effective
spin�orbit operator is12

∑
iA
V̂ iA

^
l
!

iA 3 ŝ
!

i ð1Þ

where i labels the electrons, A labels the nuclei, V̂ iA stands for the
coupling strength and is a function of the distance riA between

electron i and nucleus A in the spatial representation,
^
l
!

iA is the
orbital angular momentum operator of electron i around nucleus

A, and ŝ!i is the electron spin operator. Since the two-electron
spin�orbit interaction does not change the symmetry properties
of the one-electron analogue,13 eq 1 can be taken to represent
both one- and two-electron operators for the symmetry analysis,

with the two-electron shielding effect stored in the effective

coupling strength ViA. The operator
^
l
!

iA determines that the
spin�orbit interaction exerts its effect (either lowering or raising
the energy) by the electron rotation around each nucleus, since
the angular momentum operator is the generator for rotation.55

An important concept in the present work is the spin�orbit
induced electron transfer between molecular orbitals. This
terminology stems from the interpretation of the matrix element

Æμλ|V̂ iA
^
l
!

iA 3 ŝ
!

i|νσæ, where μ and ν are the spatial molecular
orbitals and λ and σ are the spin components (R or β). Such
matrix elements are responsible for the spin�orbit splitting in
the two-step coupling scheme,56 and they can be written as

Æμ|V̂ iA
^
l
!

iA|νæ 3 Æλ| ŝ
!

i|σæ. The spin part (the matrix element after
the dot) determines the spin magnetic dipole, and the spatial part
(the matrix element before the dot) determines the effective
magnetic field, which stems from the relative nucleus A rotation
around electron i. In the space-fixed (nuclei-fixed) frame, such a
relative rotation appears as the electron i rotation around nucleus

A, and this explains the appearance of
^
l
!

iA, not
^
l
!

Ai, in eq 1. Here,

we would like to emphasize that
^
l
!

iA is the angular momentum

operator of electron i around nucleusAwhile
^
l
!

Ai is the analogue
for the motion of nucleus A around electron i. For the real
orbitals usually used in chemistry, only the off-diagonal matrix

elements of Æμ|ViA
^
l
!

iA|νæ are nonzero,
56,57 which means that the

spin�orbit effect cannot be realized by keeping the electron in
the same spatial orbital; i.e., it has to come as an electron transition
between spatial orbitals.

Next, it is well-known that, in the two-step methods,56,57

doubly occupied orbitals alone do not contribute to spin�orbit
coupling, and nonzero spin�orbit matrix elements must couple
Slater determinants with occupancy discoincidence of one or two
orbitals, i.e., transferring electrons from occupied to virtual
orbitals. This charge transfer is a manifestation of the direction
change of the electron spatial distribution around a nucleus
induced by the electron rotation in the spin�orbit effect. A
similar notation was employed by Turro et al.31 to visualize the
action of spin�orbit coupling. We also note that, for atoms,
the charge transfer can be visualized by rotations more directly, as
the atomic orbitals have well-defined rotational properties sui-
table for this interpretation, while in molecules, the anisotropic
nature of the Coulomb interaction leads to molecular orbitals
with various distributions which obstruct the orbital rotation
interpretation. Therefore, we refer to the action of spin�orbit
coupling as electron (or charge) transfer.

Let us consider a charge (electron) transfer from an occupied
orbital μσ to a virtual orbital νλ induced by spin�orbit coupling.
By employing the second order perturbation theory formulas, the
magnitude (not considering the sign) of the spin�orbit energy
and wave function contributions from a transfer between a pair of
orbitals can be expressed, respectively, as����� μλjV̂ iA

^
l
!

iA 3 ŝ
!

ijνσ
� ������

2

jE0νσ � E0μλj
and

����� μλjV̂ iA
^
l
!

iA 3 ŝ
!

ijνσ
� ������

jE0νσ � E0μλj
ð2Þ

where the denominator is the energy gap between the states in
which μλ or νσ is occupied. This energy gap can then be
approximated as the orbital energy difference between μλ and
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νσ, which leads to the explanation that the larger the energy gap
between the two orbitals, the less significant the spin�orbit
induced electron transfer between them.

At this point, it is necessary to compare our natural spinors and the
canonical j�j spinors in the one-step spin�orbit coupled calculation.
The canonical spinors are obtained by diagonalizing the two-
component Fock operator that has included the spin�orbit effect,
and therefore, they have the associated spinor energies17 (analogues
of orbital energies in calculations without spin�orbit), which are the
eigenvalues of the Fock operator. However, those canonical j�j
spinors in the active space have unknown occupation numbers. In
contrast, our natural spinors diagonalize the density matrix of a
spin�orbit wave function and have a definite occupation number for
each spinor but do not have the associated orbital energy. Therefore,
the natural spinors and the j�j canonical spinors provide comple-
mentary information about a spin�orbit coupled wave function.

We implemented the natural spinor algorithm into GAMESS-
US58,59 and employed this open-source quantum chemistry
program package to perform all of the electronic structure cal-
culations in this work. The basis sets and the relativistic treatment
are described below. The electron correlation is treated at the
complete active space configuration interaction (CASCI) levels,
and the corresponding SO-CASCI treatment50 is employed to
account for the spin�orbit interaction. The natural spinors are
obtained from the SO-CASCI wave functions.

All orbital pictures in this work are prepared using graphical
program MacMolPlt.60 We developed a program that can create
MacMolPlt data files for the complex natural spinors by dividing
each of the complex spinors into four real-valued “orbitals”, and
the spinor’s occupation number is assigned to each of the
pseudo-orbitals. This program is employed to make images of
the electron density for natural spinors. The four pseudo-orbitals
correspond to the four phases of a spinor: real-valued function
with R spin, real-valued function with β spin, imaginary-valued
function with R spin, and imaginary-valued function with β spin.
For example, the p1/2,�1/2 spinor (we use the notation lj,jz, see
Table S.II in the Supporting Information of ref 28 for the
definition of these prototypical atomic spinors):

p1=2,�1=2 ¼
ffiffiffi
1
3

r
pxR� i

ffiffiffi
1
3

r
pyR þ

ffiffiffi
1
3

r
pzβ ð3Þ

requires three “orbitals” to visualize: a realR “orbital” for (1/3)1/2pxR,
an imaginaryR “orbital” for� i(1/3)1/2pyR, and a real β “orbital”
for (1/3)1/2pzβ. Each of the pseudo-orbitals are unnormalized,
and if this p1/2,�1/2 spinor is occupied by x (xe 1) electrons, x is
assigned to the three pseudo-orbitals. One should notice that the
natural spinors in this work may not have the same mathematical
expression as used elsewhere, because they follow the phase
convention and coordinate system of the program we use, which
may not be identical to those in other programs. In the discus-
sions below, the term “natural orbital” is reserved for the
eigenvectors that diagonalize the one-electron density matrix of
a non-spin�orbit wave function, while “natural spinor” is used
for the spin�orbit analogues. One should be aware of the
difference between the two terms.

3. HOW SPIN�ORBIT COUPLING CHANGES THE
COVALENT BOND STRENGTH IN DIATOMIC
MOLECULES

According to Ruedenberg et al.,61,62,64,65 a covalent bond is
formed in two steps. First, the electron sharing between atoms

leads to an attenuation of the kinetic energy pressure and the
associated lower ratio between kinetic and potential energies
(T/|V|). Second, the nonequilibrium T/|V| ratio leads to a wave
function relaxation together with an increase of the kinetic and a
decrease of the potential energy until the equilibrium T/|V| ratio
is attained (1/2 for the pure Coulomb interaction according to
the virial theorem). The kinetic pressure attenuation when the
bonded atoms approach is the ultimate reason for the covalent
bonding, and an orbital deformation (polarization and contraction)
and the electron correlation are important in the subsequent step.
The electron occupation in a bonding orbital (with no node along
the bonding direction) is the signature for kinetic pressure attenua-
tion in the bonding region and the formation of a covalent bond.

It is known that the spin�orbit effect can alter the bond strength
of molecules (see section 22.3 of ref 66 and the references
therein). Two typical examples are TlH38 and Tl2

67 molecules,
whose bond energies are greatly weakened when the spin�orbit
effect is included. Conceptually, one may explain this phenom-
enon by the fact that the spin�orbit effect lowers the energy
of the Tl 6p1/2 orbital and thus stabilizes the Tl atom at the
dissociation limit. In this section, we explain this antibonding
spin�orbit effect in terms of the population analysis using the
natural spinors. To this end, we perform the two-step spin�orbit
coupling calculations for the two molecules with the active space of
the valence spin-free one-component natural orbitals and investigate
the change of their electron occupation numbers. This change of
occupationnumbers reflects the change of the bond strength. Before
going into the details, we need to emphasize that we focus on the
qualitativewave function analysis by studying the natural spinors, as
accurate quantitative energetics are not pursued here.

We employ a very simple model for the TlH calculation, and
since this is a qualitative study, the simple model can tell us what
we need to know without the entanglement of other nondeter-
mining factors. In this model, we completely contract the well-
tempered basis functions (WTBS)68 using the atomic orbital
coefficients (calculated at the relativistic level of the third order of
Douglas�Kroll�Hess (DKH3) Hamiltonian69,70) to make the
basis set for Tl and completely contract the s primitives of the
aug-cc-pV5Z basis set71 tomake the basis set for H.No additional
diffuse or polarization functions are added. The construction
of these basis sets is similar to that of the MINI basis set,72

providing no polarization and only near-degeneracy (often called
strong) correlation within the valence orbital space, for a simple
qualitative analysis illustrating the concepts. We note here that
our analysis is based on occupation numbers of natural orbitals
(NOs), and the NO occupation numbers are stable quantities that
do not vary much when a wave function is improved, once a wave
function has been defined that includes the most important NOs.73

We do not involve any dynamic electron correlation in this
model since correlation does not dominate in a conventional
covalent bond.62 Neglecting this effect helps to disentangle this
complex interaction from the rest and focus on the interplay
between spin�orbit and covalent interactions.

Using these basis sets and the active space of two electrons in
the σ, σ*, and π orbitals, we perform a complete active space self-
consistent field (CASSCF) geometry optimization to find the
equilibrium internuclear distance of 2.062 Å. This rather long
bond length as compared to the experimental value of 1.872 Å63

is as expected because of the unpolarized basis set used and the
missing dynamic correlation. For this structure, CASCI is performed
to obtain one-component natural orbitals of the ground state 1∑+

term, and those orbitals are depicted in Figure 1a�c with their
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occupation numbers listed in Table 1. Obviously, the π orbitals
are the nonbonding 6px,y orbitals of Tl, and the asterisk of the σ*
orbital denotes its antibonding charater. Subsequently, all Γ-S
terms generated by the CASCI distributing two electrons in the
four natural orbitals are included in the spin�orbit CI calculation
to produce the ground state spin�orbit wave function, the 0+ level.

Employing this active space, the 0+ level’s natural spinors can
be represented by the one-component natural orbitals of the 1∑+

term, and their expressions and occupation numbers are:

1
2
¼ 0:993885σR� 0:001369σ�R� 0:078072ðπxβ

þ iπyβÞ, occup : 0:9641 ð4Þ

10

2
¼ � 0:022310σR þ 0:976810σ�R� 0:150574ðπxβ

þ iπyβÞ, occup : 0:0355 ð5Þ

3
2
¼

ffiffiffi
1
2

r
πxR þ i

ffiffiffi
1
2

r
πyR, occup : 0:0002 ð6Þ

100

2
¼ 0:108142σR þ 0:214105σ�R
þ 0:686464ðπxβ þ iπyβÞ, occup : 0:0002: ð7Þ

Here, we use theω value (the eigenvalue of the ĵz operator on the
left-hand side of the expressions above) to label the natural
spinors and prime and double prime to differentiate the orbitals
with the same ω. Since the Kramers pairs74 (with negative ω) of
the listed natural spinors have the same eigenvalues, they are
omitted here, and one can apply the time-reversal operator on the
listed spinors to generate them.66,75 The effect of the time-reversal
operator is to change R to β and β to �R and take the complex
conjugate for its operand. Despite its simplicity, this model includes
the primary covalent and spin�orbit interactions and serves as a
good model to study the interplay between these two interactions.

To compare the one-component natural orbitals (σ, σ*, and π)
to the natural spinors of the spin�orbit 0+ wave function, we
can calculate the averaged occupation numbers (diagonal density
matrix elements) for each of the natural spinors according to

occi ¼ ∑
j
occjjCijj2 ð8Þ

where i labels the one-component natural orbitals, j labels the
natural spinors, Cij are the coefficients in eqs 4�7, and the
summation runs over all of the natural spinors. The calculated
average occupation numbers are listed in Table 1. The compar-
ison of the occupation numbers for the 1∑+ and 0+ wave functions
indicates that the spin�orbit interaction causes a substantial
electron transfer (0.0285) from the bonding σ orbital to the
nonbondingπ and antibonding σ* orbitals. This electron transfer
weakens the bond, and if we use the effective bond order
model,73,76 in which the bond order equals one-half of the total
occupation number of bonding orbitals less the total occupation
number of antibonding orbitals, then the TlH bond order is
lowered from 0.9336 to 0.9184. Most of the depleted electron
from the σ orbital (0.0270) is deposited in the nonbonding π
orbitals, and this can be explained considering the detailed
spin�orbit interaction. For the TlH molecule, the spin�orbit
effect at the Tl nucleus is overwhelming and, focusing on the
interaction around this nucleus, we label the orbital angular

momentum operators centered on Tl as
^
l
!

. In the ground state,
the spin�orbit effect must lower the energy,12 and this stabiliza-
tion is the driving force for the electron transfer.

The relevant spin�orbit induced electron transfer is illustrated
in Figure 1d. Since only the σ orbital is substantially occupied in the
original 1∑+ wave function, the net result observed is electron
transfer from σ to π orbitals. Likewise, any charge originally
occupying the π orbitals can be transferred to the σ* orbital and
vice versa, as illustrated in Figure 1e. Because of the insignificant
occupations of the σ* andπ orbitals, the transfer between them is
negligible. As l̂z can only couple the two π orbitals and the
electron transfer between these two nonbonding orbitals does
not change the bond strength, the effect of l̂z is not shown. One

Table 1. Electron Occupation Numbers in TlH and Tl2 of the Spin-Free Natural Orbitals Induced by the Spin�Orbit Coupling
and the Electric Dipole Moments μ (Debye) in TlH

TlH Tl2

spin�orbit coupling σ σ* πa μb σg σu πu πg

neglected 1.9332 0.0661 0.0003� 2 1.2958 1.8746 0.0432 0.0409� 2 0.0002� 2

included 1.9047 0.0678 0.0138� 2 1.1821 1.8340 0.0447 0.0406� 2 0.0202� 2

Δc �0.0285 0.0017 0.0135� 2 �0.1137 �0.0406 0.0015 �0.0003� 2 0.0200� 2
aThe multiplication by 2 for π orbitals reflects the degenerate occupation of the πx and πy components. bThe dipoles are pointing from H to Tl. cThe
values with spin�orbit coupling included minus those where it is neglected.

Figure 1. One-component natural orbitals from CASCI without
spin�orbit coupling (a�c) for TlH, as well as the spin�orbit coupling
induced electron transfer (d,e) among them. The Tl atom is on the left
(black), and hydrogen on the right (white). The l̂x and l̂y operators are
centered on the Tl atom. In d and e, if the shown π orbital is the πy

component, then the l̂x̂sx operator applies and similarly for πx and l̂ŷsy.
Substantial electron transfers (typically, from occupied to unoccupied
orbitals) are denoted by a black arrow, while the negligible ones are
denoted by yellow ones.
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should notice that both σ and σ* orbitals havemlz = 0 (wheremlz

is the projection value of the orbital angular momentum along
the z axis) and Æσ|{̂lx, l̂y, l̂z}|σ*æ = 0. Therefore, no electron can
be directly transferred between the two orbitals by rotation, and
any possible transfer has to be mediated by a transfer to a π orbital.
This secondary electron promotion explains the negligible increase
of the σ* orbital occupation in the 0+ wave function, so the
weakened bond in TlH is due to the loss of the bonding, rather
than a direct increase in the antibonding effect. The electric dipole
moments for the 1∑+ and 0+ wave functions are calculated and the
reduction of the dipole by 0.1137 D is consistent with the fact that
more electrons are located at the Tl center of the molecule by the
electron transfer from the bonding to the nonbonding orbitals, and
the positive charge of the region near Tl is reduced.

A similar investigation is also performed for Tl2. For computa-
tional efficiency, we employed our newly developed ZFK377model
core potential and basis set for Tl, and the spin�orbit effect in this
potential is at the level of DKH1.78,79 The active space includes six
orbitals with two electrons distributed among them. CASSCF
geometry optimization for the first 1∑g

+ term gives the equilibrium
internuclear distance of 3.507 Å. The 1∑g

+ term is of interest because
it has the σg

2 electron configuration, which is similar to the
σ2 configuration of TlH that we just discussed, and the two cases
can be compared. One should note that several studies67,80�82

determined that the actual spin�orbit ground state of Tl2 is the
0u

� level stemming from the 3Πu term. Therefore, the 1∑g
+

term considered here is not the overall ground state but only
the lowest 1∑g

+ term, used here for illustrative purposes.
At the equilibrium internuclear distance, CASCI is used to

generate the 1∑g
+ wave function and the associated six one-

component natural orbitals, σg,πu, σu, andπg, which are depicted
in Figure 2a�d, and their occupation numbers are listed in
Table 1. All of the gerade Γ-S terms generated with the active
space of distributing two electrons in the six natural orbitals are
used as the multielectron basis for the subsequent spin�orbit CI
calculation to produce the spin�orbit 0g

+ wave function. Only the
gerade (g) terms are considered because the spin�orbit operator
conserves parity, and we focus mainly on the spin�orbit influence
on the 1∑g

+ term. The averaged occupation numbers of the one-
component natural orbitals are obtained through the same
procedure as the TlH case, and they are also listed in Table 1.
As in the TlH case, the electron occupation in the bonding σg
orbital is substantially depleted (0.0406), and most of this
depletion is deposited into the antibonding πg orbitals. Because
of the even parity of the spin�orbit operator, only orbitals with
the same parity can be coupled, which explains the correspon-
dence between the electron depletion of the σg and the electron
deposition on the πg orbital. The electron transfer between the
πu and σu orbitals is insignificant, since they are barely occupied
in the 1∑g

+ wave function. Employing the aforementioned effec-
tive bond order model, we calculate the bond order of Tl2 to be
0.9564 for the 1∑g

+ and 0.9150 for the 0g
+ wave function.

Apparently, the decrease of the bond order for Tl2 (0.0414) is
greater than that for TlH (0.0152), consistent with the increase
of the number of heavy atoms (Tl). However, considering the
different basis sets used for the two molecules (without polariza-
tion functions for TlH, with polarization functions for Tl2), this
bond order change comparison is only qualitative.

Figure 2e,f demonstrates the electron transfer induced by the
l̂îsi components (i = x, y) of the spin�orbit operator. Similar
arguments as for Figure 1d,e can be made, except that the inversion

symmetry adds to the correlated electron rotation (transfer)
around the two Tl nuclei, which is reflected in the inversion-
symmetric pairwise arrangement of the curved arrows in
Figure 2e,f. Actually, Figure 2e�h provides a graphical
description of the even parity of the spin�orbit interaction.
If the spin�orbit induced in-phase rotation (red to red or
blue to blue) is energetically favorable, then the inversion-
symmetrically correlated electron motion guarantees that this
effect at the two Tl centers adds up in Figure 2e,f. This
accumulation effect also applies if the out-of-phase (red to
blue or blue to red) is energetically favorable instead. In contrast, in
Figure 2g,h, an in-phase rotation on one side of the molecule must
correspond to an out-of-phase rotation on the other side, and the
spin�orbit effects cancel out. Therefore, any g�u electron transfer
results in a null energy gain, and the spin�orbit effectmust conserve
the parity of the orbitals.

One might argue that the spin�orbit antibonding effect leads
to a very substantial reduction of the dissociation energy (De),
incommensurate with the reduction of bond order presented in
this work. For example, in our recent study of TlH,38 the reduction
of the dissociation energy is about 0.4 eV at the CI level, 1/5 of
the De of the

1∑+ state, while the reduction of bond order in the
present work is just 1.6%. Furthermore, the 0g

+ level of Tl2 was
predicted to be purely repulsive,80 but our natural orbital analysis
still predicts substantial bonding. This is because we focus only
on the wave function change induced by the spin�orbit interaction
without considering the explicit energy effects. At the dissociation
limits for bothTlH andTl2, the Tl 6p orbitals are all degenerate, and
there is no energy cost for the spin�orbit induced electron
transfer among them. Therefore, the spin�orbit stabilization
leads to its maximum energy lowering at the dissociation limits.
However, the degeneracy of the 6p orbitals is lifted as the covalent

Figure 2. One-component natural CASCI orbitals (a�d) of Tl2 and the
spin�orbit coupling induced electron transfer (e�h) among them. In
e�h, the l̂x and l̂y operators centered on the two Tl centers cause the
electron transfer to (or from) the πy and πx orbitals, respectively. The
substantial transfers are denoted by a black arrow, the negligible ones by
yellow, and the prohibited ones by gray.
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bonds are formed, and the bonding electron pair tends to occupy
the orbitals with lower energies (σ for TlH and σg for Tl2).
Consequently, the spin�orbit induced rotation will have to
promote the electron from the low-energy orbitals to the high-
energy orbitals, and this additional energy cost quenches the
spin�orbit interaction and consequently reduces the amount of
the spin�orbit energy lowering. This can also be understood as
the covalent interaction hindering the spin�orbit induced
electron transfer. The R-dependent spin�orbit stabilizations
cause the large reduction of De for the 0

+ level of TlH and the
purely repulsive potential energy curve for the 0g

+ level of Tl2.
This effect cannot be revealed by considering only the wave
functions at the equilibrium internuclear distances. In fact, there
are many factors that together determine the bond energy, and it
has been pointed out73 that in general there is no direct correlation
between bond order and bond energy.

Although only diatomic molecules are considered in this
section, the concept presented here can be straightforwardly
generalized to other molecules. For polyatomic molecules, there
could bemixed bonding, antibonding, and nonbonding character
in each one-component natural orbital, and this may compli-
cate the analogous analysis. To solve this problem, one may use
Weinhold’s natural bond orbitals,83�86 which have clear bond-
ing, antibonding, or nonbonding character, as the basis to obtain
the natural spinors. Before closing this section, we would like to
once again emphasize that the computational methods and basis
sets for TlH and Tl2 were chosen to produce two bonding
models that manifest interplay between covalent and spin�orbit
interactions. One can use our analysis at higher levels such as the
natural spinors from the energetically accurate multireference CI
method.

4. HOW SPIN�ORBIT COUPLING QUENCHES THE
JAHN�TELLER DISTORTION

In qualitative terms (see Figure 2.9 of ref 87), the Jahn�Teller
distortion is caused by a nontotally symmetric electronic dis-
tribution in one of the degenerate electronic states. Under that
circumstances, the symmetry of the Coulomb interactions be-
tween the nuclei and electrons is lowered, and the molecular
structure is distorted correspondingly.87,88 It has been reported
that the spin�orbit interaction can quench the Jahn�Teller
effect, and two simple but enlightening examples are Pb3

+ 42 and
WF5.

41 Without considering the spin�orbit effect, the excited
states of Pb3

+ and the ground state of WF5 suffer a strong
Jahn�Teller distortion and change their structures from D3h to
C2v symmetry. When the spin�orbit coupling is considered,
however, those energetic minima are shifted back to the D3h

structure. This can be explained either by the fact that the spin�
orbit interaction splits the electronic degeneracy and removes the
driving force for the distortion or that the spin�orbit interaction
introduces new symmetry operations of the double group, and
the distortion based on point group arguments may not happen
in the double group context.43,89 To the best of our knowledge,
the studies of this quenching effect have so far been based on
the multielectron wave functions, with the focus placed on the
spin�orbit and vibronic coupling between different electronic
terms. Although this multielectron picture is natural for
physicists, it does not serve as a good illustration in terms of
the orbital picture of interactions. Therefore, an orbital-based
explanation of this quenching would be informative, and in
the present section we will use the natural spinors to illustrate

this quenching effect, with WF5 as an example. In this work,
we only focus on the traditional Jahn�Teller distortion that
is induced by the electrostatic interaction. The recently
formulated spin�orbit induced Jahn�Teller effect48,49 is not
considered here.

For computational efficiency, we employed the SBKJC effec-
tive core potentials (ECP) and basis sets.90�92 Correspondingly,
the spin�orbit adapted effective charges93,94 were used for the
spin�orbit CI calculations. We optimized the WF5 structure
both in D3h and in the C2v symmetry. In the D3h optimization,
the CASSCF calculation with one electron being distributed in
the e00 degenerate orbitals is performed to calculate energy, while
in the C2v optimization the restricted open-shell Hartree�Fock
(ROHF) is employed (which is equivalent to the CASSCF in
D3h, because there is only one occupied orbital instead of two).
There are two distorted C2v structures, whose ground states are
2A2 and 2B2, and we label them as C2v (I) and C2v (II),
respectively. The 2A2 and

2B2 states cross at the D3h symmetry
and form the two components of the 2E00 state. The energetic
profile of the distortion is illustrated in Figure 3a. The relative
energies of these states and structural parameters of the three

Figure 3. (a) Energetic profile of the Jahn�Teller distortion of WF5.
The term and level symbols are labeled as in the C2v point group and
double group. The curves are obtained by cubic-splines fitting to the
energies calculated at the three labeled structures. (b) The spin�orbit
splitting along the fractional distortion coordinate. From 0 to �1 is the
2A2 distortion channel to the C2v(I) structure and from 0 to 1 is the 2B2
distortion channel to the C2v(II) structure. The equations of the two
fitted quadratic curves are also shown.
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structures are listed in Table 2. The atoms are labeled according
to Figure 4a. In this discussion, the F3�W1�F2 and F6�W1

axes are the principal axes for the D3h and C2v structures,
respectively.

Going from the C2v(I) to D3h and to C2v(II) structures, the
W1�F6 bond is lengthened. The W1�F4 and W1�F5 bonds are
shrunk equivalently, and the F4�W1�F5 angle opens up. This
is the Jahn�Teller distortion coordinate. The structural param-
eters in Table 2 indicate that the F4�W1�F5 angle changes
more substantially than all of the W�F bond lengths in the
distortion. Therefore, the distortion coordinate is mainly of a
bending nature. The 2A2 and

2B2 terms (2E00 term at the D3h

structure) are included in the spin�orbit coupling, and the energies
of the resultant spin�orbit wave functions (E1/2 and E3/2 levels
at the D3h structure and E1/2(I) and E1/2(II) levels at the C2v

structures) are also listed in Table 2. The results from our
calculations are qualitatively consistent with those of the previous
DFT study of Dyall,41 with the correct term symbols (see ref 95)
and structural parameters slightly different by about 0.01 Å. The
lack of interelectron correlation in the present study suggests that

Dyall’s B3LYP structural parameters and energies are more
reliable. However, the energy profile in Figure 3a indicates that
our simple model captures all of the essences of the distortion
and its spin�orbit quenching.

All of the atomic labels in this discussion follow Figure 4a. The
electronic configuration of WF5 at the D3h structure is predicted
to be (e00)1, and the e00 orbitals are shown in Figure 4b and c.
Taking the F3�W1�F2 and F6�W1 axes to be z and x axes, we
call the two orbitals e00xz and e00yz orbitals, characterizing their
main d components at the W center. Taking the F6�W1 axis as
the C2v principal axis, the e00xz and e00yz orbitals correspond to the
b2 and a2 orbitals. Obviously, the e00xz orbital has antibonding
character for the W1�F6 bond, and increasing the population in
the e00xz orbital (forming the 2B2 term) elongates the bond. As a
consequence of this elongation, the reduced repulsion between
F6 and the remaining equatorial fluorine atoms (F4 and F5), with
each of the equatorial fluorine atoms carrying Mulliken charge
of �0.457 a.u., leads to shorter F4�W1 and F5�W1 bonds, and
consequently, the stronger F4�F5 repulsion leads to the larger
F4�W1�F5 angle. This distortion is illustrated by Figure 4d. The
e00yz orbital has antibonding character for the F4�W1 and F5�W1

bonds, and putting an electron in this orbital (forming the 2A2

term) elongates the two bonds. Meanwhile, the F4�W1�F5
angle tends to be smaller to reduce the out-of-phase overlap
between the pz orbitals on F4 and F5 and the dyz orbital on W.
Smaller repulsion between the two equatorial atoms F4 and F5
and the remaining equatorial atom F6 leads to a shorter
F6�W1 bond. This distortion is illustrated in Figure 4e. Since
both e00 orbitals have the same antibonding character along
the F2�W1�F3 axis, the F2�W1 and F3�W1 bond lengths
are unchanged along the distortion. This orbital analysis based
on antibonding characters and electrostatic repulsion fully
explains the distortion coordinate mentioned in the previous
paragraph. Obviously, this distortion coordinate is a compo-
nent of the e0 vibrational normal mode of the D3h point group,
and hence, this Jahn�Teller distortion is a typical E00 X e0
problem.87

The spin�orbit CI calculation for the 2E00 term produces two
levels, each having a pair of Kramers doublets. The natural
spinors of the two lower states are calculated to be

e1=2, 1=2 ¼ 1ffiffiffi
2

p e00xzβ þ iffiffiffi
2

p e00yzβ;

e1=2,�1=2 ¼ 1ffiffiffi
2

p e00xzR� iffiffiffi
2

p e00yzR ð9Þ

and those of the two higher states are

e3=2, 3=2 ¼ 1ffiffiffi
2

p e00xzR þ i ffiffiffi
2

p e00yzR;

e3=2,�3=2 ¼ 1ffiffiffi
2

p e00xzβ� iffiffiffi
2

p e00yzβ ð10Þ

Table 2. Bond Lengths (in Å), Angles (in Degrees) and Relative State Energies (eV) of theD3h and the TwoC2v Structures ofWF5
a

W1�F3 W1�F6 W1�F5 F4�W1�F5
2A2

2B2 E1/2(I) E1/2(II)

D3h 1.902 1.841 1.841 120.00 0.000 0.000 �0.163 0.163

C2v (I) 1.904 1.826 1.846 109.80 �0.095 0.452 �0.137 0.493

C2v (II) 1.904 1.854 1.831 129.53 0.442 �0.093 �0.136 0.484
aTerm symbols are assigned according to the C2v point group and its double group. The energy of the

2E00 state for the D3h structure is taken to be the
zero energy.

Figure 4. Structure (a), CASCI natural orbitals (b,c), distortions (d,e),
spin�orbit induced electron transfer (f), and natural spinor electron
density (g) of WF5. The l̂z operator in g is centered on W.
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Each of them is singly occupied in the corresponding levels. We can
assign the symmetry label e1/2,1/2 to thefirst spinor easily, as theXZβ+
iYZβ combination only exists in the d3/2,1/2 and d5/2,1/2 spinors
(Table S.II of ref 28) and it has jz = 1/2, and all functions with jz =
1/2 must be of the E1/2 irreducible representation of the D3h double
group.96 The remaining orbitals follow the same argument. Here
“XZ” and “YZ” represent any functions sharing the same symmetry
properties as the dxz and dyz spherical harmonics, and similar nota-
tion is used below without further specification. Obviously, this
labeling is consistent with the decomposition of the direct product
between the orbital and spin representations in the D3h double
group:

E00 X E1=2 ¼ E1=2 x E3=2 ð11Þ
This relationship demonstrates the usefulness of Table S.II of ref
28 for fast symmetry labeling of the natural spinors. However,
this trick can be used only when there are basis functions on the
principal axis, although onemay put ghost functions on the principal
axis to meet this requirement. Also, one has to check whether
the mjz values can be uniquely associated with the double group
irreducible representations. Despite all of these constraints, the
tentative symmetry labeling by using this trick serves as a good
starting point for the more rigorous labeling by checking the
double group character tables.

The like spins in each of the natural spinors suggest that only
the l̂ẑsz component of the spin�orbit operator is involved. This is
consistent with the fact that ÆXZ|̂lz|YZæ is the only nonzero
matrix element of ÆXZ|{̂lx, l̂y, l̂z}|YZæ. Because of the much larger
spin�orbit interaction around the W nucleus, the orbital angular
momentum operators discussed here are centered on W. The
spin�orbit induced electron transfer from the exz00 to eyz00 orbitals
and vice versa are illustrated in Figure 4f. Using the concept of
spherical tensors,55 one can easily associate the combinations of
exz00 + ieyz00 and exz00 � iezy00 to the eigenfunctions of l̂z with
eigenvalues of +1 and�1. Thus, the associated spin functions of
eqs 9 and 10 indicate the two e1/2 orbitals are of antiparallel
coupling nature, while the two e3/2’s are of parallel coupling, and
this explains the spin�orbit stabilization of the E1/2 and desta-
bilization of the E3/2 level. Contrary to the l̂x̂sx and l̂ŷsy induced
electron transfer in the TlH and Tl2 cases discussed above, the
two orbitals involved in the l̂ẑsz induced electron transfer in
WF5 are degenerate, and therefore the transfer is not hindered
energetically. This free rotation leads to equivalent contributions
from the two e00 orbitals in the e1/2 and e3/2 orbitals, in strong
contrast to the unequal orbital contributions in eqs 4 and 5.
Equations 6 and 7 have the same contributions from the πx

and πy orbitals, as they are also degenerate and the l̂ẑsz induced
electron transfer is also without hindrance. When the symmetry
is broken to C2v and the two e00 orbitals are split to a2 and b2
with different energies, the rotation is hindered. The natural
spinors for the E1/2(I) state at the C2v(I) structure are calculated
to be

e1=2 ¼ 0:966440a2R þ 0:256892b2β

≈ 0:966440e00yzR þ 0:256892e00xzβ ð12Þ
and its Kramers pair, with each of them singly occupied for the
two E1/2 components. The label e1/2 is assigned since E1/2 is the
only Fermion irreducible representation of the C2v double group
and the approximate equality in eq 12 associates the orbital labels
to those ofD3h symmetry. (The a2 and b2 orbitals at this structure

cannot be identical to the e00 orbitals at the D3h structure since
orbitals are relaxed in the course of distortion.) The dominance
of a2R reflects the difficulty of the spin�orbit induced electron
transfer, which is also seen in the small amount of spin�orbit
energy lowering (0.042 eV) compared to that at the D3h symmetry
(0.163 eV).

The hindering of the spin�orbit induced electron transfer
is also reflected by the smaller spin�orbit splitting at the
distorted structures. Figure 3b illustrates the decrease of the
spin�orbit splitting along the distortions to the two C2v struc-
tures from the D3h reference. In this figure, the spin�orbit splitting
is estimated as

jEE1=2ðIIÞð_RÞ � EE1=2ðIÞð_RÞj � jE2A2
ð_RÞ � E2B2ð_RÞj ð13Þ

i.e., subtracting the splitting between the 2A2 and
2B2 terms from the

splitting between the E1/2(I) and E1/2(II) levels at a given structure
R. The molecular structures between the D3h reference and the
twoC2v limits are obtained by fractional interpolation. For example,
a structure between the D3h and C2v(II) structures is given by

_Rðf Þ ¼ _RðD3hÞ þ f ð_RðC2vðIIÞÞ � _RðD3hÞÞ ð14Þ
where R stands for coordinate vector of all six atoms and f is the
fractional distortion coordinate ranging from 0 to 1. For the con-
venience of comparison between the two panels of Figure 3, we plot
the spin�orbit splittings along the 2A2 distortion (i.e., C2v(I))
channel versus the negative values of the fractions. The two fitted
curves in Figure 3b indicate a linear decrease of the spin�orbit
splitting in the vicinity of the D3h structure along each direction of
the distortion. This can be understood by considering a Taylor
expansion of the energy with respect to the distortion coordinate at
the vicinity of the D3h structure. The linear term is given by the
energy gradient. Let us examine the symmetry properties of the
gradient terms of matrix elements of the spin�orbit operator
between two states. The symmetry of the spin�orbit operator
derivative is of theE0 irreducible representation, i.e., the symmetry of
the distortion coordinate. The three possible direct products of the
two states for the matrix elements are

A0
1 ˇ E1=2 X E0 X E1=2 ð15Þ

A0
1 ˇ E3=2 X E0 X E3=2 ð16Þ

A0
1 ∈ E1=2 X E0 X E3=2 ð17Þ

We can conclude that the coupling between the E1/2 and E3/2 states
is allowed by symmetry (A0

1 is the totally symmetric irreducible
representation of the D3h double group), and it is this interaction
that results in the nonzero gradient and thus linear terms in the
Taylor series describing the dependence of the spin-orbit splitting as
a function of the distortion coordinate.

As a side issue, it is worthwhile to discuss why the l̂ẑsz operator
in Figure 4f can couple different spins (mixing R and β in eq 12)
when the structure is distorted. The reason is that in the
calculation at the C2v structure, the z axis has been reoriented
along the F6�W1 bond and so is the quantization of the spin.
Consequently, the l̂ẑsz operator in Figure 4f becomes a l̂ŷsy
operator. The original ezy00 and exz00 orbitals become of symmetry
XY and YZ, and they are only coupled by l̂y in the new
coordinates. Thus, the flipping of spin is the result of choosing
the new coordinate. To justify this reasoning, we carry out
the calculation again, this time choosing the same coordinate
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frame as the one for the D3h structure, and produce the natural
spinors to be

e1=2 ¼ 0:966440a2R þ i0:256892b2R

≈ 0:966440e00yzR þ i0:256892e00xzR ð18Þ
and its Kramers pair. Obviously, the electron transfer in this new
coordinate is induced by the lzsz component of the spin�orbit
interaction, and the spin-flipping is removed. This side issue
reminds us of the importance of choosing the right coordinate for
a meaningful discussion. It is often troublesome to switch between
coordinate systems when using several different point groups for
the same system because of the conventionmost programs use to
define the principal and secondary axis orientations, and tedious
care should be exercised in discussing the symmetry labels and
following their interrelation when the symmetry is changed.

As a result of the unhindered electron transfer at the D3h

symmetry and equivalent contributions from the two e00 orbitals,
the spatial part of the electron densities of all of the natural
spinors has the symmetry (X2 + Y2)Z2, and this cylindrically
symmetric electron density is plotted in Figure 4g. Obviously, the
Coulomb potential stemming from this cylindrical distribution
belongs to the totally symmetric irreducible representation (A10)
of the D3h point group. Hence, there is no nontotally symmetric
force exerted by the electrons to the nuclei around W that can
distort the D3h symmetric nuclear configuration so the Jahn�
Teller distortion is quenched. One may argue that as the two e00
orbitals are degenerate, even without the spin�orbit effect, we
may freely combine them as eq 9 and have a totally symmetric
electron density, and the Jahn�Teller distortion could be
avoided from the beginning. However, if this totally symmetric
electron distribution is not stabilized by the spin�orbit interac-
tion, it can be easily distorted by any perturbation induced by the
nontotally symmetric molecular vibration, and the Jahn�Teller
distortion would be turned on. Actually, if the spin�orbit
stabilization of the totally symmetric electron distribution is
not strong enough, despite the degeneracy removal, the energy
gain from the vibronic coupling can still recouple the e1/2 and e3/2
orbitals to produce nontotally symmetric electron distribution,
leading to the so-called pseudo-Jahn�Teller distortion. In such a
case, the D3h minimum on the blue curve of Figure 3a would
become a maximum, a transition state connecting two stable C2v

structures. This distortion originates from the vibronic mixing of
two (or more) nondegenerate electronic states under nuclear
displacements. The ratio between the square of the vibronic
coupling constant and the energetic gap between the electronic
states determines whether the distortion is allowed.87,88 In the
context of this work, the energetic gap is proportional to the strength
of the spin�orbit interaction, and the stronger the spin�orbit
interaction, the less likely the vibronic distortion. The relative
energies in Table 2 indicate that the spin�orbit stabilization
(0.163 eV) is more substantial than the Jahn�Teller stabilization
(0.093 and 0.095 eV) and that is why the D3h structure is stable.
Generally, the competition between the spin�orbit stabilization
and the vibronic stabilization determines whether the high symme-
try structure can stably exist.43 The comparison between the strong
and weak spin�orbit interactions in the stabilization of the high-
symmetry nuclear configuration is illustrated by Figure 5.

The discussion of the simple WF5 example can be generalized
as follows. In the high symmetry structure with electronic
degeneracy, the spin�orbit induced electron transfer among
the degenerate orbitals is unhindered and the spin�orbit effect is

maximized. Whenever this electron transfer produces a totally
symmetric electron distribution that provides a totally symmetric
Coulomb interaction with the nuclei, and the spin�orbit stabi-
lization of this distribution is more significant than the possible
energy lowering induced by the vibronic coupling, the Jahn�
Teller distortion is quenched and the stable high-symmetry structure
will exist. In other words, the spin�orbit interaction has an
inherent symmetry-driven tendency to quench the electrostatic
Jahn�Teller distortion, but it may not always have the strength
to do so by sufficiently lowering the energy (clearly demon-
strated in Figure 5, where the central high symmetry structure
can have a higher or lower energy than the lower symmetry ones,
depending on the magnitude of the splitting). Paradoxically, the
electronic degeneracy that leads to the Jahn�Teller distortion
also enlarges the spin�orbit interaction that quenches the distor-
tion. One should note that although the spin�orbit interaction
cannot split the degeneracy induced by the time-reversal symmetry
(Kramers degeneracy), but neither can the vibronic coupling.87,88

In this sense, for a system with an odd number of electrons, as
long as the spin�orbit interaction splits all the electronic
degeneracy into the double-valued Fermion irreducible repre-
sentation of the corresponding double group and provides
enough stabilization, the Jahn�Teller distortion is quenched.
We would also like to emphasize that the spin�orbit effect may
not completely split all of the electronic degeneracy to the
Kramers 2-fold degeneracy, as for the T, O, and I type double
groups, 4-fold Fermion irreducible representations are present.89

For the molecules whose structures are of the corresponding
point groups, the Jahn�Teller distortion can still occur with a
spin�orbit coupled electronic wave function.

A common typical feature of covalent bonding and Jahn
�Teller effects is their anisotropy (directionality): covalent
bonds are directional as the kinetic pressure of the valence
electrons of one bonding atom is attenuated in the direction of
the other bonding atom;61,64 the Jahn�Teller distortion pro-
ceeds along the specific direction (molecular vibrational mode)
that favors a bonding interaction. It is for this reason that since
the dawn of quantum chemistry, the Cartesian basis functions
like px, py, and pz are convenient, as they are the best

Figure 5. A schematic energy profile of the interplay between the
spin�orbit (SO) interaction and the Jahn�Teller distortion. The red
curves represent adiabatic potential energy curves without spin�orbit
interaction, whereas the blue and green are with the interaction. On the
left panel, the spin�orbit splitting is not strong enough to completely
quench the Jahn�Teller distortion, resulting in the pseudo-Jahn�Teller
distortion. On the right panel, the spin�orbit interaction is strong
enough to stabilize the high-symmetry nuclear configuration. One
should notice the similarity between Figure 3a and the right panel here.
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representations for such directional interactions, and the rota-
tional analogues like p+1, p0, and p�1 are almost never used.
Consequently, directional terminologies like “head-to-head” (for
a σ bond) and “side-to-side” (for a π bond) have been used
widely in chemistry education and research. In contrast, the
spin�orbit interaction is intrinsically rotational, as the presence

of angular momentum
^
l
!

iA in eq 1 shows, and its exertion is

through a change of direction. The discussions in sections 3 and 4
reveal that the interplay between the spin�orbit and the bonding
effect and Jahn�Teller distortion is caused by the competition
between the rotational nature and the directional nature of the
different interactions. This conclusion can be readily obtained
from the orbital picture of the spin�orbit interaction, which is
provided by the natural spinors.

To the best of our knowledge, this direction/rotation compe-
tition is proposed for the first time and can be extensively used to
explain experimental or computational results in future studies of
the spin�orbit effect in chemistry. For example, it can be used to
quantitatively interpret the spin�orbit coupling in a metal pair of
trinuclear copper complexes bridged by an oxygen ligand
(Scheme 4 of ref 4) through the analysis of one-component
orbital coefficients in the natural spinor expressions; also, it can
be applied to quantitatively investigate the different Jahn�Teller
distortion channels of the Tl6

� cluster anion, which distorts from a
cube to a parallelepiped when not considering spin�orbit inter-
action, but to a tetrahedral star otherwise.98 There is one special
advantage of using natural spinors in wave function analysis. Since
the spinors are composed of the orbitals obtained in calculations
without spin�orbit, they provide information about the changes
induced by spin�orbit coupling to thewave function. In this sense,
natural spinors are the natural language to explain any nontrivial
spin�orbit effects in chemistry, and their potential utility should
be more extensive than what was shown in the present paper.

5. CONCLUSION

In this work, we explored the utility of our newly developed
natural spinors based on illustrative case studies. Two examples
of TlH and Tl2 molecules are presented to demonstrate how to
use the natural spinors in order to rationalize the spin�orbit
effect on bonding interactions (section 3).We demonstrated that
the spin�orbit interaction will induce electron transfer among
orbitals with different bonding, antibonding, and nonbonding
characters (Figures 1 and 2 and Table 1) and affect the bond
strength. A graphical description of the parity-conservation of the
spin�orbit operator is also presented, connecting the conserva-
tion to the accumulation or cancellation of the spin�orbit effect.
In section 4, we also used the natural spinors of the E1/2 ground
state of WF5 to explain the spin�orbit quenching of the Jahn�
Teller distortion (Figures 3 and 4 and Table 2). We demon-
strated that the unhindered spin�orbit induced electron transfer
among the degenerate orbitals can produce a totally symmetric
electron distribution. If the spin�orbit stabilization of this
distribution is large enough, the Jahn�Teller distortion is quenched
(Figure 5). These illustrative cases demonstrate the power of
natural spinors and the methods of analysis. The conclusions can
be extended to general cases.

Davidson made the following comment about the natural
orbitals in his comprehensive review of natural orbitals:54 the real
advantage of natural orbitals is in getting maximum understanding
for a fixed cost. The results of the present work demonstrate that

the understanding brought about by describing the spin-depen-
dent relativistic effects with the aid of natural spinors can reach far
beyond its original scope of electron correlation and lead us to a
new vision of spin�orbit coupling. On the basis of the simple
pictorial representations of natural spinors, we propose the
hypothesis that any unexpected role that the spin�orbit inter-
action plays in chemistry is rooted in the competition between
the rotational nature of the spin�orbit operator and the aniso-
tropic interactions. This supposition provides the basis for the
understanding of spin�orbit effects in chemistry.
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ABSTRACT: Here we present a comprehensive quantum chemical study of the simplest model system for the reactions of
nanoscale zerovalent iron, i.e., the gas-phase reaction of an iron atom with water, to identify a theoretical method that provides
reasonably accurate geometries and thermochemical data for selected iron compounds along the reaction path (Fe, FeO, HFeOH,
Fe(OH)2). The energies of selected stationary points on the ground electronic potential energy surface were systematically studied
using HF and post-HF methods (MP2, MP3, MP4, CCSD, CCSD(T), CASSCF, MRCI) and selected DFT functionals (B3LYP,
B97-1, BPW91, M06, M06-HF, M06-L, M06-2X and MPW1K) using various basis sets up to the complete basis set. Scalar
relativistic effects were modeled using the Douglas�Kroll�Hess Hamiltonian up to the fourth order, and the effects of valence plus
outer-core electronic correlation were also evaluated. The calculations showed that (i) dynamic electron correlation is crucial for
accurate modeling of the reactions in question, (ii) the PES around the stationary points along the reaction path is rather flat, (iii) the
single-point energies calculated at the CCSD(T)/CBS level are in reasonably good agreement with experimental measurements,
(iv) it is difficult to interpret DFT energies in the absence of benchmarking against experimental data or results obtained at a level of
theory that is known to accurately reproduce experimental results, (v) relativistic effects are relatively modest in this system but
should be included if chemical accuracy is desired, and (vi) careful analysis of the multireference character of the system and
potential spin contamination is important. The CCSD(T)-3s3p-DKH2/CBS method can be considered the gold standard for this
reaction because calculations at this level are in good agreement with experimental atomic excitation energies and thermochemical
data. The gas-phase activation energy of the reaction between Fe andH2O is 23.6 kcal/mol including the ZPVE correction (ΔG‡

298K =
29.2 kcal/mol), and HFeOH is a stable intermediate lying �31.2 kcal/mol below the reactants (ΔG298K = �25.4 kcal/mol).

I. INTRODUCTION

In recent years, reductive technologies for the decontamination
of ground and wastewater using zerovalent iron (ZVI) and
nanoscale zerovalent iron (nZVI) have become popular.1�4 The
high reductive capacity of ZVI has been known for some time.5�23

A detailed understanding of the mechanisms by which reduction
with nZVI proceeds will make it possible to optimize these
processes and identify other potential uses of this material. In this
respect, theoretical methods can provide relatively cheap and
unique information on an atomic resolution.

However, the theoretical study of nZVI is complicated by the
fact that is difficult to identify reasonable model systems. An
nZVI particle with a radius of ∼5 nm contains ∼104�105 iron
atoms; such large systems are computationally intractable. As
such, it is necessary to model the nZVI particle either as a cluster
of a few iron atoms24,25 or as a solid phase using Bloch’s
approach.26,27 Unfortunately, both approaches have some draw-
backs and limitations; in particular, the sizes of the systems
involved and the need for periodic boundary conditions and
simulation of electron correlation mean that it is necessary to use
DFT methods, typically LDA or GGA functionals. This is a
potentially serious issue because DFT functionals do not always
provide systematic results for transitionmetal (TM) compounds,
and the accuracy of their results is highly system dependent.28�30

Moreover, even the best theoretical methods can generally only
predict the thermochemistry of transition metal complexes with
an accuracy of(3 kcal/mol,28,31,32 whereas the goal of chemical
accuracy (i.e., predictions that are within (1 kcal/mol of the
experimental value) can be realized for main group compounds.

A better understanding of the reactivity of nZVI and iron in
general would be useful because it could provide new insights
into processes such as corrosion and steel production. However,
there are numerous difficulties associated with computational
studies of the reactivity of iron-containing compounds. First, the
compounds may have several spin states; as such, it is necessary
to identify the correct ground state33�36 and to account for the
possibility of crossing between states of different multiplicities
along the reaction path.35 Moreover, it is necessary to consider
dynamic electron correlation to accurately model the behavior of
iron compounds;37,38 if a high degree of accuracy is required,
scalar relativistic effects should also be considered28,39�41 and it
may be difficult to identify a suitable basis set.42 Other complica-
tions may arise from the multireference character of certain iron-
containing compounds. It is well known that unrestricted single-
reference methods give rise to spin-contamination issues when
applied to open-shell systems. In such cases, the unrestricted
Hartree�Fock (uHF) wave function is not an eigenfunction of
the total spin operator, S2, and so the expectation value ÆS2æmay
not be equal to S(S + 1); as such, the obtained energies may be
inaccurate. On the other hand, restricted open-shell Har-
tree�Fock (roHF) calculations with the right ÆS2æ are more
computationally demanding, can generate unphysical results due
to symmetry breaking artifacts, and do not allow correct spin
polarization.43 Therefore, it is sometimes necessary to use multi-
reference methods for highly spin-contaminated systems,
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especially for their transition states.38 DFT methods are usually
capable of predicting the properties of open-shell systems quite
satisfactorily because they model correlation effects in a different
way.43 Finally, quantitative inconsistencies between DFT,
CCSD(T), and CASPT2 results can be reconciled using quan-
tum diffusion Monte Carlo theory.44

We present here a systematic quantum chemical study con-
ducted to identify a method that provides reasonably accurate
geometries and thermochemical data for selected iron compounds
along the reaction coordinate for reaction of an iron atom with a
water molecule (Fe + H2O). This reaction was chosen because it
was expected that the data obtained would be useful in future
studies of the reactions of nZVI with organic and inorganic
pollutants. The chosen reaction represents the simplest model
of nZVI reaction with water, but on the other hand, it allows one to
benchmark considered quantum chemical methods against golden
standards of quantum chemistry, e.g., CCSD(T)/CBS. The
approach adopted in this work has previously been used to study
the reaction of iron atoms with CCl4

45 and cross validated with
experimental data.46 The considered reaction has previously been
studied using both theoretical and experimental methods.47�51

The paper is organized as follows: the theoretical approaches
and methods used are briefly described in section II. The results
obtained are presented and discussed in section III. There are
described systematic studies of the excitation energies of iron
(section III.A) and the thermochemistry of FeO and Fe(OH)2
(section III.B); the results obtained were compared to experi-
mental data, in order to identify optimal methods and basis sets
for modeling the reactions in question. Studies of the potential
energy surfaces of the reaction between Fe and H2O using
various methods are discussed in section III.C, and the conclu-
sions of the study are presented in section IV.

II. METHODS

A set of calculations using selected ab initio methods was
performed to identify important effects in the description of the
model system. Dynamic electron correlation, which is important
in molecular systems containing iron atoms,38 was modeled
using standard post-HF methods where possible. Both restricted
and unrestricted open-shell variants were examined to avoid the
problems mentioned in section I. Møller�Plesset perturbation
theory, which is sometimes very sensitive to spin
contamination,43 was tested up to the fourth order. The coupled
cluster methods (especially CCSD(T))28,39,52 are quite efficient
at reducing uHF spin contamination to acceptable levels,53 so the
results of uHF- and roHF-based coupled cluster calculations are
often very similar. Because of the inherently multireference
nature of many TM species, such single-reference computations
can provide an inaccurate description of both static and dynamic
electron correlation and it is necessary to check their legitimacy.
Thus, not only spin contamination, but also T1 diagnostic,54,55

which is a mathematically rigorous indication of the quality of an
open-shell coupled cluster wave function, was monitored. A T1

diagnostic greater than 0.05 usually indicate some multireference
character to the wave function.28,56 For the simplest molecular
system considered, FeO, higher correlation effects were investigated
by comparison to results obtained using the complete active space
SCF (CASSCF) and multireference CI (MRCI) methods. In the
multireference calculations, the 1σ�6σ and 1π�2π orbitals were
doubly occupied and kept in the inactive space as was the 7σ orbital
because of its almost pure oxygen 2s character. The remaining 12

valence electrons were distributed between the 9 (MRCI(12,9))
valence orbitals (8σ�10σ, 3π�4π,δ) corresponding to the iron 3d
and 4s orbitals and the oxygen 2p orbital or between a set of 12
valence orbitals (MRCI(12,12), CASSCF(12,12)) consisting of the
previous nine with additional 11σ and 5π orbitals. This resulted in
270 and 49 285 configurations, respectively. Scalar relativistic effects
were studied using theDouglas�Kroll�Hess (DKH)Hamiltonian;
calculations of the zeroth (DKH0), second (DHK2), and fourth
order (DKH4) were performed.

We also sought to identify a less computationally demanding
quantum chemical method that could accurately describe the model
system for use in future studies and therefore examined the
performance of various DFT methods. A limited set of functionals
was considered; those selected have often been used for studying
TM compounds or recommended as being particularly useful for
studying the thermochemistry of TM complexes and the transition
structures encountered in their reactions. The hybrid B3LYP
functional57 has been used in many studies of this kind, having been
used to study the reaction between Fe and H2O by Plane et al.,47,51

Mebel and Hwang,48 and Zhang et al.49 Gutsev et al. used the
BPW91 exchange-correlation functional58,59 to study the interac-
tions of small iron clusters with individual molecules of water50 and
nitrogen monoxide60 and with a carbon atom;61 these authors also
used this functional to study FeOn and FeOn

� clusters.62 The B97-1
functional has been used tomodel the interactions ofmolecules with
water and in small water clusters.63,64 Recently, Zhao and Truhlar
developed a new set of functionals called theM06 suite for the study
of the thermochemistry, thermochemical kinetics, noncovalent
interactions, and excited states of main group and transition metal
compounds.65 We examined the performances of the hybrid meta
exchange-correlation M06 and M06-2X functionals, the full Har-
tree�Fock M06-HF functional, and the M06-L local functional.66

The older hybrid-GGA MPW1K functional,67 which was designed
for accurate computation of reaction barriers, was also considered.

Previous studies in this area47�49,51 used Pople’s basis sets, i.e.,
6-31G**, 6-311G**, 6-311+G(3df,2p). These sets were also used
in this work, but we performed a major part of our calculations
using the correlation-consistent basis sets (cc-pVnZ, aug-cc-
pVnZ, n = D, T, Q), which were recently extended to cover
the 3d elements by Balabanov and Peterson.52 The basis sets
recommended by Balabanov and Peterson for iron (cc-pVnZ-
DK, aug-cc-pVnZ-DK; cc-pwCVnZ-DK)52 were employed in
scalar relativistic calculations and calculations of valence plus
outer-core (3s3p3d4s) electron correlation; these sets were
obtained from the basis set exchange database.68 Correlation-
consistent basis sets can be used to extrapolate to the complete
basis set (CBS) limit. Although the DFT methods are much less
basis set dependent and this convergence is not necessarily
guaranteed for DFT, it has been shown (see, e.g., ref 31 or 32
and references therein) that for some molecules quadruple-ζ or
higher basis sets are required for saturation in DFT, and CBS
extrapolation has been used successfully. Two CBS extrapolation
schemes were utilized here. In the first (CBS1), the HF and
correlation energies are extrapolated separately, as is usually done
when studying main group species. The HF energy was extra-
polated using the two-point scheme described by Halkier et al.69

EHF∞ ¼ EHFn � EHFn � EHFn þ 1

1� expð � BÞ ð1Þ

This scheme has also been recommended for use with TMs,
albeit with a different value for parameter B.70 The correlation
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energy was extrapolated from two points using the following
expression71

Ecorr∞ ¼ n3Ecorrn �m3Ecorrm

n3 �m3
ð2Þ

E∞ and En denote the extrapolated energy and energy for a basis
set of n-ζ cardinality, respectively. Equation 2 was also used in the
second extrapolation scheme (CBS2) using the total energies
only as in ref 52. CBS extrapolations were performed from bases
of triple-ζ and quadruple-ζ cardinality (i.e., n = 3, m = 4).

Most of the calculations reported in this work were performed
using the Gaussian 09 package;72 the Molpro 2006 package73 was
used for multireference calculations. The stability of the obtained
wave functions was always checked. In cases of bad SCF conver-
gence, which is often caused by a small HOMO�LUMO gap, we
used the “level-shifting”method,74 which shifts the virtual orbitals
to a higher energy to increase the HOMO�LUMO gap, and/or
techniques that fractionally occupy orbitals around the Fermi
energy during the SCF cycles (Fermi broadening).75 The quad-
ratically convergent SCF algorithm (which can only be employed
with unrestricted methods in Gaussian 09) was generally more
effective at forcing SCF convergence than the direct inversion in

the iterative subspace (DIIS) algorithm.The nature of all identified
stationary points on the PES was tested by examining the
eigenvalues of the Hessian matrix, and the intrinsic reaction
coordinate method was used to verify the correspondence of
transition structures to their adjacent minima.

III. RESULTS AND DISCUSSION

III.A. Excitation Energies of Atomic Iron. In order to asses
the quality of the CCSD(T)method, which we intended to use as
our benchmark, we computed selected excitation energies of the
iron atom. The calculated energies for the 5Df 5F, 5Df 3F, and
5D f 7D transitions are shown along with the experimental
values76 in Table 1. The high quality of the coupled cluster wave
functions for the 5D and 5F states was demonstrated by their ÆS2æ
and T1 diagnostic values, which were less than 6.02 and 0.03,
respectively. For the CBS limit energies, inclusion of scalar
relativity through the DKH2 Hamiltonian and cc-pVnZ-DK
basis set worsened the agreement with experiment; the calculated
relativistic effect was 5.9 kcal/mol. On the other hand, inclusion
of 3s3p electron correlation (with the cc-pwCVnZ-DK basis set)
reduced the calculated 5D f 5F excitation energy by 3.4 kcal/
mol, giving very good agreement with the experimental value; the
difference between the calculated and measured values in this
case is only 0.8 kcal/mol. It is worth noting that our results
(obtained with Gaussian09 using the uCCSD(T) method) are
consistent with those of previous calculations39 using the open-
shell variant of CCSD(T) implemented in MOLPRO; the
differences between the two sets of calculated results were
0.7 kcal/mol and less than 0.1 kcal/mol appear for calculations
including valence correlation and 3s3p3d4s correlation,
respectively.
The calculated excitation energies for the 5Df 3F and 5Df

7D transitions do not exhibit such good agreement with the
experimental data as was the case for the 5Df 5F transition (see
Table 1) but are still within the chemical accuracy for TM (3
kcal/mol). This may be due to high-spin contamination for the
3F state, for which ÆS2æ ≈ 3 (although the value of the T1

diagnostic in this case remained within acceptable limits, <0.03);
the 7D state wave function is not contaminated (ÆS2æ = 12.00, T1

= 0.01). We also calculated the excitation energies using Pople’s
basis sets which have been used in previous studies (cf. Methods)
and the cc-pVDZ basis set. The smaller basis sets (6-31G**,
6-311G**, and cc-pVDZ) perform significantly poor (Table 1d).
III.B. Heats of Formation of FeO and Fe(OH)2. We also

compared the calculated thermochemical data to available ex-
perimental data for FeO and Fe(OH)2. Theoretical heats of
formation ΔHf at T = 0 K were calculated by subtracting the
calculated atomization energies from the known heats of forma-
tion of isolated atoms. Atomic ΔHf values were taken from
NIST-JANAF tables.77 It should be noted that the experimental
heat of formation for FeO in the gas phase is not well established
at the present time, as can be seen from the last lines of Table 2.
CCSD and the various DFT methods considered here give very
different results (column 5 of Table 2) for the quintet ground
state78,79 of FeO (5Δ; Fe(4s0.53d6.44p0.2) O(2s1.92p4.9)). How-
ever, the CCSD(T)/CBS values for ΔHf calculated as single-
point energies for the same geometries are surprisingly consistent
and reasonably close to the experimental values.77,80,81 This
implies that the CCSD(T) ΔHf values are insensitive to the
length of the Fe�O bond (cf. the second and last columns
of Table 2: a difference of 0.021 Å in the Fe�O distance

Table 1. Calculated Excitation Energies of Iron (kcal/mol)
for the 5D f 5F (a), 5D f 3F (b), and 5D f 7D (c)
Transitionsa

method uCCSD(T) uCCSD(T)-DKH2 uCCSD(T)-3s3p-DKH2

basis set cc-pVnZ cc-pVnZ-DK cc-pwCVnZ-DK

(a) 5D (4s23d6) f 5F (4s13d7)

n = T 22.6 28.5 25.9

n = Q 20.2 26.1 23.0

CBS1 18.5 24.4 21.0

CBS2 18.4 24.3 20.9

exp.b 20.1

(b) 5D (4s23d6) f 3F (4s13d7)

n = T 31.5 37.8 36.4

n = Q 29.0 35.4 33.4

CBS1 27.3 33.7 31.3

CBS2 27.2 33.6 31.2

exp.b 34.0

(c) 5D (4s23d6) f 7D (4s13d64p1)

n = T 52.5 54.4 56.0

n = Q 53.5 55.4 57.0

CBS1 54.3 56.2 57.7

CBS2 54.3 56.2 57.7

exp.b 54.7

5D f 5F 5D f 3F 5D f 7D

(d) uCCSD(T) calculations for smaller basis sets

6-31G** 73.6 79.6 58.3

6-311G** 41.4 48.5 135.7

6-311G(3df,2p) 20.7 29.6 53.5

cc-pVDZ 29.3 37.6 49.5
aResults for other basis sets tested in this work are also shown (d).
bReference 76; the spin�orbit effect has been removed using the
experimental fine-structure splitting.
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corresponds to a 0.1 kcal/mol difference in the CCSD(T)/CBS
energies). This finding suggests that the potential energy surface
(PES) is flat in the vicinity of the minimum. In addition, we also
checked the influence of the basis set on the geometry of the FeO
molecule. Bond lengths optimized with methods of Table 2 were
very similar when cc-pVTZ or aug-cc-pVQZ basis sets were used:
differences were typically smaller than 0.003 Å. This shows that
the cc-pVTZ basis set is adequate for geometry optimizations and
that the error in bond length associated with the use of a finite
basis of triple-ζ cardinality is much less than the uncertainty
associated with the choice of DFT functional.
The potential energy curve around the minimum on the FeO

potential energy curve (Figure 1) was calculated using various
methods in order to compare the performance of single and
multireference methods, to evaluate the differences between the
restricted open-shell and unrestricted approaches, to assess the
influence of scalar relativistic effects calculated on various levels,
and to confirm the expected flatness around the minimum. For
the uHF wave function an ÆS2æ value of ∼6.7 was obtained
(compared to an expected S(S + 1) of 6; cf. Table 2), and the CC
T1 diagnostic was∼0.1 (values above 0.05 indicate that the wave
function may have multireference character28). On the other
side, the MRCI(12,12) leading configuration for S = 2 was
(core)8σ23π49σ1δ34π2, with weight 82%, 78%, 75%, and 71%
for bond length 1.5, 1.62, 1.7, and 1.8 Å, respectively; this
corresponds to the 5Δ state (in the C∞v group, i.e.,

5A1 or
5A2

for C2v) in agreement with a recent theoretical study.82 The
geometries corresponding to ro-methods are slightly more
diffuse than geometries calculated by u-methods. However, this
difference is energetically insignificant because the increase in

length of around 0.03 Å magnitude at the minima of the depicted
curves is associated with energy differences of 0.5 kcal/mol or less
(Figure 1a). The bond lengths obtained using the multireference
CASSCF(12,12)method, which lacks dynamic electron correlation,
are noticeably greater than those obtained in MRCI calculations
(Figure 1b), which account for both static and dynamic electron
correlation. This observation illustrates the point that inclusion of
dynamic electron correlation is important for reliable geometry
optimization. Inclusion of scalar relativistic effects did not alter the
position of the energy minima (Figure 1a). We also note that using
the DKH2 Hamiltonian introduced a systematic reduction in all of
the calculated energies of around 2.1 kcal/mol, while introduction of
additional 3s3p electron correlation made all of the calculated
energies about 1.6 kcal/mol higher (see also Table 2).
We also carried out similar benchmark calculations for Fe-

(OH)2. The experimental heats of formation for Fe(OH)2 in the
gas phase seem to bemore precisely determined than for FeO (see
Table 3), although the accuracy of the reported experimental error
of 0.5 kcal/mol has been questioned.83 Table 3 reports the heats of

Figure 1. (a) Quintet FeO interaction potentials constructed from
30 points for unrestricted (solid lines) and restricted open-shell (dashed
lines) CCSD(T) methods with the cc-pVTZ basis set using several
Hamiltonians: nonrelativistic (black lines), scalar relativistic DKH0 (red
lines), DKH2 (green lines; these are coincident with the blue lines), and
DKH4 (blue lines). (b) Relative energies reported with respect to the
minima of the individual curves obtained using multireference methods.
The nonrelativistic unrestricted (black line) and restricted open (dashed
black line) CCSD(T) data from a are included for comparative purposes;
in addition, MRCI(12,12), MRCI(12,9)-DKH2, and CASSCF(12,12)
curves are also shown (green dot�dashed, red dotted, and blue dash�
dot�dotted lines, respectively).

Table 2. Bond Lengths [Å], Vibrational Frequencies [cm�1],
ÆS2æ, and Heats of Formation ΔHf [kcal/mol] of FeO at 0 K,
Calculated Using Unrestricted Methods and the cc-pVTZ
Basis Set (the geometry of FeO was fully optimized)a

method b(Fe�O) freq ÆS2æ ΔHf
b ΔHf

c

CCSD 1.6184 832 6.791 86.9 67.6 (69.7, 68.1)

B3LYP 1.6095 911 6.038 57.7 67.7

B97-1 1.6124 903 6.030 59.9 67.7

BPW91 1.6047 922 6.018 34.9 67.7

M06 1.6118 926 6.037 72.4 67.7

M06-L 1.6130 915 6.130 53.4 67.7

M06�2X 1.6257 955 6.523 88.9 67.8

MPW1K 1.6125 901 6.018 82.2 67.7

exp. 1.616d 880e 60.0( 5.0h

1.57f 965f 61.9( 4.8I

882g 65.5 ( 3.0j

64.8( 3.0k

aThe rightmost column shows the heats of formation calculated using
the uCCSD(T)/CBS2 method for the same geometries. Values ob-
tained using the CCSD(T)-DKH2/CBS2 method using the cc-pVnZ-
DK basis sets and additional 3s3p electron correlation are shown in
parentheses in the rightmost column of the first row. bValues calculated
using the methods indicated in the first column. cValues calculated using
the CCSD(T)/CBS2 method for geometries obtained by optimization
using the method indicated in the first column. dReference 79. eRe-
ference 78. fReference 77. gReference 84. hReference 77; adopted from
several values cited therein (47.2, 65.7( 23.1, 60.1( 11.6, 59.8( 5, and
52.2 kcal/mol at 298.15 K). IReference 80. jReference 81. kReference
47 (revised data from ref 81; see ref 47 Table 5, footnote i).
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formation of Fe(OH)2 calculated using various methods. Overall,
the trends in these data are similar to those observed in the case of

FeO. Once again, the ΔHf values obtained with the different
methods are somewhat inconsistent, but the energies obtained
from single-point CCSD(T) calculations at the various optimized
geometries are all very similar.We therefore believe that the region
surrounding the global minimum on the PES of Fe(OH)2 is very
flat. Inclusion of the DKH2 Hamiltonian reduces all of the
calculated energies by 2.3�2.9 kcal/mol.
In general, it is not so surprising that different DFT functionals

will exhibited varied performance when predicting the thermo-
chemical data of TM compounds. Recently, Yang et al.30 studied
94 systems containing first-row TMs from Ti to Zn with 12
different functionals. The best mean unsigned error (MUE; the
difference between the experimental and calculated values of
ΔHf) for systems containing iron atoms was 12.2 kcal/mol; the
worst was 43.5 kcal/mol (see Table 4 of ref 30).
III.C. Reaction of Fe with H2O. A systematic study of the

energies of selected stationary points on the ground state
electronic quintet PES of the Fe + H2O system was conducted,
and the energy differences between the stationary points were
calculated to complete the benchmark thermochemical data
discussed in sections III.A and III.B. We focused on the most
important stationary points in the reaction mechanism, namely,
those corresponding to the reactants (qFe+H2O), the global
minimum (qHFeOH), and the transition state between them
(qTS1). We carried out single-point unrestricted calculations on
B3LYP-optimized geometries using various basis sets. Figure 2
shows how varying the basis set affects the energy differences
encountered along the reaction pathway. The smaller basis sets
used in some previous studies47�49,51 (6-31G** and 6-311G**)
do not provide reliable results for the studied reaction (cf. also ref
42). Table 4 compares the energy differences calculated using
unrestricted methods with the cc-pVTZ and cc-pVQZ basis sets.
All methods perform rather poorly (with respect to CCSD(T))
for the TS (MUE = 8.3 and 7.9 kcal/mol for the TZ andQZ basis
sets, respectively) but are significantly better at the minima
(MUE = 3.6 and 3.0). In the case of FeO, accurate results could
be obtained without having to use augmented basis sets; to verify
that this remained true, we computed CBS2 energies for basis sets

Table 3. Bond Lengths [Å], Dihedral Angles [deg], ÆS2æ, and
Heats of Formation ΔHf [kcal/mol] of Fe(OH)2 at 0 Ka

method b(Fe�O) b(O�H) d(HOO0H0) ÆS2æ ΔHf
b ΔHf

c

CCSD 1.804 0.953 95.42 6.017 �45.1 �72.3 (�69.6)

B3LYP 1.791 0.957 89.48 6.010 �66.7 �72.5

B97-1 1.792 0.956 88.90 6.011 �65.4 �72.5

BPW91 1.787 0.967 �85.26 6.008 �75.1 �72.4

M06 1.780 0.954 86.76 6.021 �59.5 �72.1

M06-L 1.788 0.955 87.23 6.016 �65.4 �72.5

M06-2X 1.809 0.953 98.92 6.014 �63.7 �72.3

MPW1K 1.788 0.946 95.90 6.013 �50.0 �73.6

exp. 1.8d 0.96d �77.2( 0.5d

aAll calculations reported in this table were performed using unrest-
ricted methods and the cc-pVTZ basis set except for those reported in
the last column, which shows the uCCSD(T)/CBS2 values for the same
geometries. Values obtained using the CCSD(T)-DKH2/CBS2method
using the cc-pVnZ-DK basis set are reported in parentheses in the first
row (rightmost column). bValues calculated using the methods indi-
cated in the first column. cValues calculated using the CCSD(T)/CBS2
method for geometries obtained by optimization at the level indicated in
the first column. dReference 77.

Figure 2. Single-point energy differences (in kcal/mol, calculated using
unrestricted methods) for three quintet configurations (Fe + H2O, TS1,
and HFeOH) optimized using the B3LYP functional and their depend-
ences on the chosen basis set: (a) qFe+H2O/qTS1, (b) qFe+H2O/
qHFeOH.

Table 4. Single-Point Energy Differences (in kcal/mol, cal-
culated using unrestricted methods) for Three Quintet Con-
figurations (Fe + H2O, TS1, and HFeOH) Optimized Using
the B3LYP Functional

ΔE(qFe+H2O/qTS1) ΔE(qFe+H2O/qHFeOH)

method cc-pVTZ cc-pVQZ cc-pVTZ cc-pVQZ

CCSD(T) 26.6 26.0 �28.5 �29.9

CCSD 31.2 30.8 �27.0 �28.3

MP2 32.8 32.9 �29.9 �31.0

MP3 40.6 40.1 �23.6 �25.0

MP4 33.6 33.2 �28.6 �29.9

B3LYP 15.5 16.7 �33.9 �31.1

B97-1 17.9 19.0 �32.9 �32.2

BPW91 6.8 8.0 �35.0 �33.9

M06 25.2 25.7 �26.6 �25.2

M06-HF 31.7 32.2 �29.8 �29.5

M06-L 10.7 11.8 �39.2 �38.0

M06-2X 29.5 30.5 �27.5 �26.7

MPW1K 23.0 23.6 �32.8 �32.5



2881 dx.doi.org/10.1021/ct200372y |J. Chem. Theory Comput. 2011, 7, 2876–2885

Journal of Chemical Theory and Computation ARTICLE

Table 5. Energy Differences (in kcal/mol) for Stationary Points on the Ground Quintet Surface of the Fe + H2O Reactiona

ΔE (without ZPE correction)

ZPE

corr. ΔE (with ZPE correction) ΔGcorr ΔG

method

first

column CCSD(T)

CCSD(T)-

DKH2

CCSD(T)-3s3p-

DKH2

first

column

first

column CCSD(T)

CCSD(T)-

DKH2

CCSD(T)-3s3p-

DKH2

first

column

CCSD(T)-

3s3p-DKH2

basis set on

Fe cc-pVTZ cc-pVnZ cc-pVnZ-DK

cc-pwCV

nZ-DK cc-pVTZ cc-pVTZ cc-pVnZ cc-pVnZ-DK

cc-pwCV

nZ-DK cc-pVTZ

cc-pwCV

nZ-DK

ΔE(qFe+H2O/qFe 3 3 3OH2)

B3LYP �10.2 �3.7 �2.7 �2.9 1.0 �9.1 �2.7 �1.6 �1.8 6.3 3.4

B971 �8.7 �3.7 �2.7 �2.9 1.1 �7.7 �2.7 �1.6 �1.8 6.3 3.4

BPW91 �10.2 �3.5 �2.5 �2.7 0.9 �9.3 �2.6 �1.6 �1.8 6.1 3.4

M06 �7.7 �3.7 �2.7 �2.9 0.9 �6.7 �2.7 �1.8 �2.0 6.1 3.2

M06-HF �6.1 �3.4 �2.5 �2.6 0.8 �5.3 �2.6 �1.7 �1.8 5.7 3.0

M06-L �12.4 �3.7 �2.7 �2.9 0.8 �11.6 �2.9 �1.9 �2.1 5.9 3.0

M06-2X �5.3 �3.7 �2.8 �2.9 0.9 �4.4 �2.9 �1.9 �2.1 6.0 3.0

MPW1K �5.6 �3.8 �2.8 �2.9 1.2 �4.3 �2.5 �1.5 �1.7 6.4 3.4

average �8.3 �3.6 �2.7 �2.8 1.0 �7.3 �2.7 �1.7 �1.9 6.1 3.2

MUE 2.1 0.1 0.1 0.1 0.1 2.1 0.1 0.1 0.1 0.2 0.2

ΔE(qFe+H2O/qTS1)

B3LYP 15.5 25.6 27.2 26.8 �3.2 12.3 22.4 24.0 23.7 2.3 29.2

B971 17.9 25.6 27.2 26.9 �3.5 14.4 22.1 23.7 23.4 2.3 29.2

BPW91 6.7 26.0 27.6 27.2 �3.0 3.8 23.0 24.7 24.2 2.5 29.7

M06 24.3 25.3 26.9 26.6 �4.0 20.3 21.2 22.8 22.5 2.1 28.7

M06-HF 30.3 25.9 27.7 27.8 �3.3 27.0 22.6 24.5 24.6 1.5 29.3

M06-L 10.9 25.8 27.5 27.1 �3.7 7.2 22.1 23.8 23.4 2.3 29.4

M06-2X 28.7 25.6 27.3 27.2 �3.4 25.4 22.2 24.0 23.9 1.8 29.1

MPW1K 22.9 25.6 27.2 26.9 �3.5 19.5 22.2 23.7 23.4 2.1 29.0

average 19.7 25.7 27.3 27.1 �3.4 16.2 22.2 23.9 23.6 2.1 29.2

MUE 6.9 0.2 0.2 0.3 0.2 6.8 0.3 0.4 0.5 0.2 0.2

ΔE(qFe+H2O/qHFeOH)

CCSD �27.1 �30.9 �29.2 �28.4 �2.8 �29.9 �33.7 �32.0 �31.2 3.0 �25.4

B3LYP �34.0 �30.9 �29.2 �28.4 �3.0 �37.0 �33.9 �32.1 �31.4 2.7 �25.7

B971 �33.0 �30.9 �29.2 �28.4 �3.1 �36.0 �34.0 �32.2 �31.5 2.6 �25.8

BPW91 �35.3 �30.2 �28.5 �27.9 �2.7 �38.0 �32.9 �31.2 �30.6 3.0 �24.9

M06 �26.7 �30.7 �29.0 �28.3 �3.1 �29.8 �33.9 �32.1 �31.4 2.5 �25.8

M06-HF �30.7 �30.3 �28.2 �27.2 �2.8 �33.5 �33.1 �31.0 �30.1 3.1 �24.1

M06-L �39.2 �30.8 �29.1 �28.3 �3.1 �42.3 �33.9 �32.2 �31.5 2.4 �25.9

M06-2X �28.1 �30.8 �28.9 �28.0 �2.9 �30.9 �33.7 �31.8 �30.9 3.0 �25.1

MPW1K �32.8 �30.9 �29.2 �28.4 �3.7 �36.5 �34.6 �32.9 �32.1 2.1 �26.3

average �31.9 �30.7 �28.9 �28.2 �3.0 �34.9 �33.7 �32.0 �31.2 2.7 �25.4

MUE 3.3 0.2 0.3 0.3 0.2 3.4 0.3 0.4 0.4 0.3 0.5

ΔE(qFe+H2O/qTS2)

CCSD 55.2 39.2 43.0 41.1 �4.7 50.6 34.6 38.3 36.4 0.9 42.0

B3LYP 26.5 39.1 42.6 40.7 �4.7 21.8 34.4 37.9 36.0 0.9 41.6

B971 27.6 38.9 42.5 40.6 �4.7 23.0 34.3 37.9 35.9 0.9 41.5

BPW91 11.3 39.1 42.2 40.6 �4.7 6.6 34.3 37.5 35.9 0.8 41.5

M06 37.6 39.0 42.5 40.6 �4.6 33.0 34.5 37.9 36.1 1.0 41.6

M06-HF 58.9 38.6 42.7 41.3 �3.5 55.4 35.2 39.3 37.9 1.9 43.3

M06-L 18.5 39.0 42.3 40.8 �4.9 13.6 34.1 37.4 35.9 0.7 41.5

M06-2X 50.3 37.0 41.1 38.7 �4.1 46.1 32.8 36.9 34.6 1.4 40.1

MPW1K 43.6 38.4 42.5 40.6 �4.3 39.3 34.2 38.2 36.3 1.2 41.8

average 36.6 38.7 42.4 40.6 �4.5 32.2 34.3 37.9 36.1 1.1 41.6

MUE 13.9 0.5 0.3 0.4 0.3 14.1 0.4 0.4 0.5 0.3 0.5
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with (augmented) and without diffuse functions (aug-cc-pVnZ vs
cc-pVnZ) for all methods listed in Table 4. The average differences
between the CBS2 energies calculated with the two basis sets were
0.4 and 0.3 kcal/mol for qFe+H2O/qTS1 and qFe+H2O/
qHFeOH, respectively. For the post-HF methods the differences
were less than 0.2 kcal/mol. This shows that reasonable accuracy
with respect to the CBS limit and computational demands can be
using basis sets without diffusion functions. It is worth noting that
double-ζ basis sets do not provide sufficiently accurate results
(Figure 2), and so the CBS limit should be calculated fromTZ and
QZ basis sets at least.
The final goal of our study was to explore the potential energy

surfaces of the reaction between Fe and H2O as accurately as
possible. In light of the results reported in the preceding
paragraphs and sections III.A and III.B, we adopted the following
scheme: (1) geometry optimization was performed using all of
the considered DFT methods with the cc-pVTZ basis set, (2)
frequencies and zero-point energy corrections using the harmo-
nic approximation were obtained at the same levels of theory, (3)
single-point uCCSD(T) energy calculations using CBS extra-
polation from the cc-pVTZ and cc-pVQZ basis sets were carried

out, or, alternatively, (4) the scalar relativistic uCCSD(T)-DKH2
and valence plus outer-core (3s3p3d4s) electronic correlation
CCSD(T)-3s3p-DKH2 calculations were also performed using
the CBS limit and the cc-pVnZ-DK or cc-pwCVnZ-DK basis sets,
respectively. In order to verify that the ground electronic state of
the Fe + H2O reaction coordinate retained the quintet
multiplicity47�49,51 and that no crossing occurred, we also
performed calculations for different multiplicities. Figure 3 shows
the lowest energies for the quintet state and that there is no
crossing between the quintet and triplet surfaces. The only
limitation of our approach is the single-reference description;
some stationary points on the PES (specifically, the TS) may
have some multireference character. Bias in the energies attribu-
table to this can be measured using the T1 diagnostic for coupled
cluster methods. Problems due to spin contamination can also be
partially relieved by using coupled cluster methods, which are
quite effective at reducing uHF spin contamination to acceptable
levels.53 In this context, the results obtained for Fe and FeO with
coupled cluster methods (including ÆS2æ and T1 values) are
discussed in sections III.A and III.B, respectively. For a single-
point energy calculation at the uCCSD(T)-3s3p-DKH2 level on

Table 5. Continued

ΔE (without ZPE correction)

ZPE

corr. ΔE (with ZPE correction) ΔGcorr ΔG

method

first

column CCSD(T)

CCSD(T)-

DKH2

CCSD(T)-3s3p-

DKH2

first

column

first

column CCSD(T)

CCSD(T)-

DKH2

CCSD(T)-3s3p-

DKH2

first

column

CCSD(T)-

3s3p-DKH2

basis set on

Fe cc-pVTZ cc-pVnZ cc-pVnZ-DK

cc-pwCV

nZ-DK cc-pVTZ cc-pVTZ cc-pVnZ cc-pVnZ-DK

cc-pwCV

nZ-DK cc-pVTZ

cc-pwCV

nZ-DK

ΔE(qFe+H2O/qH2FeO)

CCSD 36.6 22.0 24.3 22.9 �3.2 33.4 18.8 21.1 19.7 2.6 25.4

B3LYP 10.6 21.8 24.1 22.6 �3.8 6.8 18.0 20.3 18.8 2.2 24.8

B971 14.8 21.8 24.0 22.5 �3.9 10.9 17.9 20.1 18.6 2.0 24.6

BPW91 �9.7 25.8 27.4 25.4 �3.4 �13.1 22.4 24.0 22.0 2.1 27.6

M06 24.1 21.8 24.0 22.4 �4.1 20.0 17.8 19.9 18.3 1.8 24.2

M06-HF 54.0 24.9 27.2 25.9 �3.6 50.4 21.2 23.5 22.3 1.3 27.2

M06-L �0.5 26.2 27.7 25.8 �3.4 �4.0 22.8 24.2 22.3 2.1 27.9

M06-2X 41.6 23.6 26.0 24.7 �3.9 37.7 19.7 22.1 20.8 0.8 25.5

MPW1K �76.5 22.2 24.5 23.1 �4.5 �81.1 17.7 20.0 18.6 1.5 24.6

average 10.5 23.3 25.5 23.9 �3.8 6.8 19.6 21.7 20.2 1.8 25.8

MUE 26.3 1.6 1.4 1.4 0.3 26.3 1.7 1.6 1.5 0.4 1.2

ΔE(qFe+H2O/qFeO+H2)

CCSD 41.7 32.5 34.3 33.3 �6.1 35.5 26.3 28.1 27.2 �6.1 27.2

B3LYP 16.6 32.4 34.2 33.1 �5.7 10.8 26.6 28.4 27.4 �5.6 27.5

B971 22.0 32.4 34.2 33.2 �5.8 16.2 26.6 28.4 27.4 �5.7 27.4

BPW91 �1.4 32.3 34.0 32.9 �5.5 �6.9 26.7 28.5 27.4 �5.4 27.5

M06 33.6 32.4 34.2 33.2 �6.1 27.5 26.3 28.1 27.1 �6.0 27.2

M06-HF 61.1 42.4 36.3 35.7 �5.8 55.2 36.5 30.5 29.8 �5.8 29.8

M06-L 12.8 32.4 34.2 33.2 �4.9 7.9 27.5 29.3 28.3 �5.9 27.3

M06-2X 48.9 41.0 40.4 40.2 �6.0 42.9 35.0 34.4 34.2 �5.9 34.2

MPW1K 38.7 32.4 34.2 33.2 �6.0 32.7 26.4 28.2 27.2 �5.9 27.3

average 30.4 34.4 35.1 34.2 �5.8 24.7 28.7 29.3 28.4 �5.8 28.4

MUE 15.9 3.2 1.5 1.6 0.3 15.7 3.1 1.4 1.6 0.2 1.6
aCalculations presented in this table were performed using unrestricted methods; methods used for geometry optimization and frequency calculations
are specified in the first column (the results of these calculations are shown in columns 2, 6, 7, and 11). Additional single-point energies were obtained
using the CBS2 scheme with bases of triple-ζ and quadruple-ζ cardinality (i.e., n = 3 and 4).
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the transition state qTS1, we obtained ÆS2æ ≈ 6.7 (vs expected
S(S + 1) = 6) for the uHF wave function; however, the T1

diagnostic had an acceptable value (below 0.03). The single-
reference description is fully adequate for the global minimum
(qHFeOH), for which ÆS2æ ≈ 6.03 and T1 < 0.022. The only
potentially problematic stationary point could be transition state
TS2; for the uHF wave function for this species, ÆS2æ ≈ 6.9 and
T1 < 0.12. The value of the T1 diagnostic indicates that this
transition state has some multireference character. However, the
accuracy of energy corresponding to this transition state is not
crucial for practical purposes and the final goal of this study, to
explore the kinetics and the thermodynamics of the reaction
between Fe and H2O. In terms of the performance of the different
methods used, the trends shown in Table 5 for the Fe + H2O
reaction mirror those observed in Tables 3 and 4, which report the
thermochemical data for FeO and Fe(OH)2; the different density
functionals all afford very different energies, but all of the single-
point CCSD(T) energies obtained at the different DFT geome-
tries are very similar. This again suggests that the regions
surrounding the stationary points on the PES of the Fe + H2O
reaction are quite flat.
The results obtained by examining all the stationary points on the

Fe + H2O potential energy surface using the method described
above are collected in Table 5 and visualized in Figure 3 (the
energies reported in this figure are an average of the CCSD(T)-
3s3p-DKH2/CBS2 energies from the 10th column of Table 5 forM
= 5; forM = 3 only three values for such average were used). In the
computed reaction mechanism, the iron atom forms a noncovalent
complex with the water molecule. The two react via transition state
qTS1 (Fe(4s1.13d6.34p0.1) H(1s0.9) O(2s1.82p5.2) H(1s0.5)) to form
the highly stable qHFeOH intermediate (H(1s1.5) Fe-
(4s0.53d6.24p0.2) O(2s1.82p5.3) H(1s0.5)), which is expected to be
the dominant reaction intermediate. We also identified a local
minimum labeled qH2FeO that was not mentioned in ref 48 but
is discussed in refs 49 and 51. The overall mechanism of the Fe +
H2O reaction is in qualitative agreement with that reported in
previous publications.48,49,51 However, in quantitative terms, there
are various inconsistencies in the literature data on this reaction. A
wide range of values (all of which include the ZPE correction) have
been reported for the energy barrier that is most important in
understanding the reaction’s kinetics, qFe+H2O/qTS1. Specifically,

this barrier has been calculated to be 14.848 (B3LYP/6-311+G-
(3df,2p)), 32.748 (CCSD(T)/6-311G**), 8.649 (B3LYP/6-311+
+G(d,p)), and 14.3 kcal/mol51 (B3LYP/6-311+G(2d,p)) com-
pared with our benchmark value (including ZPE correction) of
23.6 kcal/mol (the average of the CCSD(T)- 3s3p-DKH2/CBS2
values in the 10th column of Table 5). The large deviations can be
attributed to the small basis sets and DFT methods used in the
previous literature studies (cf. Figure 2 and Table 4). Similarly,
literature values for the energy difference between the reactants
and the global minimum on the PES (qFe+H2O/qHFeOH) are
very different, although the deviation between the literature data
and our benchmark is less pronounced in this case: previous results
include�34.248 (B3LYP/6-311+G(3df,2p)),�26.2 48 (CCSD(T)/
6-311G**),�41.149 (B3LYP/6-311++G(d,p)), and�35.6 kcal/
mol51 (B3LYP/6-311+G(2d,p)) compared with our value of
�31.2 kcal/mol (CCSD(T)-3s3p-DKH2/CBS2).

IV. CONCLUSIONS

The quantum chemical study reported herein examined the
simplest model system for studying the reaction of nZVI with
water, i.e., the gas-phase reaction of an iron atom with a water
molecule. This simple model was used to compare the perfor-
mance of various widely used DFT functionals to that of highly
accurate post-HF methods and multireference quantum chemi-
cal methods that can properly account for electron correlation
and scalar relativistic effects. The calculations illustrate the
following. (i) Inclusion of dynamic electron correlation is
essential for a proper description of this reaction. (ii) The PES
around the stationary points along the reaction path is rather flat;
various methods that account for dynamic electron correlation
can be used for geometry optimizations, and scalar relativistic
effects do not significantly affect the calculated geometries. (iii)
The only single-point energies that were in reasonable agreement
with the experimental data were those calculated at the CCSD-
(T)/CBS level; the DFT and post-HF single reference methods
gave inaccurate results. (iv) Direct interpretation of DFT en-
ergies can be unproductive in the absence of either benchmark
data obtained at the recommended level of theory or experi-
mental data, (v) Scalar relativistic effects are small in this system,
but their magnitude is still in the same sort of range as chemical
accuracy ((1 kcal/mol). (vi) The multireference character of
intermediates and potential spin contamination should always be
carefully examined. The CCSD(T)-3s3p-DKH2/CBS2 method
can be considered a gold standard for the reaction in question
because results obtained at this level are in good agreement with
experimental atomic excitation energies and thermochemical data.
The gas-phase activation energy (including the ZPVE correction)
of the Fe + H2O reaction is 23.6 kcal/mol (ΔG‡

298K = 29.2 kcal/
mol);HFeOH is a stable intermediate lying�31.2 kcal/mol below
reactants (ΔG298K = �25.4 kcal/mol).
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ABSTRACT:We report a reparameterization of the glycosidic torsion χ of the Cornell et al. AMBER force field for RNA, χOL. The
parameters remove destabilization of the anti region found in the ff99 force field and thus prevent formation of spurious ladder-like
structural distortions in RNA simulations. They also improve the description of the syn region and the syn�anti balance as well as
enhanceMD simulations of various RNA structures. Although χOL can be combined with both ff99 and ff99bsc0, we recommend the
latter. We do not recommend using χOL for B-DNA because it does not improve upon ff99bsc0 for canonical structures. However, it
might be useful in simulations of DNA molecules containing syn nucleotides. Our parametrization is based on high-level QM
calculations and differs from conventional parametrization approaches in that it incorporates some previously neglected solvation-
related effects (which appear to be essential for obtaining correct anti/high-anti balance). Our χOL force field is compared with
several previous glycosidic torsion parametrizations.

’ INTRODUCTION

The relevance of sampled structures and conformational
dynamics of molecules in molecular dynamics (MD) simulations
critically depends on the quality and accuracy of the applied
empirical force fields. Among force-field terms, the torsion param-
eters are known to strongly influence the molecular structures.
This creates a considerable problem since the torsions are the
least “physics-based” parameters in the sense that they cannot
be directly derived from either experimental data or quantum
mechanics (QM). Further, the sampled torsions depend not only
on the values of all of the other parameters but also on the applied
simulation methods (for example, whether or not all bonds, only
bonds with hydrogen atoms, or no bonds are constrained). Bond
and angle parameters can be straightforwardly derived from crystal
data, IR and microwave spectroscopy, and/or high-level QM. Rela-
tively straightforward procedures or protocols are also available
to determine intermolecular parameters, such as van der Waals
radii and well depths by matching experimental densities and
atomic charges through fits to QM-derived electrostatic potentials
or energetics. In contrast, fitting of the torsional parameters is
largely an art and often rather ad hoc. The results strongly depend
on the choice of model systems and approach, including the
means used to fit the QM data, the level of QM calculations, the
QM optimization methodology, and inclusion of solvation. For
nucleic acids, a particularly difficult problem is parametrization of
the flexible and anionic sugar�phosphate backbone, as the force

fieldmust simultaneously reproduce properties of canonical nucleic
acid forms and numerous noncanonical topologies.1�7

Most of the current generation of nucleic acid force fields were
initially designed to reproduce properties of isolated nucleosides
in vacuo. This residue-based parametrization approach relies on
investigations of small molecule model systems under the assump-
tion that the parameters are transferable and applicable to nucle-
osides and larger nucleic acid structures in solution.8,9 A sig-
nificant issue at the time of writing is that these model systems
were primarily studied in the early 1990s when higher level QM
investigations of full models representative of the nucleotides or
nucleotides were not possible. Understanding the deficiencies,
the initial nucleic acid force fields were then tweaked—arguably
with limited success—through a series of designed, automated,
or ad hoc torsional potential modifications aiming to reproduce
B-DNA and A-RNA helix structures in solution. Other target pro-
perties included (inter alia) the subtle balance of the A�B DNA
conformational equilibrium and the B-DNA helical twist.10�20

Despite improvements, cryptic deficiencies remained and tend
to remain undiscovered except through prolongedMDor enhanced
sampling simulations and investigations of larger numbers of non-
canonical structures, such as various G-DNA and RNA structures.
For example, although unexpected and persistent γ = trans back-
bone conformational transitions inB-DNAsimulationswere reported

Received: March 8, 2011
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in the early 2000s,21�23 it took time (and longer simulations) to
convince the research community that the most widely used
nucleic acid force field, the AMBER force field (ff94) presented
by Cornell et al.,8 and its basic variants ff9817 and ff9920

(collectively termed the AMBER ff9X force fields) significantly
overstabilized the γ = trans backbone state. As a result, the initially
infrequently populated γ = trans state sampled in R/γ confor-
mational transitions becomes the global minimum in B-DNA.
Given sufficiently long MD simulations this overstabilization
leads to complete degradation of the B-DNA structure. To over-
come this deficiency, several approaches based on high-level QM
calculations of larger andmore representative model systems were
applied to improve mapping of the R/γ energy surfaces, leading
to the bsc0 refinement of the AMBER ff9X force fields.24,25 The
ff99bsc0 force field is the best currently available for modeling
B-DNA,26,27 but it still has potential inaccuracies. For example,
the B-DNA helical twist remains underestimated, the occasional
γ = trans flips in B-DNA simulations are still probably too
frequent,28 and for modeling DNA hairpin loops, although the
refinement improves the overall force-field performance, an
experimentally known γ = trans state is incorrectly eliminated.29

On the other hand, all of the AMBER ff9X force fields, with or
without bsc0 modifications, provide similar simulations of the
behavior of RNA helices, since in all cases the γ = trans backbone
flip is reversible.30 This indicates that force-fieldmodifications for
DNA and RNA simulations might be pursued independently, in
contrast to earlier perceptions that the parameters should be
transferable across the nucleic acids.

Considerablymore challenging than simplymaintaining canon-
ical helical structure is achieving a balanced description of the
various noncanonical and/or unfolded nucleic acid structures,
which are especially important in analyses of RNA functions,
catalysis, dynamics, and drug targeting.31�35 Although simulations
of such structures may be improved by straightforward adjustment
of a particular parameter (as for the γ = trans backbone states),
some problems will likely require simultaneous or concerted
modification of numerous parameters, which is demanding. Finally,
considering the severity of the overall physical approximations of
the pairwise additive force fields, some problems might be entirely
beyond the capabilities of simple force-field approximations. Thus,
it is not surprising that different force fields often provide remark-
ably different descriptions of the same structure, a phenomenon
termed “force-field-dependent polymorphism”.36�40 A large part of
this undesirable variability can likely be attributed to the inaccu-
rate or nonoptimal description of the torsion space. Hence, the
torsion parameters used in the various force-field treatments have
been continuously refined.8,19,20,24,41,42

In nucleic acids one of the most distinctive torsions is the
glycosidic torsion, χ, describing rotation about the bond that
links the base to the sugar moiety and determines the relative
orientation of the nucleobase and sugar moieties in DNA and
RNA (Figure 1). It is believed to be involved in the equilibrium of
the A and B forms of DNA as well as the C20-endo and C30-endo
equilibrium. The χ torsion is linked to many base pair and helical
parameters that are modeled rather inaccurately by current force
fields, including the helical twist (underestimated),17 base pair
propeller twist (also underestimated), and size of the DNA
grooves. Recent work also suggests that it is important for the
correct description of complex RNA folds.43 In the two most
widely used sets of biomolecular force fields for nucleic acids,
AMBERandCHARMM, several reparameterizations of theχ torsion

have appeared in recent years,7,17,19,41,42,44,45 indicating that deriv-
ing its torsion potential is a particularly difficult task.

The focus of this work is on the χ torsion in the Cornell et al.
ff9X force-field family. Before reviewing previous parametriza-
tions, we should note that the χ angle is tightly coupled to sugar
puckering. Therefore, when corrections to the χ parameters are
made in a particular force field they are often accompanied by
adjustments to the ribose/deoxyribose parameters. The para-
meters for χ and sugar pucker in the most commonly used force
field for NA simulations, AMBER ff94, originally presented by
Cornell et al.,8 have already been revised at least four times. In the
AMBER ff98 force field17 both the χ torsion and sugar puckers
were changed, followed by minor readjustments of the sugar
pucker parameters in the AMBER ff99 force field.20 Although not
fully described in the literature, these modifications were largely
based on ad hoc changes to the parameters with assessment by
relatively long (for the time) MD simulations to ascertain their
influences on theDNA structure, twist, and sugar puckering. This
contrasts with a more physically based approach involving better
QM calculations based on more relevant model systems. The
main aim of the rather subtle tunings in ff98 was to reduce the
ff94 force field’s quite pronounced underestimation of helical
twist in B-DNA. However, the improvement afforded by the
reparameterization was modest, and all the ff9X force fields are
usually assumed to have similar strengths, weaknesses, and ranges
of applicability.While the ff94 force field underestimates χ values,
sugar pucker, and helical twist17 in B-DNA simulations, the ff98
twist is closer to experimental values. Even with the latest ff99
force field, the description of the structural parameters coupled to
the χ angle is not fully satisfactory. For DNA, the helical twist is
still somewhat underestimated, and the average χ and pucker
values are probably still too far from values obtained from X-ray
and solution analyses. We emphasize that this assessment con-
cerns primarily B-DNA, which has been the main target of the
force-field parametrization efforts. Assessment and validation of
the performance of force fields for other types of nucleic acid
structures has been much less systematic, and the results have
often been difficult to interpret due to a lack of both unambig-
uous target experimental structures and published or disseminated
data regarding simulation failures.29,38,43,46�49The above-mentioned
critical R/γ torsional reparameterization (bsc0) was primarily
designed as a complement to ff99.24

In 2008Ode et al. attempted a new χ parametrization based on
QM calculations.44 This parametrization can be combined with
either ff99 or ff99-parmbsc0, but assessing the effects of the new
parameters on the performance of these force fields is difficult
since the original testing was limited to analysis of the progres-
sion of rmsd values in a few very short MD trajectories. More
recently, we tested the modifications in simulations of guanine
quadruplex (G-DNA) loops, which are known to be described
poorly with standard ff9X parametrizations. However, the Ode
et al. modifications did not have any clear advantages with respect
to the original force fields for the G-DNA loops; the simulation
outcomes were not significantly influenced by the choice of χ
potential but were strongly influenced by the choice of ff99 versus
ff99-parmbsc0.29 Recently, another χ reparameterization was
presented by Yildirim et al.45 This reparameterization (tested
solely in combination with ff99, in RNA simulations) was shown
to improve the concordance of syn�anti populations of isolated
RNA nucleosides with NMR data, but no simulations of nucleic
acids were presented.
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In simulations of RNA, a major failure of the ff99 force field
recently reported by Mlynsky et al.43 is the generation of large
“ladder-like” structural distortions in one stem of the hairpin
ribozyme.43 These distortions are characterized by a shift of
χ toward the region typical for the B form (high-anti, ∼270�),
loss of helical twist, a change of the sugar pucker from C30-endo
to C20-exo, and increases in slide and P�P distances in their
radial distribution function. According to our experience, defor-
mations of this type are actually fairly common in MD simula-
tions of smaller RNA fragments.46Hence, theymay have appeared
in some previously published investigations, including RNA
tetraloop folding studies, and results of these simulations should
be viewed with care.

It should be noted that the “ladder-like” artifact would not
have appeared in most previous RNA simulation studies, since it
usually takes at least several tens of nanoseconds to emerge,
depending on the system (for several examples see our recent
study, in which we found that between 20 and 95 ns is required
for someRNA tetraloop structures46).However, collectively through
the large sets of RNA simulations performed by the collaborating
groups we accumulated quite strong evidence that the “ladder-
like” structure is preferentially favored over traditional A-RNA
helices by both the ff99 and the ff99bsc0 force fields. Thus, we
expect the ladder-like structure artifact to appear, eventually, in
all sufficiently long RNA MD simulations. In other words, we
hypothesize that the “ladder-like” structure is the global RNA
minimum and its appearance (and accompanying structural
changes in the simulated RNA molecule) is solely dependent
on the simulation time scale, even for folded RNAs. Finally, we
note that deficiencies in the χ potential are not unique to the
AMBER force fields since χ parameters of the CHARMM all22
and all27 force fields have been revised,19,50 and subsequent
studies suggest that further revision is required.7,41

Since transition to the ladder-like structures is accompanied by
a large shift of the χ value toward the high-anti region, the
distortions could be attributed to the χ torsion parametrization.
Removing the tendency of force fields to generate unnatural
ladder-like structures in RNA simulations through reparameter-
ization of the glycosidic torsion was one of the main motivations
of the work presented here.

To derive new χ torsion parameters, we decided to base the
parametrization procedure on better quantum-chemical (QM)
reference data obtained from more relevant model systems.
Here, we compare the most frequently used QM methods,
including HF/6-31G*, MP2/6-31G*, DFT-based computations,
etc., with the best available reference QM method, here denoted
CBS(T). CBS(T) is theMP2method extrapolated to the complete
basis set (CBS) limit of atomic orbitals with a correction by the
CCSD(T)method using a smaller basis set.51 Further, we carefully
evaluate errors arising from other commonly applied methodo-
logical assumptions. The first is the choice of the geometries for
deriving the parameters, namely, the assumption that the same
QM-optimized geometries can be used for both the QM and the
MM single-point calculations. The second assumption is that
solvation effects can be ignored, i.e., that in vacuo parameters for
torsion can be reliably applied. Hypothesizing that both approx-
imations may lead to substantial errors, we suggested a new pro-
tocol that takes both effects into account, derived new χ torsion
parameters, and compare them here to other available param-
etrizations, in terms of the shape of the torsion profiles with
regard to the A/B form equilibrium, syn/anti relative energies,
and transition barriers. In addition, we tested various χ profiles in
MD simulations of a B-DNA helical structure and three A-RNA
structures. Finally, after the preliminary tests, we ran extensive
MD simulations (dozens of microseconds) of numerous other
systemswith various force fields. The results of thesemore extensive
simulations are briefly mentioned here and described (or will be

Figure 1. Chemical structures and atom-naming conventions for the model ribonucleosides used in our derivation of χ torsion parameters for cytosine
(C), adenine (A), guanine (G), and uracil (U). The dihedral angle χ is defined by the O40�C10�N1�C2 atoms for C and U and by the
O40�C10�N9�C4 atoms for A and G (this definition is used throughout this work). Note, however, that in ff94, ff98, and ff99 force fields the
χ parameters are actually assigned to the complementary angle, specifically O40�C10�N1�C6 for C and U and O40�C10�N9�C8 for A and G.
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described) in more detail in separate publications, such as our
recent study of RNA tetraloops.46

’METHODS

Selection of Model Molecules. In our attempts to improve
modeling of the χ potential, we used almost complete ribo- and
deoxyribonucleoside models with the 50-OH group replaced by a
hydrogen (Figure 1; only the ribo compounds are shown). We
omitted the 50-OH group to avoid its contacts with the nucleobases
(for instance, the contact of 50-OH with H6 of pyrimidines),
which would bias the parameters. Note that the value of the
pseudorotation angle was fixed in all calculations (see below),
and therefore, neglect of the anomeric effect of the missing 50-
OH group should not influence our results. We refer to the
compounds in Figure 1 as ribo/deoxyribonucleosides or simply
dN/rN hereafter to facilitate discussion, noting that in this work
these terms always refer to the nucleosides with the 50-OH replaced
by a hydrogen. Thesemolecules are probably the smallest models
that could be reasonably used for our purpose as they include all
the intramolecular contacts that occur upon rotation about the
torsion angle. The intramolecular contacts are very important
because theymakemajor contributions to the torsion energy. For
instance, the repulsive O40 3 3 3O2 and O40 3 3 3N3 contacts in
purines and pyrimidines, respectively, correspond to the highest
rotation barriers on the potential energy surface. Note also that
increasing the complexity of the model beyond certain limits
does not necessarily improve the quality of the results as some
long-range interactions and contacts might introduce consider-
able additional problems.25,52 As described below, to assess the
influence of the sugar pucker, the calculations were performed for
two sugar conformations in deoxyribonucleosides, C20-endo and
C30-endo. For the ribonucleosides only the C30-endo conforma-
tion was considered.
Levels of Theory.The single-point calculationswere performed

at various levels of theory. The most accurate are the MP2/
CBS+ΔCCSD(T) calculations, which approximateCCSD(T)/CBS
quality and are denoted CBS(T) hereafter. The complete basis
set (CBS) extrapolations were obtained through the scheme of
Helgaker andHalkier53,54 (HF andMP2 energies were extrapolated
separately) using cc-pVTZ and cc-pVQZ basis sets. Turbomole
5.1055,56 was used to calculate the MP2 energies with the RI
approximation. The correction term for higher order correlation
effects, ΔCCSD(T), was calculated using the cc-pVDZ basis
set in Molpro 06.57 For more details, see Jurecka and Hobza.51

To derive the DFT-based parameters we used the PBE density
functional, 6-311++G(3df,3pd)58�61 basis set (LP hereafter),
and empirical dispersion corrections (DFT-D, 1.06-23).62 For
some of the geometry optimizations described below we also used
smaller basis sets, TZVP and TZVPP.63

Geometry Optimizations and Constraints. In the QM
calculations, the starting structures corresponding to either C20-
endo or C30-endo forms were first relaxed at the PBE/TZVPP
level with the continuum solvent model COSMO64 in the Turbo-
Mole 5.1055,56 software suite (water, εr = 78.4). Then, several
constraints were applied in the TurboMole program. The O40�
C40�C30�C20 angle was constrained at the value taken from the
PBE/TZVPP/COSMO optimal structure to keep the sugar pucker
close to C20-endo or C30-endo, i.e., for dA, dT, dG, and
dC at 28.1�, 26.0�, 25.2�, and 25.4� and for rA, rU, rG, and rC at
�34.7�,�38.9�,�39.6�, and�39.2�, respectively. TheC40�C30�
O30�H3T angle was constrained at �60� to prevent H bonding

with the O20 oxygen, and for ribonucleosides, the C30�C20�
O20�HO02 torsion was constrained at �120� to prevent any
sugar 3 3 3 base H-bond formation or intramolecular H-bond
formation with O20. Then, the χ angle was increased with 10�
increments and the geometries relaxed using the PBE DFT
functional and the LP basis set (see above) in the COSMO
continuum solvent. The same constraints were applied in the
MM optimizations, which were performed in the Gaussian
software suite65 using the “external” function and the ff99 force
field. The external program for MM geometries was the sander
module of AMBER66 and a Poisson�Boltzmann (PB) conti-
nuum solvent was used.
Solvent Models. The COSMO continuum solvent model64

was used in the QM calculations, while a Poisson�Boltzmann
(PB) continuum solvent model67,68 was applied in the MM cal-
culations. The COSMO calculations were performed with Tur-
boMole 5.1055,56 with default scaled Bondi radii (scaling factor,
1.17) and default water parameters (εr = 78.4). The PB calcula-
tions were carried out with Gaussian 03 software using the
“external” function and in-house scripts linking Gaussian to the
sander module of AMBER 9.66 In sander the grid spacing was set
to 0.2 Å, while default water parameters (εr = 78.4) and default
radii were used (see also refs 67 and 68). The nonpolar terms
were included in the PB optimizations, but only the PB electrostatic
component was considered in dihedral parameter development
(see discussion below).
Obtaining the Torsion Profiles. Usually the torsion angle

parameters (Edih,χ
vac here) are determined by the difference between

the MM single-point energy (E�χ
MM//QM,vac) and QM single-

point energy (EQM//QM,vac) obtained in vacuo using the same
(QM) geometry for both theMMand theQMcalculations (eq 1):

Edih, χ
vac ¼ EQM==QM, vac � E-χ

MM==QM, vac ð1Þ
Here, we use a different scheme that takes into account certain
solvation-related effects (eq 2). In this approach, the geometry
optimizations are carried out at the QM andMM levels separately
(see below) in continuum solvents (COSMOand PB, respectively)
and are followed by single-point calculations including solvation
energies (EQM//QM,COSMO and E�χ

MM//MM,PB, respectively).
Note that similar techniques have been used before. For instance,
independent relaxation of the QM and MM structures is used
in CHARMM (see, e.g., ref 69 and references therein). Solvation
by the IEFPCM model (QM calculation only) was used, e.g., in
ref 70.

Edih, χ
solv ¼ EQM==QM,COSMO � E-χ

MM==MM, PB ð2Þ
With this approach, only the difference between the COSMO
and the PB solvation energies enters the resulting torsion param-
eters (not the total solvation energy). In this way double counting
of solvation energy is prevented, while some desirable terms
(such as solute polarization) are included. The force field can
subsequently be used in simulationswith explicit solventmolecules.
Our approach can also be justified by the observed improve-
ments in the performance of the force field. Note that for con-
sistency we use full solvent treatment in all our calculations, i.e.,
for both MM and QM and for both optimizations and single-
point energy evaluations. In the PB calculations (single point) only
the electrostatic component is considered, in accordance with the
COSMO calculations.
Derivation of χ Parameters. In the Cornell et al. force field,

the force-field energy (without the PB solvation energy) is a sum
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of the bond stretching (Ebond), angle bending (Eangle), dihedral
(Edih), nonbonded electrostatic (Eelst), and nonbonded van der
Waals (EvdW) terms (eq 3).

E ¼ Ebond þ Eangle þ Edih þ Eelst þ EvdW ð3Þ
The dihedral term is described as a cosine series (eq 4), where n is
the periodicity of the torsion, Vn is the rotational barrier, ϕ is the
torsion angle, and γ is the phase angle.

Edih ¼ ∑
torsions

∑
n

Vn

2
½1 þ cosðnϕ� γÞ� ð4Þ

The QM-MM difference obtained in eq 2 is approximated
(fitted) by eq 4 (Vn and γ are varied). Upon torsion rotation
all force-field components (eq 3) contribute to torsion potential
energy, not only the dihedral term (eq 4). To differentiate between
the total energy of the torsion and the dihedral contribution to
the torsion energy we call the former the “χ torsion profile” and
the latter the “χ dihedral term” hereafter. To better understand
the various contributions to the χ parameters two parametrizations
were derived and tested.
(1) χOL-DFT: The first parametrization, χOL-DFT, was fully

based on the DFT-DQMprofile. Only the deoxyribonucleosides
(dA, dT, dC, and dG) in aC20-endo conformationwere considered.
After DFT optimization (PBE/LP in continuum solvent) the
single-point calculations were performed at the DFT-D level
(PBE-D-1.06-23/LP). Solvent effects were introduced according
to eq 2. In the fitting procedure, double weight factors were
assigned to the five points around the important χ values of 200�
and 260� to improve the fit in the anti and high-anti regions. The
total χ dihedral term was distributed among three of the six
torsions contributing to χ (C2�N1�C10�X in pyrimidines and
C4�N9�C10�X in purines). Since χ dihedral parameters
derived for dA and dG were quite similar, only one set of param-
eters was fitted (i.e., both dG and dA curves were used in a single
fitting). This parametrization is presented only for comparison
and is not intended to be used for NA simulations. However,
although the χOL-DFT parameter set is not recommended for
simulations, we provide the respective parameters in the Supporting
Information. The abbreviation “OL” in the force-field name
stands for the city of Olomouc (see affiliations).

(2) χOL: In the second parametrization, χOL, the MP2/CBS
data were taken as a reference. The MP2/CBS method was used
instead of CBS(T) because both methods provide very similar
profiles (see below) but MP2/CBS is much less computationally
demanding. Both the deoxyribonucleosides (C20-endo) and ribo-
nucleosides (C30-endo) were considered. For the deoxyribonu-
cleosides single-point calculations were also carried out at the
DFT-D (PBE-D-1.06-23/LP) level. The difference between the
MP2/CBS and PBE-D-1.06-23/LP calculations for deoxyribo-
nucleotides was then added to the PBE-D-1.06-23/LP results
for ribonucleosides to save computer time (assuming that the
MP2/CBS correction is similar for ribonucleosides and deoxy-
ribonucleosides). Then, continuum solvent termswere introduced
according to eq 2 using the PBE-D-1.06-23/LP method. The final
QM values were then obtained as combinations of the COSMO
PBE-D-1.06-23/LP data adjusted by the above-mentionedMP2/
CBS correction. The reference curve for the fit was obtained by
combining the data for the ribo- and deoxyribonucleosides. For
the region between 210� and 330�, we took the reference curve
for the deoxyribonucleosides (C20-endo) while the ribonucleoside
(C30-endo) curve was used for the remaining χ range. Double

weights were assigned to χ values of 180�, 190�, 200�, 210�, and
220� and 240�, 250�, 260�, 270�, and 280� to improve the accuracy
of the fit in the important anti and high-anti regions, respectively.
The parameters obtained in this manner (our final parameters)
are listed in Table 1.
MD Simulations of RNA and DNA Duplexes. Initial struc-

tures of RNA and DNA duplexes were taken from X-ray data.
The ions and water molecules were removed from the original
PDB files. The 1RNA tetradecamer duplex r(U(AU)6A)

71 and
1BNA dodecamer duplex d(CGCGAATTCGCG)72 were taken
without any further modifications. In the brominated tridecamer
r(GCGUU-5BUGAAACGC) (PDB ID 2R20)73 the brominated
uracil was replaced with uracil, and this structure is hereafter
denoted 2R200. The decamer r(GCACCGUUGG) was excised
from the 1QC074 structure and is hereafter denoted 1QC00. In
all simulations the total charge was neutralized by Na+ ions.75

A TIP3P76 water box was used to solvate the nucleic acidmolecules
(equilibrium box sizes 59 � 68 � 65 Å with 8428 water mole-
cules for 1RNA, 51 � 55 � 68 Å with 6145 water molecules for
1BNA, 65� 60� 60 Åwith 7502 water molecules for 2R200, and
54 � 51 � 58 Å with 5121 water molecules for 1QC00). Sim-
ulations were carried out with the pmemd code from the AMBER
9 program suite66 under NPT conditions with default tempera-
ture and pressure settings (tautp = 1.0 ps and taup = 1.0 ps), a 2 fs
time step, a 9 Å nonbonded cutoff, and SHAKE on bonds to
hydrogen atoms with default tolerance (0.00001). Nonbonded
pairlist was updated every 25 steps. PME was used with default
grid settings and default tolerance (dsum_tol = 0.00001). Default
scaling factors were used to scale nonbonded and Coulomb inter-
actions (scnb = 2.0 and scee = 1.2, respectively).
Averages of several structural parameters were taken from the

last 20 ns of 100 ns simulations, and snapshots were stored every
1 ps. In the case of B-DNA simulation we ran only 50 ns simula-
tions (the last 20 nswere taken for analysis), because thiswas enough
to demonstrate the large deviations for the χOL parametrization.

Table 1. Dihedral Parameters for χOL Parameterizationa

χOL parameter

nucleoside torsion (atom types) n Vn/2 ϕ

A O40�C10�N9�C8 1 0.9656 68.79

(OS-CT-N*-C2) 2 1.0740 15.64

3 0.4575 171.58

4 0.3092 19.09

G O40�C10�N9�C8 1 0.7051 74.76

(OS-CT-N*-CK) 2 1.0655 6.23

3 0.4427 168.65

4 0.2560 3.97

C O40�C10�N1�C6 1 1.2251 146.99

(OS-CT-N*-C1) 2 1.6346 16.48

3 0.9375 185.88

4 0.3103 32.16

U(T) O40�C10�N1�C6 1 1.0251 149.88

(OS-CT-N*-CM) 2 1.7488 16.76

3 0.5815 179.35

4 0.3515 16.00
aC1 and C2 are new atom types for C introduced to distinguish A from
G and C from U (T). The parameters can be downloaded from http://
fch.upol.cz/en/rna_chi_ol/.
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Two terminal base pairs at both ends of the modeled structures
were omitted from the analyses. All analyses were performed
using X3DNA code.77 For the 2R200 structure, the base pair
parameters of the noncanonical GG pair and base pair step
parameters of the steps including this noncanonical pair were
filtered off in order to focus solely on the canonical base pair
geometries (and thus avoid averaging of bimodal distributions).
Mass-weighted rmsd values were calculated with respect to the
initial structure (all atoms), again omitting the two terminal base
pairs at both ends.
Further force-field assessments included very extensive simu-

lations of numerous other RNA species, including UUCG and
GNRA RNA tetraloops (up to 1 μs trajectories), short A-RNA
duplexes, and reverse kink-turns (see below). Simulations of
sarcin-ricin domains of 23S rRNA, ribozymes, riboswitch, kink-
turns, C-loops, and other selected molecules are in progress. A
detailed report of the RNA tetraloop calculations has already
been published.46

’RESULTS AND DISCUSSION

Choice of theMethod for GeometryOptimization. In order
to derive reliable data for force-field parametrization, it is first
necessary to determine the level of computations required. Several
levels of theory for geometry optimization were tested for the dC
nucleoside with the C20-endo pucker. The dC nucleoside has the
largest steric clashes of all nucleosides (the highest rotational
barrier) and thus should theoretically be the most sensitive probe
regarding the level of theory.
We used DFT-based methods for geometry optimizations,

due to their advantageous balance between quality and speed.
The utility of HF and MP2 methods for deriving geometries has
not been specifically tested for the following reasons. The HF
method is highly unreliable due to the lack of electron correlation,
and the MP2 method is known to exhibit very large intramole-
cular basis set superposition errors (BSSEs) when manageable
basis sets are used.78�80 The following DFT functional/basis set
combinations were tested: BLYP/TZVP, B3LYP/TZVP, PBE/
TZVP, PBE/TZVPP, and PBE/LP. All optimizations were carried
out in COSMO implicit solvent64 (water, ε = 78.4). We assumed
that the last combination, the PBE functional with the largest LP
basis set, would be the most reliable because it is known to
provide the best results for polar molecular complexes62 (note
that the potential energy surface is shaped mainly by the polar
contacts in dC). The other optimization methods were judged
according to rmsd values of 36 optimized geometries (χ profiles)
with respect to the PBE/LP geometries. The BLYP/TZVP and
PBE/TZVP combinations yielded the largest rmsd values (1.26
and 0.91 Å, respectively, all atoms) relative to the PBE/LP
geometries, and the RSMD between the geometries they gener-
ated was also large (1.48 Å). The B3LYP/TZVP gave a better
rmsd of 0.76 Å. These results are consistent with the results
found for molecular complexes.62 To test whether a smaller basis
set could be used, PBE results were also calculated using the
TZVP and TZVPP basis sets. While the results for TZVPP were
very close to the PBE/LP results (total rmsd 0.48 Å), the PBE/
TZVP optimization exhibited rather large structural deforma-
tions for several geometries (rmsd 0.76 Å).
Considering these results we decided to use the largest LP

basis set (6-311++G(3df,3pd)) together with the PBE density
functional in all optimizations carried out in this study to ensure
quality of the results. The LP basis set is already fairly efficient at

eliminating intramolecular BSSE, while the large BSSE of smaller
basis sets could compromise the results. Hence, we strongly
recommend use of large basis sets for geometry derivation in
force-field parametrization. Although the lower level methods,
such as the popular HF/6-31G* method (used for example by
Yildirim et al.45 to derive their χ parametrization), may sometimes
provide acceptable results based on fortuitous error cancellation,
in general they are likely to introduce bias. The HF/6-31G*
method for geometry derivation was justified in the mid-1990s,
when better methods were not feasible, but it does not reflect
contemporary standards in the field.
Brief comment is needed regarding the use of the empirical

dispersion correction for the DFT optimizations. We did not use
the dispersion correction for the DFT optimizations carried out
in solvent to avoid an imbalanced description of the solute�
solute and solute�solvent interactions. However, it is possible
that when larger and more compact molecules are modeled the
intramolecular dispersion correction of DFT might become
necessary. Note, however, that it is still necessary to include dis-
persion correction in the single-point QM calculations in eq 2.
Choice of Method for Single-Point Calculations. As men-

tioned in the Introduction, even very small changes in the torsion
potential can cause substantial discrepancies in MD simulations.
Therefore, it is important to determine the sensitivity of the torsion
profile to the level of theory. The best available reference method
for systems containing tens of atoms is the CCSD(T)/CBS
(coupled clusters singles and doubles with perturbative treatment
of triple excitations/complete basis set limit) method.51 How-
ever, since CCSD(T)/CBS calculation is not tractable, we used
the MP2/CBS level with CCSD(T)/cc-pVDZ correction, here
denotedCBS(T). Figure 2 compares profiles obtainedwith several
frequently used methods with the CBS(T) reference profile for
nucleosides.
Although the torsion profiles presented in Figure 2 may seem

fairly similar at first sight, differences from the reference CBS(T)
curve are often greater than 1 kcal/mol, especially those obtained
using less computationally demanding methods. For instance,
the MP2/6-31G* method predicts the modeled structure to be
significantly less stable (by about 0.6 kcal/mol) than does the
reference CBS(T) method at the key energy minimum in the
high-anti region (χ = 250�). Furthermore, MP2/6-31G* yields
an incorrect balance of the anti and high-anti regions (torsion
angles 210� and 250�) and somewhat overestimates the height of
the lower barrier. Given the requirements for the χ profile
discussed in this paper, we conclude that use of MP2 with a small
basis set would not yield sufficiently accurate data for parameter
development.
The data shown in Figure 2 also suggest that the DFT

description of the χ profile is quite inaccurate. Although the
profile generated using the PBE-D-1.06-23 method with a large
LP basis set is somewhat closer to the reference curve than the
MP2/6-31G* profile around the anti minimum, it still exhibits
sizable errors around the energy barriers. As we show below, such
deviations in the χ potential lead to substantial deviations of
certain structural parameters in MD simulations of RNA du-
plexes (compare the results for χOL-DFT and χOL below). Similar
conclusions can also be drawn regarding the M06 and M06-2X
DFT functionals recently presented by Zhao and Truhlar,81 both
of which are overly repulsive in the high-anti region, overestimate
the lower transition barrier, and provide inaccurate balances
between the syn and the anti minima (note, the LP basis set used
here is similar to the basis set used for the M06 functional
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development). Given the accuracy required for the χ dihedral
parameters, none of the applied DFT-based methods can be
recommended for their derivation. This is an important metho-
dological finding of our study, which is corroborated by our
recent benchmark study of another model of nucleic acid back-
bone, in which a broader set of DFT methods was tested.52

In contrast, the MP2/CBS level provides results that are very
close to those obtained using the reference CBS(T) method, with
differences of merely ca. 0.1 kcal/mol around the minima. We
hypothesize that theMP2/CBSmethod is sufficiently accurate to
serve as a reference level of theory, and our final parameters (χOL,
presented below) are based on MP2/CBS data because they are
significantly less computationally demanding to handle than
CBS(T) reference data. We do not recommend using any level
of theory lower than MP2/CBS for torsion profile derivation.
Dependence of the χ Profile and Dihedral Term on Sugar

Conformation and Type.To assess the effect of sugar pucker on
the derived dihedral parameters we calculated the χ torsion
profiles for two different puckers of the A, T, C, and G deoxy-
ribonucleoside models (C20-endo and C30-endo) and for the
C30-endo pucker of the A, U, C, and G ribonucleoside models.
Figure 3 displays results of the PBE-D-1.06-23/LP calculations
both in vacuo (left panel) and in COSMO continuum solvent
(middle panel) for cytosine. The χ dihedral term contributions

(i.e., theQMprofileminus theMMprofile without the respective
χ terms) derived from the continuum solvent data are shown on
the right. The results for the other nucleosides are similar and can
be found in the Supporting Information (Figure S3).
To differentiate between the total potential energy of the

torsion (as in eq 3, including PB solvation energy for calculations
in solvent) and the dihedral contribution to the total torsion
energy (Edih only, eq 4) we call the former the “χ torsion profile”
and the latter the “χ dihedral term” hereafter.
The results presented in Figure 3 suggest that in vacuum the

χ torsion profile is quite strongly modulated by the sugar con-
formation and the presence of the 20-OH group. Comparing the
deoxy C20-endo and ribo C30-endo compounds, the maximum
difference is almost 3 kcal/mol, and around the anti minimum
the differences are as large as 2 kcal/mol.
When a COSMO continuum treatment of the solvation

energy is included, the χ profiles differ from those obtained in
vacuum. The higher energy barrier is lowered, the lower barrier
increases, and both the syn/anti equilibrium and the shape of the
profile in the anti minimum region are also affected. Profiles
obtained at the force-field level with PB continuum solvent show
very similar patterns in these respects (see Supporting Informa-
tion, Figure S3). Clearly, the in vacuo and in-solvent profiles of
the torsion potentials differ markedly. Consequently, comparing,
for instance, the relative stability of twominima in vacuum and in
solvent can lead to quite different conclusions. We hypothesize
that in-solvent profiles are more likely to be representative of
NAs in solution than corresponding profiles obtained in vacuo
because the continuum mimics the screening of the electrostatic
component that occurs with hydrated nucleoside structures in
solution. If so, in-solvent profiles rather than in vacuo profiles
should be considered (although the latter are commonly used) in
attempts to link torsion curves to the outcomes of in-solvent MD
simulations.
Interestingly, when solvation is included, the profiles show less

dependence on the pucker or presence of the 20-OH and overall
become strikingly more similar. The maximum difference be-
tween the deoxy C20-endo and the ribo C30-endo compounds
drops to less than 1.5 kcal/mol, and around minima the differ-
ences are smaller than 1 kcal/mol. These differences are mainly
due to variation of the van der Waals (vdW) and electrostatic
interactions of the sugar and base atoms as the χ torsion rotates.
For different sugar puckers the interacting parts of the sugar and
base moieties approach each other at different distances, thus
providing different energy profiles. However, the major compo-
nents of this variation cancel out when the MM single-point
energies (with χ dihedral terms set to zero) are subtracted from
the QM energies; see the χ dihedral terms derived from these
data (Figure 3, right).
The derived χ dihedral terms (Figure 3, right) display a

maximum difference between the curves corresponding to the
different puckers/20-hydroxylation of about 2 kcal/mol. If we
consider only the two most relevant dC C20-endo and rC C30-
endo conformations, the maximum difference drops to about
1 kcal/mol and around the minima it is even smaller. When
average parameters are used as a compromise, the corresponding
errors drop to about one-half of the averaged differences between
the curves (if two conformations are considered, as in the case
of χOL). This gives an estimate of the errors intrinsic to our
parametrization. These errors cannot be eliminated if a universal
set of torsion parameters is required for DNA and RNA. Note,
however, that there is still the possibility of reducing the errors by

Figure 2. Torsion profiles for guanine nucleoside (dG) calculated at
various levels of theory in vacuo. The reference method is CBS(T).
(Top) Profiles obtained with the wave functionmethods: CBS(T) (black),
HF/6-31G* (green),MP2/6-31G* (blue), andMP2/CBS (red). (Bottom)
Profiles obtained with the DFT methods: DFT-D (PBE/6-311++G-
(3df,3pd)/1.06-23) (orange), M06 (red), M06-2X (blue), and the
reference CBS(T) profile (black). Energies are offset to the anti min-
imum structure.
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simultaneously adjusting another (coupled) component of the
force field, for instance, the torsions determining the sugar
pucker, but this was not attempted in the work presented here.
Effects of Geometry Relaxation. The effects of geometry

relaxation on the resulting torsion parameters are rarely discussed.
Usually, the following procedure is used to obtain new param-
eters. First, a model molecule with constrained dihedral angle is
relaxed at theQM level and theQMenergy,EQM//QM, is obtained.
Then single-point MM energy is calculated, based on the QM
geometry with the parametrized torsion set to zero, E�χ

MM//QM,
and the torsion parameters are determined according to eq 5.

Edih, χ ¼ EQM==QM � E-χ
MM==QM ð5Þ

However, more adequate parameters may be obtained when a
MM optimization is also carried out and the MM energy,
E�χ

MM//MM, is calculated based on the MM relaxed geometry
rather than the QM geometry. Then, the resulting parameters are
determined according to eq 6. This scheme is used, for instance,
in the CHARMM force field (see, e.g., ref 69 and references
therein), and a very similar scheme was applied by Ode et al.44

Edih, χ
relaxed ¼ EQM==QM � E�χ

MM==MM ð6Þ
The rationale underlying eq 6 is that the MM potential energy
surface (PES) derived in this manner is more similar to the QM
PES than when eq 5 is used, in terms of the relative energies of
key PES regions, such as minima and transition states. The relative
energies of minima and transition states are of primary interest in
empirical modeling; hence, they need to be as similar as possible
to reference QM values on the QM PES. The key to under-
standing which of the approaches (eq 5 or 6) is more adequate in
this sense is to realize that eq 6 corresponds to situations where
the system samples the MM geometries and acquires MM
energies, as in molecular dynamics, while eq 5 corresponds to
situations where the system samples the QM geometries but
acquires MM energies. The latter is clearly artificial, critically
dependent on the other intra- and intermolecularMM force-field
parameters, and may substantially bias parametrization of force
fields. Thus, the former approach (i.e., eq 6) is preferable.
Equation 5 can also be understood as an approximation to

eq 6, which can be reasonably justified in two cases: (i) when the
optimal QM and MM geometries are very similar, especially in
terms of distances between the 1�4, 1�5, etc. atoms or (ii) when
the remaining force-field contributions, namely, the Coulombic
and wdW terms, and the bond, angle, and other dihedral angle
terms do not contribute significantly to the torsion profile. Note

that the Coulomb and vdW terms codetermine the 1�4 distances.
This also holds for the bond, angle, and other dihedral terms that
may be deformed when the given torsion is rotated. Many of those
terms are quite inaccurate in the force fields (and likely param-
etrized for different geometries than theQM-optimized geometries).
Using eq 6 can partially correct for these inaccuracies by includ-
ing them in the parametrized torsion.
To illustrate the differences between relaxed and nonrelaxed

conditions we show torsion profiles calculated using the QM
method based on QM-optimized geometries (EQM//QM,COSMO,
full line) and compare them with the MM�χ profiles based on
QM-optimized geometries (E�χ

MM//QM,PB, dashed line) andMM-
optimized geometries (E�χ

MM//MM,PB, dotted line) for dC in
Figure 4 (top). The derived χ parameters correspond to the
differences between the dashed and full lines (eq 5) and dotted
and full lines (eq 6) and are also shown in Figure 4 (bottom).
Clearly, the resulting dihedral terms differ markedly. For exam-
ple, consider the torsion barrier (around 360�) between the high-
anti and syn regions. When dihedral parameters are derived from
eq 5 (illustrated by the difference between the full and dotted
lines), they will be positive for the transition region but much
smaller (by about 2.5 kcal/mol) compared to those derived from
eq 6 (illustrated by the difference between the full and dashed
lines). In a MD simulation the molecule will follow the MM PES
on its way from the high-anti region to the syn region. If we added
the underestimated dihedral penalty obtained from eq 5 to the
MM energy, the total barrier would be underestimated as well.
Similar errors appear in other parts of the PES and influence the
relative stability of the anti and syn forms, the low-anti to syn
transition barrier, and the shape of the resultingMMpotential curve.
It is important to note that the magnitude of the errors

associated with using the QM geometries for the MM single-
point calculations is not marginal; the differences in this case
reach almost 3 kcal/mol, comparable to the amplitude of the
dihedral torsion itself. Deviations are significant for both the
barrier heights (∼2.5 and 0.7 kcal/mol for the lower and upper
barriers, respectively) and the region around χ ≈ 70� character-
istic of the Z-form of DNA and many nucleotides in folded RNA
structures (∼1 kcal/mol). Interestingly, in the context of this
study, there are also differences in the shape of the curves in the
anti region, which might contribute to the relative stability of
the A and B forms of nucleic acids (see also the ΔEanti/high-anti,dih
criterion described below).
Regarding the origin of the observed differences, we can

hypothesize that they are mainly due to the short-ranged vdW
contacts that occur upon dihedral rotation. For instance, in the

Figure 3. Torsion profiles for cytosine calculated in vacuo (left), with COSMO continuum solvent (middle), and the χ dihedral term’s contribution to
the torsion derived from the continuum solvent data (right) of the cytosine 2-deoxyribonucleoside with C20-endo and C30-endo sugar puckers and the
ribonucleoside with C30-endo sugar pucker (full, dotted, and dashed lines, respectively).
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cytosine nucleoside the O40 andO2 oxygen atoms approach each
other closely (this contact corresponds to the higher torsion
barrier, χ = 0�) and upon rotation the O2 and H20 atoms also
approach each other (the lower barrier, χ = 120�). The optimal
QM distances for these interactions differ from the optimal MM
distances. For instance, in dC the distances between the O40 and
O2 atoms for χ = 0� are 2.72 Å in QM and 2.66 Å in MM and
those between the O2 and H20 atoms for χ = 120� are 2.31 Å in
QM and 2.44 Å in MM. Since the vdW and Coulomb energies
depend strongly on distance, especially at short separations,82 the
associated errors may be significant. Other geometry differences
between theQM andMM structures are probably less important.
In MM structures the pseudorotation angle P (for definition see
below, section MD Simulations of A-RNA Duplexes) is system-
atically underestimated by about 5� compared to QM, and this
underestimation somewhat increases for χ = 0�, 90�, and 180�
(note that only the O40�C40�C30�C20 angle was constrained,
therefore the ribose was partly flexible). The next difference is the
slightly different value of pyramidalization on the N1 atom in
QMandMM(around the anti minimum they differ by less than 3�).
In other parameters the MM and QM structures are very similar.
For the above reasons we recommend using relaxed MM

geometries for calculating MM single-point energies in attempts
to derive torsion parameters that perform well in MD simulations.

However, it is possible that relaxation of theMM geometries may
lead to a significantly different structure than QM relaxation (due
to differences between the MM and the QM PES). If so, using
suitable constraints to keep the MM geometry close to expecta-
tions would probably cause a smaller error than using eq 5.
Finally, we compare the fully relaxed structures of rA, rG, rC,

and rU obtained with the ff99bsc0 and ff99bsc0 χOL force fields
with the QM reference geometries (PBE with LP basis set). All
optimizations are carried out in solvent (COSMO in QM and
PB in MM) without any constraints. The OH group on C20 is
oriented such that it forms a hydrogen bond with the OH group
on C30 atom in order to prevent formation of hydrogen bonds
with the NA bases. The optimal χ values are 201� (QM), 217�
(ff99bsc0), and 194� (ff99bsc0χOL) for rC and 201� (QM), 204�
(ff99bsc0), and 196� (ff99bsc0χOL) for rU. These values are quite
similar, and the small differences between the QM reference and
the ff99bsc0χOL force field can be attributed to geometry
constraints used in parameter derivation and to inaccuracies of
the fit. For purines the optimal χ values are 200� (QM), 266�
(ff99bsc0), and 189� (ff99bsc0χOL) for rG and 198� (QM), 261�
(ff99bsc0), and 183� (ff99bsc0χOL) for rA. Here, the ff99bsc0χOL
values are again quite similar to the QM reference; however, the
ff99bsc0 values are significantly higher, closer to the high-anti
region. The relatively large shift in the minimum position of rG
and rA is in line with the observed propensity to formation of the
ladder-like structures in the ff99bsc0 force field.
Comparing χ Parameters. Before comparing effects of

various parametrizations on the behavior of modeled systems
in the anti region we discuss relevant experimental data. In crystal
structures,83 RNA is typically found in the A form with the χ
population peaking at around 200� (anti). For DNA the B form is
prevalent with χ≈ 250� (high-anti), but in DNA χ can also adopt
values characteristic of the A and Z forms. In the Z form χ is in the
syn region (χ≈ 60�) for dG and the high-anti region (χ≈ 250�)
for dC. Typical values of χ are indicated and compared with the
χ torsion profiles of dG and rG nucleosides, calculated at the PBE/
LP level (including COSMO continuum solvation energy to
improve comparability with nucleic acids in real environments),
in Figure 5.
The data displayed in Figure 5 show that in the anti region the

energy minimum of the dG potential is shifted more toward the
high-anti (χ≈ 250�) while the rG minimum is closer to the anti
configuration (χ≈ 200�). The same trend is also found for other

Figure 5. χ torsion profiles for dG (full line) and rG (dashed line),
indicating typical average X-ray values for A-RNA, B-DNA, and Z-DNA.
PBE/LP data including solvent effects.

Figure 4. (Top) Torsion profiles for dC calculated as QM energy based
onQM-optimized geometry (EQM//QM,COSMO, full line), MM�χ energy
based on MM-optimized geometry (E�χ

MM//MM,PB, dashed line), and
MM�χ energy based on QM-optimized geometry (E�χ

MM//QM,PB,
dotted line). (Bottom) χ dihedral terms Edih,χ

solv derived from EQM//

QM,COSMO� E�χ
MM//MM,PB (QM//QM-MM//MM, dashed line) and

EQM//QM,COSMO � E�χ
MM//QM,PB (QM//QM-MM//QM, dotted

line) normalized to χ = 250�. The ff99bsc0 force field was used in all
cases, and energies are in kcal/mol.
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nucleosides (see Figure S1 in the Supporting Information).
Therefore, it seems that the shape of the χ potential profile
drives the ribo- and deoxyribonucleosides toward their typical
A and B forms (anti and high-anti configurations, respectively).
Note, however, that in the X-ray structures of B-DNA (for instance)
the χ distribution is relatively broad and very high values of χmay
also appear, much higher than those corresponding to the energy
minima in Figure 5. This indicates that either our theoretical
potentials are still inaccurate, or the environment (surrounding
bases and the sugar�phosphate backbone) contribute strain to the
χ torsion and significantly influence the actual values of χ.

Here it is worth noting that the MM-derived χ profiles exhibit
the same systematic anti/high-anti propensities for dN/rN com-
pounds as theQMprofiles (compare Figure 6 below and Figure S2
in Supporting Information), although the same χ dihedral param-
eters were used for both dN and rN nucleosides. Therefore, the
A/B propensities of ribo/deoxyribo compoundsmust come partially
from the nonbonded interactions or dihedral contributions
associated with the 20-OH group of ribose and not from the χ
parametrization.
In the following text we compare the available χ parametriza-

tions and discuss their influence on the main features of χ torsion

Figure 6. Torsion profiles for the χ angle (on the left, ff99-optimized geometries) and the χ dihedral terms (on the right) of ff99 (black), Ode et al.
(blue), Yildirim et al. (green), and parameters derived herein (χOL-DFT orange, χOL red) for ribonucleosides. The dihedral term was offset to χ = 250�,
and idealized geometries were used to calculate the χ dihedral terms on the right to facilitate comparison with published data (see also text).
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profiles. Figure 6 compares χ torsion profiles (on the left) and the
corresponding dihedral terms (on the right) calculated using ff99
(black), Ode et al. (blue), and Yildirim et al. (green) parame-
trizations and parameters derived herein, i.e., χOL-DFT (orange)
and the final χOL parameters (red). All energies were calculated
using the same force-field-optimized geometry (ff99), and only
the profiles for ribonucleosides are shown (for dN profiles see
Supporting Information, Figure S2). In order to make the profiles
as comparable as possible to those of hydrated NA structures, PB
solvation energy (identical for all parametrizations) was included
in the calculations.
It should be noted that the differences between the χ torsion

profiles (on the left) do not fully correspond to the differences
between the derived dihedral terms (on the right). This is
because the latter were calculated using cosine formulas assum-
ing idealized geometries (i.e., C10 was assumed to be an ideal
tetrahedron, the O40�C10�N1�C6 dihedral was assumed to
be O40�C10�N1�C2 + 180�, etc.), whereas MM-optimized
geometries were used to generate the profiles on the left. The
MM-optimized geometries slightly differ from the idealized geo-
metries because all the nonconstrained dihedrals and angles
deform upon torsion rotation, for example, the C10 is not perfectly
tetrahedral. Consequently, differences in energy are found mainly
for the χ torsion parametrizations that involve terms including
C20 and H10 of ribose, such as χOL-DFT, χODE, and χYIL. This also
means that theΔEanti/high-anti,dih values (see below) that would be
obtained from the right part of Figure 6 differ somewhat from
those given in Table 2, because the latter were determined using
optimized geometries. The dihedral terms are presented for the ide-
alized geometries to facilitate their comparison with published data.
Anti Minimum and Relative Anti/High-Anti Stability.

Figure 6 shows that the profiles generated using the compared
parametrizations differ significantly in the anti minimum region.
While the minima of curves obtained using the parametrization
of Yildirim et al. are located strictly in the anti region, the param-
eters presented by Ode et al. shift the minimum to the high-anti
region. Minima of profiles generated using the ff99, χOL (and
χOL-DFT) parameters appear somewhere between those two
extremes but closer to the anti region. Further, the profiles differ
not only in the position of the minimum but also in its shape.
This is also very important because the distribution of the χ angle

in real NA structures is usually quite broad; thus, the steepness of
changes in the potential across a wide range of angles matters.
χ Contribution to Relative Anti/High-Anti Stability and

Ladder-Like Structures. The link between emergence of the
ladder-like structures in RNA simulations and the glycosidic
angle χ was first pointed out by Mlynsky et al.43 Since the
transition to the ladder-like structure is accompanied by a
significant shift of the χ angle from the anti region (χ ≈ 210�)
toward the high-anti region (χ ≈ 250�), the χ potential must
clearly affect the simulated behavior of RNA (the values of χ ≈
210� and 250� were chosen arbitrarily and provide stable results
for our purposes). In order to assess the contribution of χ to
formation of the ladder-like structures quantitatively, we need a
suitable measure. A convenient one could be the energy differ-
ence between anti (χ = 210�) and high-anti (χ = 250�) orienta-
tions,ΔEanti/high-anti = E(χ = 210�)� E(χ = 250�). However, this
would also incorporate electrostatic, vdW, and other contribu-
tions to high-anti propensity. An alternative measure is the χ
dihedral term’s contribution to the anti/high-anti equilibrium,
ΔEanti/high-anti,dih = Edih(χ=210�) � Edih(χ = 250�). This mea-
sure enables assessment of the available χ parametrizations—
ff94, ff98/99, χYIL, χODE, χOL-DFT, and χOL—with regard to their
propensity to lead to high-anti conformation (Table 2).
Table 2 shows ΔEanti/high-anti,dih values for all nucleosides and

all parametrizations shown in Figure 6 plus the ff94 parametriza-
tion. All values in Table 2 are positive, which means that all
dihedral terms considered destabilize the anti (χ≈ 210�) region
typical for RNA.However, they do so to varying extents.We suggest
that decreasing the stability of the anti region will increase the
likelihood of formation of high-anti ladder-like structures in MD
simulations. Thus, the propensity of the parametrizations to lead
to formation of ladder-like structures should increase in the
following order: χYIL < χOL-DFT ≈ χOL < ff99 < χODE. If so, the
bottom three parametrizations in Table 2 (χYIL, χOL-DFT, and
χOL) have the potential to eliminate (or at least reduce) forma-
tion of ladder-like structures in RNA simulations because they
destabilize the anti orientation less than ff98/99. In contrast, the
parametrization of Ode et al. should promote laddering behavior
more than ff99.
Extensive testing of different force fields has confirmed this

expectation.46,84 The ff99 and χODE parametrizations lead to
predictions of the ladder-like structure as the global minimum of
the A-RNA stem, the latter actually accelerating its formation in
simulations, while the χYIL, χOL-DFT, and χOL parametrizations
appear to eliminate ladder formation.46 However, the χYIL param-
etrization seems to do so excessively, which introduces other
irregularities into the simulations (see below). Note that the
particularly large anti/high-anti value for χYIL stems from sig-
nificant destabilization of the high-anti region connected with the
rapid onset of the high-anti penalty manifested in the “bumps” in
the profiles in Figure 6 (left). In part this could be attributed to
use of the insufficiently large 6-31G* basis set of atomic orbitals in
the MP2 calculations, which contributes to destabilization in the
high-anti region (e.g., by about 0.6 kcal/mol in the case of guanine,
see Figure 2).
It should be noted that solvation-related effects also contribute

to the relative anti/high-anti stability. To assess the magnitude of
this contribution we derived another set of parameters in the
sameway as for χOL except that solvation was not included (using
eq 1 instead of eq 2). Comparison of these vacuum-derived
parameters (denoted χvac in Table 2) with χOL shows that includ-
ing the solvation effects destabilizes the high-anti region by about

Table 2. χ Contribution to Anti/High-Anti Relative Stability,
ΔEanti/high-anti,dih = Edih(χ = 210�) � Edih(χ = 250�), for
Several χ Parameterizationsa

ΔEanti/high-anti,dih [kcal/mol]

parameterization A G C U(T) average

ff94 1.9 1.9 1.9 1.9 1.9

ff98/99 1.3 1.3 1.3 1.3 1.3

χODE 2.0 2.0 1.8 1.8 1.9

χYIL 0.8 0.5 0.0 0.5 0.5

χvac
b 1.8 1.7 1.1 1.9 1.6

χOL-DFT 0.5 0.5 0.8 1.2 0.8

χOL 0.9 0.8 0.4 0.9 0.8
aThe more positive the anti/high-anti value, the stronger the stabiliza-
tion of the high-anti conformation. Results with and without bsc0 correc-
tion are identical. bThe χ dihedral termwas derived in the same way as in
χOL-DFT, but based on gas phase QM data; see text.
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0.8 kcal/mol on average, thus increasing preference for the anti
conformation typical for A-RNA. Thus, neglecting the solvation
effects may introduce substantial bias in the χ potential. Note that
the lack of solvent-induced stabilization is also apparent when the
χODE parameters (which were also derived in vacuo) are used.
Interestingly, the same effect is not found in the χYIL modification,
probably as a result of the error compensation (χYIL parameters
represent a compromise between four structureswith rather different
torsion profiles; therefore, substantial uncertainties connected
with the fitting procedure are to be expected).
Note that the ΔEanti/high-anti,dih values presented in Table 2

were derived using the relaxed geometries with fixed χ angle
value, while plots in the right part of Figure 6 were derived using
idealized geometries (assuming a perfect tetrahedron on C10 and
planarity of the bases). Therefore, the results shown in Figure 6
may not fully correspond with the values in Table 2.
At this point, one might question the assumption that such

small differences (on the order of tenths of a kcal/mol) between
the parameters could be responsible for major structural distortions.
However, such energy contributions may have strong cumulative
effects since they reflect interactions that are present at numerous
sites in regular DNA and RNA structures.85 Furthermore, the di-
hedral terms are “hard wired” in the force fields and are not
diminished by competing interactions with water, unlike Cou-
lomb and vdW interactions. Therefore, even small errors can
have profound consequences. The strong effects of small changes
to torsional potentials have also been considered and addressed
in parametrizations of the ϕ/ψ parameters of proteins, for
example, in both the AMBER ff99SB86 modifications of ff99
and the CMAP corrections to the CHARMM all22 force field.87

It is also worth noting that the position of the energy minimum
and the anti/high-anti criterion are not sufficient to fully char-
acterize the anti minimum; the detailed shape and derivatives of
the χ profile around the anti and high-anti regions are also
probably very important for correctly describing nucleic acid
structure, as also pointed out by Bosh et al.41

To conclude, the χOL parameters provide greater stabilization
of the anti region than the ff99 force-field parameters. This is
desirable as it helps to avoid the known tendency for ladder-like
structures to form in RNA simulations. χYIL stabilizes the anti
region even more than χOL-DFT and χOL. The χYIL parameters
also stabilize the anti region, even more than χOL-DFT and χOL
parameters, but probably excessively. Our tests (see also ref 46)
suggest that the χOL parameters perform best for RNA structures.
Syn Region. The local minimum in the syn region, around

χ≈ 70�, is mainly associated with guanosine residues in Z-DNA
but also occurs in the stems of antiparallel DNA quadruplexes. It
is also often populated in RNA structures, UNCG hairpin tetra-
loops, for example,46 and various other recurrent RNA motifs.
Figure 6 clearly shows that use of the available torsion parameters
leads to quite significant differences in the syn region and that these
differences are not always systematic among different nucleosides.
Let us first consider the position of the syn minima. Our best
references are the QM/COSMO curves shown in Figure S1 in
the Supporting Information. Compared to the QM reference,
ff99 shifts the minimum to low angles, around 50�, while the
other force fields mostly tend to shift it to higher angles, around
70�75�, that are more consistent with the QM data. As we have
shown in reference simulations of the UUCG RNA tetraloop,46

the imbalanced ff99 syn region destabilizes the tetraloop struc-
ture while the reparameterized χ torsions are apparently able
to maintain the stable structure of the tetraloop over at least

the ∼100+ ns time scale, with the χ force-field modifications in
combination with the parmbsc0 R/γ correction providing the
best performance in this respect. In fact, the advantages of the
parmbsc0 modifications over ff99 for RNA simulations can only
be fully appreciated after tuning the χ profile.
Regarding the energy of the syn minimum relative to that of

the anti minimum, the χYIL and χOL parametrizations provide
similar results, both of which agree fairly well with our QM data.
The χYIL parametrization has been tested against syn/anti
populations of C and U ribonucleosides as detected in NMR
experiments and shows notable improvement compared to ff99,
which tends to overstabilize syn conformation for C and U.45

Because χOL parametrization is similar to χYIL in this respect, we
can expect the same improvement for χOL as well. Note that our
preliminary χOL-DFT version also exhibits certain tendency to
overstabilize syn, mainly because ribonucleosides were not
included in the χOL-DFT fitting.
Torsion Barriers. Figure 6 shows that various χ parametriza-

tions differ considerably in the resulting torsion barrier heights,
most obviously ff99 gives a reversed order of torsion barrier
heights, relative to those in the QM profile. Since our best esti-
mates for the torsion barrier heights are the latter, we suggest that
ff99 gives qualitatively incorrect descriptions of the torsion energetics.
The other parametrizations appear to be more accurate, but the
spread of the torsion barriers is still quite wide. Compared to the
QM data, χYIL and χOL seem to provide the best agreement.
MD Simulations of A-RNA Duplexes. Several A-RNA MD

simulations were carried out to compare the available χ para-
metrizations: ff99, ff99χYIL, ff99χOL-DFT, ff99χOL, and the corre-
sponding χ combinations with bsc0. The χODE parametrization
was not included in this comparison as it accelerates formation of
“ladder-like” structures and is thus not applicable to A-RNA.46

The main conclusions are best illustrated by the bsc0-corrected
simulations, since the bsc0R/γ correction reduces the number of
R/γ “γ-trans” flips and thus keeps the structures closer to X-ray
reference structures.37 We have also shown recently that the
ff99bsc0 force field improves the behavior of RNA tetraloops
relative to ff99.46 Although the reduction ofR/γ flipping in A-RNA
simulations by bsc0 may be excessive, ff99 likely overpopulates
theR/γ flips.37 While the bsc0 modifications are currently essen-
tial for B-DNA simulations, their use is also starting to prevail
over ff99 in RNA simulations.
Wemonitored mainly average values of the χ angle, sugar pucker

(pseudorotation angle P according toAltona and Sundaralingam88),
size of the major and minor grooves, and several base pair and
interbase pair (base-pair step) parameters, considering them to
be most relevant to A-RNA helix description. Only parameters
that appeared to be sensitive to the χ angle are presented here,
and the A-RNA results are summarized in Table 3 and Tables S2
and S3 in the Supporting Information. Standard deviations are
shown to illustrate the distribution width.
Sensitivity of the A-RNA Structure to χ Potential. Table 3

and Tables S2 and S3 in the Supporting Information show that
several structural characteristics of the A-RNA duplexes have
substantial sensitivity to the shape of the χ torsion profile. Among
the most sensitive parameters for A-RNA are the inclination, roll,
major groove width, and propeller twist. Inclination and roll are
key descriptors of the A-RNA shape and mathematically
interrelated.89,90 The magnitude of the impact of varying the χ
parametrization on the structural parameters is rather unsettling;
in several cases even very small changes in the χ profile, on the
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order of a fraction of a kcal/mol, significantly influence the
simulated structure, as already noted in ref 41.
Basic Sampling of the A-RNA Conformational Space. One

of the most important parameters characterizing A-RNA struc-
ture is the inclination of base pairs with respect to the A-RNA
helix. In A-RNA the base pair planes are significantly inclined
(typically bymore than 10�) with respect to the helical axis, while
in B-DNA the base pair planes are almost perpendicular to the
helical axis and the inclination is close to zero. As we recently
noted, the experimental values of A-RNA inclination in X-ray
structures vary quitewidely and do not depend on the sequence.37,91

The average inclination value for the 1QC00 X-ray structure is
15.2�. The ff99 and ff99bsc0 simulations give fairly similar values
(18.0� and 16.3�, respectively). The χYIL parametrization, which
quite strongly stabilizes the anti region, reduces the inclination to
as low as 5.5� in combination with ff99 (the combination
suggested by Yildirim et al.45) and to 8.8� when ff99bsc0 is used.
This is a considerable deviation from the experimental reference.
The new χOL parametrization gives values of 8.0� with ff99 and
12.7� with ff99bsc0, which represents a noticeable but still
acceptable reduction of inclination, the ff99bsc0χOL combina-
tion being superior in this respect. Since the χOL-DFT param-
etrization consistently gives values that are quite similar to those
obtained using χOL, only the latter is discussed in the following
text. As noted above, the base pair parameter roll is mathema-
tically related to inclination; thus, the roll trend mirrors that of
inclination; the experimental value is 8.1�, while ff99bsc0, ff99,
ff99bsc0χOL, and ff99χYIL give values of 9.7�, 8.5�, 6.7�, and 4.6�,
respectively.
Another A-RNA parameter that is quite sensitive to χ para-

metrization is the major groove width. Major groove width varies

considerably in experimental X-ray structures (it ranges from 8 to
20 Å) and seems to depend not only on the sequence but also on
the crystallization conditions, as discussed in detail in refs 37 and
91. Even larger variations have been observed in published NMR
studies, but these are mainly due to inaccuracies in the NMR
structural refinement protocols; recent work has shown that
application of the highest quality NMR methods leads to very
good agreement between X-ray and NMR geometries of both
A-RNA92 and B-DNA.93 Despite the uncertainty in target values
for the major groove width it seems that it is usually overestimated
by simulations. There is a marked difference in this respect
between the ff99 and the ff99bsc0 force fields, primarily due to a
10�20% population of short-lived γ-trans substates with ff99,
which reduce inclination and widen themajor groove of A-RNA.37

For 1QC00 the X-ray determined major groove width is 14.7 Å,
while we obtained values of 15.9, 18.9, 17.9, and 22.1 Å in simula-
tions using ff99bsc0, ff99, ff99bsc0χOL, and ff99χYIL, respectively.
Clearly, the ff99χYIL value is not only significantly larger than in
the starting X-ray structure but also outside the experimentally
observed ranges, while the ff99bsc0χOL values are closer to the
reference.
The general trends are also well illustrated by the results

obtained for the AU-rich 1RNA structure (Table S3 in Support-
ing Information). For inclination, the experimental value is 18.8�,
while ff99bsc0, ff99, ff99bsc0χOL, and ff99χYIL give values of
25.8�, 21.4�, 19.4�, and 10.3�, respectively. In this case, the
ff99bsc0χOL value is closest to the experimental data. The
ff99χYIL inclination is again likely too low. The inclination trend
is mirrored by roll values: experimental value is 9.96�, while
ff99bsc0, ff99, ff99bsc0χOL, and ff99χYIL values are 14.1�, 12.1�,

Table 3. Average Structural Parameters (last 20 ns of 100 ns simulations) for the A-RNA Duplex 1QC00 (r(GCACCGUUGG))
Obtained Using the ff99bsc0 Force Field with Various χ Corrections (values with ff99 force field in italics)a

parameter X-ray no χ correction χYIL χOL-DFT χOL

χ/deg 197.1( 4.4 203.1( 9.2 196.0 197.4 199.1

209.4 ( 12.7 194.0 196.3 196.7

P/deg 17.7( 6.0 19.3( 13.5 15.4 19.2 17.4

27.5 ( 16.9 13.4 17.5 17.1

minor groove width/Å 15.4( 0.1 15.3 ( 0.6 15.2 15.3 15.3

15.0 ( 0.6 14.9 15.1 14.8

major groove width /Å 14.7( 1.5 15.9( 2.9 19.0 17.5 17.9

18.9 ( 3.2 22.1 19.8 22.3

slide/Å �1.70( 0.25 �1.69( 0.50 �2.07 �1.94 �1.90

-1.89 ( 0.57 -2.35 -2.11 -2.30

roll/deg 8.1( 4.1 9.7( 6.1 4.6 7.1 6.7

8.5 ( 6.2 3.0 6.4 4.0

propeller/deg �12.5( 4.5 �13.7( 8.5 �6.3 �10.7 �9.7

-12.5 ( 8.7 -4.3 -9.8 -7.4

X-displ./Å �4.45( 1.18 �4.85( 1.60 �5.01 �5.07 �4.95

-5.35 ( 2.18 -5.50 -5.49 -5.91

inclination/deg 15.2( 8.3 18.0( 11.0 8.8 13.4 12.7

16.3 ( 11.7 5.5 12.2 8.0

helical twist/deg 32.3( 3.6 31.7( 4.1 29.7 30.5 30.4

31.1 ( 4.9 28.6 29.8 28.6

rmsd/Å 1.04 1.21 1.06 1.07

1.36 1.85 1.43 1.90
a Standard deviations are shown for the unmodified force fields for orientation, and they are very similar for the other force fields. RMSD ismass weighted
for all atoms.
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11.1�, and 5.7�, respectively. The experimental value for major
groove width is 12.3 Å, while ff99bsc0, ff99, ff99bsc0χOL, and
ff99χYIL give 15.3, 17.1, 14.8, and 18.1 Å, respectively.
The trends in the structural parameters described above

indicate that when the χ parameters are modified in a manner
that prevents the ladder-like degradation of RNA structure
associated with the original (ff99 or ff99bsc0) χ profile, A-RNA
inclination and base pair roll are systematically reduced while the
major groove width expands. Note that inclination, roll, and
narrowing of the major groove characterize how deeply the
duplex enters A-RNA conformational territory. In other words,
stabilization of the anti χ region seems to counter the tendency of
the simulated molecule to adopt highly compact A-RNA geo-
metries (see Tables 3 and Tables S2 and S3 in the Supporting
Information). For the sake of completeness, let us add that the
anti stabilization also reduces the absolute value of propeller
twist; the experimental value for this variable of 1QC00 is�12.5�,
and we obtained values of�13.7�,�12.5�,�9.7�, and just�4.3�
using ff99bsc0, ff99, ff99bsc0χOL, and ff99χYIL, respectively.
Another important structural parameter is helical twist. The

data presented in Table 3 and Tables S2 and S3 in the Supporting
Information show that the force fields provide values for this
parameter that are reasonably close to the experimental value.
However, ff99bsc0 simulations usually show larger helical twists
than ff99-based simulations, as the ff99 γ-trans flips, especially
those with longer lifetimes, tend to reduce helical twist.30 Note
that the helical twist in RNA molecules is not as crucial as when
describing the fine structure of B-DNA.
In conclusion, when suppression of the ladder-like structures

formation is of primary concern, we suggest that ff99bsc0χOL is
the best combination of parameters currently available for
A-RNA. Its use eliminates emergence of the ladder-like structures
but still allows A-RNA to adopt significant inclination, roll, and
propeller twist. (The preliminary ff99bsc0χOL-DFT version pro-
vides similar results for A-RNA but overstabilizes the syn region.)
MD Simulation of B-DNA. Table 4 compares structural

parameters obtained from X-ray analysis of a B-DNA dodecamer
(1BNA) and simulations using the four χ parametrizations con-
sidered above in the discussion of parametrization effects on
A-RNA simulations (ff99bsc0, ff99, ff99bsc0χOL, and ff99χYIL)
and the parameters of Ode et al.44 Clearly, the three new χ variants
are in many respects worse than the original ff99bsc0 force field
for modeling B-DNA. They reduce helical twist, which is under-
estimated even with ff99bsc0. Underestimation of helical twist is

a notorious problem in B-DNA simulations. Another problem
appears in coupling of the χ torsion with the sugar pucker. The
new χ parametrizations seem to “push” the sugar pucker pseudo-
rotation value (136� in X-ray structures) more to the east: while
with ff99bsc0 the average pucker is 130�, it drops to 116� with
ff99bsc0 χOL and even to 106� with χYIL. As can be seen in
Table 4, these changes are reflected by shifts in other structural
parameters, mostly away from the X-ray and ff99bsc0 values. The
groove sizes, slide, and X-displacement increase, while propeller
and helical twist slightly decrease. Both χOL and χOL-DFT param-
etrizations seem to provide structures that are closer, overall, to
the X-ray structure than the χYIL parametrization, which also
shows the largest rms error. This again indicates that χYIL over-
estimates the high-anti penalty, which disturbs the balance with
the other force-field parameters somewhat.
In conclusion, χOL does not improve upon the original

ff99bsc0 force field for the B-DNA duplex. The same holds also
for χOL-DFT, which was parametrized based onDNA nucleosides.
We would like to reiterate that the χ angle and sugar pucker are
fine tuned to complement each other in ff99bsc0 and ff99, and
suitable adjustment of the sugar pucker torsions may also be
beneficial for B-DNA description with the new χ parameters
presented herein. This, however, is beyond the scope of this
study. Our groups have attempted several times in the past to
improve modeling of the helical twist of B-DNA in various ways,
including pucker modification, but no convincing solution has
been found to date.

’CONCLUSIONS

The χ torsion angle is a challenging parameter to accurately
model in the various empirical force fields for nucleic acids. Many
variants of χ parametrization have been suggested in recent few
years, but none of them seems to provide a fully satisfactory
description. Here, we investigated whether reliable force-field
parameters can be obtained based on accurate QM calculations.
We studied the influence of both the level of theory on theχ profile
and the applied methodology (the effects of geometry relaxation
and solvation). We suggest that when deriving the torsion
parameters the following three points should be considered.
(i) Using the same (usually QM-optimized) geometry for

deriving the torsion parameters as differences between the
QM and MM χ energies may introduce significant errors
in the resulting profiles. Instead, geometry for the MM

Table 4. Average Structural Parameters (last 20 ns of 50 ns simulations) for the B-DNA Duplex 1BNAa

parameter X-ray ff99bsc0 ff99bsc0 χYIL ff99bsc0 χODE ff99bsc0 χOL-DFT ff99bsc0 χOL

χ/deg 243.6( 14.7 243.3( 18.2 223.1 244.4 229.1 231.4

P/deg 129.2( 26.7 130.4 ( 31.6 105.1 133.5 118.4 115.6

minor groove width /Å 10.3( 1.0 11.5( 1.1 12.6 11.4 11.7 12.3

major groove width /Å 17.3( 0.7 19.1( 1.9 21.5 18.7 20.5 20.2

slide/Å 0.07( 0.53 �0.41 ( 0.58 �1.20 �0.36 �0.90 �0.83

roll/deg 1.98( 3.41 3.64( 5.22 2.76 3.53 3.03 4.24

propeller/deg �13.3 ( 5.94 �12.5( 7.9 �8.5 �11.5 �11.1 �11.0

X-displ./Å �0.23( 0.53 �1.65( 1.73 �2.82 �1.44 �2.19 �2.33

inclination/deg 4.0( 7.2 7.8( 10.3 5.4 6.9 5.7 8.0

helical twist/deg 35.6( 5.2 33.5( 5.7 31.5 34.2 33.0 32.6

rmsd/Å 1.58 2.52 1.46 1.95 2.15
a Standard deviations are only shown for the ff99bsc0 force fields because they are very similar for the other force fields. RMSD is mass weighted for
all atoms.
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single-point calculations should be optimized at the
MM level.

(ii) Solvation-related effects considerably influence the result-
ing χ torsion profile. For instance, their inclusion results
in stabilization of the anti region typical for A-RNA with
respect to the high-anti region typical for B-DNA. It
appears that appropriate balance of the anti and high-anti
structures in RNA systems can only be obtained when the
solvation effects are considered.

(iii) The χ torsion profile is quite sensitive to the level of
theory. On the basis of comparisons with estimated
reference CCSD(T)/CBS data, we suggest that the
MP2/CBS method provides results of sufficient accuracy
in this case, while using small basis sets such as 6-31G*
with the MP2 method introduces significant errors. The
PBE DFT functional does not provide sufficiently accu-
rate results, even when a large (6-311++G(3df,3pd)) basis
set is used and a dispersion correction (D-1.06-23) is
applied. Results obtained with M06 and M06-2X func-
tionals of Zhao and Truhlar are of similar quality to the
PBE-D-1.06-23/LP results and also insufficiently accurate
for force-field derivation. Thus, it appears that despite the
impressive recent progress in DFT methodology, DFT-
based calculations cannot currentlymatch the accuracy of
high-quality wave function theory calculations for mod-
eling DNA and RNA backbone segments.

Using our parametrization model we derived new parameters
for the glycosidic torsion angle, χOL (“OL” stands for the city of
Olomouc in the Czech Republic), intended for use in RNA
simulations. Our main goal was to correct the undesirable desta-
bilization of the anti region with respect to the high-anti region
observed with the ff99 and ff99-parmbsc0 force fields, which leads
to formation of “ladder-like” structures inMD simulations of RNA
molecules. The χOL parameters successfully achieve this goal.46,84

The ability of the χOL parameters to suppress formation of the
ladder-like structures has been verified in refs 46 and 84. In these
works we carried out a broad set of extended RNA simulations of
UNCG and GNRA tetraloops, short A-RNA stems, and a reverse
kink-turn motif with a total length of more than 15 μs. It has been
shown that while use of the original ff99 and ff99bsc0 force fields
leads to frequent formation of the ladder-like structures, the
ff99bsc0χOL potential suppresses their emergence and keeps sim-
ulations closer to the native conformations.

In addition, in a study of UUCG tetraloop46 we have shown
that the χOL modification in connection with the ff99bsc0 force
field leads to stabilization of some signature interactions present
in the X-ray and NMR structures of this tetraloop. This improve-
ment is most likely due to improved description of the syn region
of χ potential, which is of key importance in this structure.

In this work we show that the χOL adjustment modestly affects
helical parameters of A-RNAduplexes; nevertheless, the simulations
remain in good agreement with X-ray structures. We also demon-
strate that overstabilization of the anti χ region leads to excessive
reductions of inclination, roll, and propeller twist in A-RNA and
substantially impairs the performance of B-DNA simulations. This
problemappears to occurwith another recent parameter set,ff99χYIL.

We do not recommend use of the reparameterized force field
for B-DNA, as adjusting the anti�high-anti balance to stabilize
RNA somewhat impairs description of B-DNA. Despite sub-
stantial efforts, we have not as yet found any means, based solely
on modifying the χ torsion, to stabilize A-RNA simulations while

not adversely affecting B-DNA simulations. However, the χOL
refinement might be useful in simulations of DNAmolecules con-
taining syn nucleotides.

Although the χOL torsion refinement can be combined with
both ff99 and ff99bsc0 force-field variants, in all cases our sim-
ulations indicate that it provides better results when combined
with ff99bsc0. Nevertheless, the parmbsc0 R/γ and χOL modi-
fications are entirely independent refinements of the Cornell
et al. force-field torsion space.

In summary, we recommend use of the χOL force field for
RNA simulations, preferably in combination with the ff99bsc0
R/γ refinement. Themain advantage of the new force field is that
it eliminates formation of ladder-like structures, spurious artifacts
generated by older versions of the force field. Since elimination of
the ladder-like structures is a basic requirement for stabilizing
RNA in simulations, the χOL parameters probably provide better
RNA descriptions than other currently available parameter sets.
The χOL + ff99bsc0 force field gives satisfactory descriptions of
A-RNA duplexes and improves simulations of some other RNA
systems, such as UNCG and GNRA tetraloops. We would like to
note that although the χOL + ff99bsc0 force-field refinement
brings a substantial improvement of extended RNA simulations,
further reparameterizations still may be necessary.
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ABSTRACT: Classical simulations of simple water models reproduce many properties of the liquid and ice but overestimate the
heat capacity by about 65% at ordinary temperatures and much more for low temperature ice. This is due to the fact that the atomic
vibrations are quantummechanical. The application of harmonic quantum corrections to the molecular motion results in good heat
capacities for the liquid and for ice at low temperatures but a successively growing positive deviation from experimental results for ice
above 200 K that reaches 15% just below melting. We suggest that this deviation is due to the lack of quantum corrections to the
anharmonic motions. For the liquid, the anharmonicities are even larger but also softer and thus in less need of quantum correction.
Therefore, harmonic quantum corrections to the classically calculated liquid heat capacities result in agreement with the
experimental values. The classical model underestimates the heat of melting by 15%, while the application of quantum corrections
produces fair agreement. On the other hand, the heat of vaporization is overestimated by 10% in the harmonically corrected
classical model.

1. INTRODUCTION

Structural and thermodynamic properties of water have been
extensively studied with classical molecular dynamics simulations
using three site models like the simple point charge (SPC)
model,1 the slightly modified SPC/E model,2 or the TIP3P3

model. In general, these models describe many equilibrium
properties of the liquid as well as or better than models involving
more than three interaction sites. There is a remarkable exception;
slight reparametrizations of the classical four-sitemodel (TIP4P3)
have produced a couple of models, TIP4P/20054 and TIP4PQ/
2005,5 which reproduce ice and liquid properties including
many temperature dependencies much better than the three-site
models. Even, compared to much more time-consuming
computer simulation methods, like Car�Parrinello molecular
dynamics6 (CPMD), which calculates the forces on the atoms
directly from electron structure calculations performed at each
time step, these classical models behave quite well.

There is, however, one important exception. None of these
models (including the CPMD one) give reasonable heat capa-
cities. In their original versions, the classical models have fixed
bond lengths and bond angles. These degrees of freedom can be
made flexible, but this will not improve results but rather make
them worse since the bond length and angle potentials are stiff
enough to make a quantum mechanical treatment necessary.
Further, the vibration of the entire molecules in ice as well as
liquid water is also quantum mechanical. Therefore, a simple
classical model or even one that treats the electrons but not the
nuclei by quantum mechanics is insufficient for this purpose.
There is one simple way around this problem that was suggested
and tried out successfully on liquid water by Berens et al.7 in
1983. If one assumes that the vibrational motion is harmonic, one
may calculate a correction to the classical heat capacity from the
difference between that of a quantum and that of a classical
oscillator. One, just has to integrate over all frequencies with the
weight taken from the normal mode spectrum. For liquid water,

this reduces the difference compared to experiment from 45% to
4%.7 These kinds of methods are not limited to water but may be
applied to much more complex systems. They have, however,
since then only been applied to a few other systems. Liquid
methanol8 and solid argon9 are two examples.

An alternative technique, path integral molecular dynamics/
Monte Carlo (PIMD/PIMC), should in principle be able to
produce correct heat capacities since it handles the nuclei
quantum mechanically and avoids the harmonic approximation.
The sparse results5,10�13 are promising, despite some differences
and that some fine-tuning of the potential parameters with
respect to their classical values seems to be required.

Here, we have applied the original harmonic correction
method to ordinary ice (Ih) using the SPC/E model. In this
case, quantum effects are even larger than in liquid water. Bond
lengths and the bond angle have been fixed as in the original
SPC/E model since these degrees of freedom are rigid enough to
give negligible contributions to the heat capacity. The energy
fluctuations were used to calculate the classical heat capacities
(see, e.g., a textbook like Allen and Tildesly14), while the normal
mode density was calculated from the velocity autocorrelation
functions.

2. THEORY

The heat capacity at constant volume, CV, of a classical system
can be calculated from the fluctuations in energy, σE, in a
simulation at conserved volume, temperature, and particle
number (NVT) as

CV ¼ σ2
E=kBT

2 ð1Þ

Received: May 2, 2011
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with kB being the Boltzmann constant and T the absolute
temperature. Alternatively, it may be obtained as a numerical
derivative of the total energy with respect to the temperature.
The heat capacity at constant pressure, Cp, can be obtained from
the enthalpy fluctuations, σH, in a simulation at fixed pressure
(NpT) as

Cp ¼ σ2
H=kBT

2 ¼ ðσE þ pσV Þ2=kBT2 ð2Þ
See, e.g., refs 14 and 15 for the background.We have chosen to do
the simulations at fixed volume, which gives the CV’s. Experi-
mental heat capacities are, however, more often available as Cp’s.
For condensed matter systems, the difference is small, and the
two types of heat capacities can readily be converted between
each other using the exact thermodynamic relation (see e.g.,
ref 16):

Cp � CV ¼ VTKVR2 ð3Þ
where the thermal expansion coefficient, R = 1/V(∂V/∂T)p, and
volume compressibility modulus, KV =�V(∂p/∂V)T, are experi-
mentally available. Thus, experimentalCp’s can be converted into
CV’s by employing this relation. The difference between the two
types of heat capacities is less than 1% in the condensed water
phases.

Quantum corrections to the classical heat capacities cannot
easily be calculated in general without employing models or
approximations. One fairly good and practical model is that of
coupled harmonic oscillators, which gives an analytically solvable
problem. Transformation to normal coordinates gives decoupled
harmonic oscillators. The contribution of each such oscillator to
the heat capacity is then

kB
pω

kBT

� �2 expðpω=kBTÞ
½expðpω=kBTÞ � 1�2 ð4Þ

This depends on the angular frequency, ω, of the oscillator
through the dimensionless energy x = pω/kBT (with p being
Planck’s constant divided by 2π). In the classical limit (small x
or large T), we regain the Dulong�Petit result, kB per degree of
freedom. In the other (quantum) limit, the contribution to the
heat capacity goes to zero. Thus, knowing the angular frequen-
cies, ωi (xi = pωi/kBT), of the normal modes, the quantum
correction to the classical heat capacity per molecule is
obtained as

ΔcV ¼ kB∑
i

x2i
exi

ðexi � 1Þ2 � 1

" #
≈kB

Z ∞

0
x2

ex

ðex � 1Þ2 � 1

" #
GðxÞ dx

ð5Þ
In the integral approximation, the integral is performed over
the dimensionless variable x. The normal mode distribution,
g(ω), is normalized to give the integral

R
g(ω) dω, equal to the

number of degrees of freedom per molecule, i.e., 6 for rigid
water and 9 for flexible water. As a function of the dimension-
less variable x, the normal mode distribution G(x) is equal to
(kBT/p) g(kBTx/p). The normal mode distribution may be
obtained from the velocity spectrum as7,15

gðωÞ ¼ N
∑
i
ĵviðωÞj2Z

∑
i
ĵviðωÞj2dω

ð6Þ

were v̂i(ω) is the Fourier transform of an atomic velocity
component, the sum goes over all three components of all
atoms, and N is the number of degrees of freedom (6 or 9 per
molecule).

The quantum corrections are negative and thus reduce the
heat capacities. The SPC/E water model used here has point
charges at the positions of the oxygen and the two hydrogens and
Lennard-Jones interactions between the oxygens. It is usually
simulated with fixed bond lengths and a fixed bond angle, but one
may also perform classical simulations with harmonic vibrations
in the bonds and the angle. The angular frequencies of these
oscillators correspond, however, to large values of x = pω/kBT
(about 7 for the angle and 14 for the bonds at 300 K). Thus, the
contribution from these degrees of freedom becomes negligible
after application of quantum corrections (about 0.04kB per
molecule compared to the classical value 3kB)

The quantum correction to the energy may also be calcu-
lated as

ΔuQM ¼ kBT
Z ∞

0

x
2
þ x

ex � 1
� 1

� �
GðxÞ dx ¼ u0 þ ue � ucl

ð7Þ
The first term, u0, is the ground state energy of the harmonic
oscillators, ue the energy in the excited states, while ucl is the
classical energy (6 or 9 kBT). The melting enthalpy of ice and
the heat of vaporization of liquid water could thus be quantum
corrected. The melting enthalpy of ice is

ΔH ¼ Hl �Hs ¼ ðUl þ pVlÞ � ðUs þ pVsÞ ¼ ΔU þ pΔV

ð8Þ
with the pΔV term being negligible (�1.6 � 10�4 kJ/mol)
compared to ΔU (6 kJ/mol).

3. COMPUTATIONAL DETAILS

All simulations were performed using the GROMACS17

package, version 4.0, on a local cluster in the department at
Albanova University Center KTH Stockholm. All systems con-
sisted of 360 SPC/E water molecules and were subjected to
periodic boundary conditions in all directions. Liquid water was
simulated at 300 K and 273 K, while ice was simulated at the
temperatures of 273, 263, 243, 223, 173, 93, and 23 K. A
Nose�Hoover thermostat18,19 was used to keep the temperature
constant for the system. The integration of the equations of
motion was performed by using a leapfrog algorithm with a time
step of 1 fs. Liquid water was simulated with fixed as well as
flexible bonds and angles, but the main part of the ice simulations
was done with rigid water molecules. During the equilibrations, a
barostat was used to adjust the density to obtain a pressure of 1
bar. The simulations used to calculate energy fluctuations and
normal mode distributions were performed at a fixed volume and
temperature (NVT). The analytical SETTLE algorithm20 was
used to restrain bond lengths and angles. In simulations with
flexible bonds and angles, a test with a 10-fold reduced time step
did not alter any results. The classical heat capacity was calculated
from the energy fluctuations over 5 ns simulations which had
been equilibrated for 1 ns, while the normal mode distributions
were calculated from the velocities in densely stored 500 ps
trajectories. A cutoff of 1.0 nm was used for Lennard-Jones (LJ)
interactions. The electrostatics were calculated using the particle-
mesh Ewald (PME) method21,22 with interactions inside 1.0 nm
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handled in real space and those outside in Fourier space. For
water and ice, the SPC/E model1,2 was used.

4. RESULTS AND DISCUSSION

The experimental cp’s
24 are shown in the Table 1 together with

the cV’s calculated using eq 3with experimental values23 forR and
KV. Alternatively, cp’s could be obtained by converting the cV’s
from the simulations using eq 3. For this, R and KV were
determined from ice simulations at 273 K as 260 � 10�6 K�1

and 0.23 � 1010 N/m2. These values deviate substantially from
the experimental ones but give only a slightly lower difference of
0.8 J/mol 3K instead of 1.0 J/mol 3K between the heat capacities.

The heat capacities obtained after applying quantum correc-
tions to the classical simulation data are shown versus the
experimental ones in Figure 1 and in Table 2 with the quantum
corrections tabulated separately. For liquid water, the rigid SPC/
E model1,2 gives an as-good (or even marginally better) heat
capacity as the more complicated flexible Watts model27 used by
Berens et al.7 The usage of flexible bonds and bond angles in the
SPC/E model gives, on the contrary, a substantial overestimate
of the heat capacity. The reason for this is that almost twice the
energy expected from equipartition goes into these degrees of
freedom. This was observed already in 1991 by Wallqvist and
Teleman.28 The deviation from equipartition decreases at lower
densities and higher temperatures. We decided to stick to the
rigid water model in the ice simulations. The ice simulations
showed good agreement for the heat capacity at low tempera-
tures, while the heat capacity was overestimated by about 15%
(5�6 J/mol 3K), close to the melting point. The classical heat
capacities in Table 2 obtained from energy fluctuations were
checked by numerical differentiation of the total energies

showing no significant differences. We also checked that the
larger heat capacities in ice close to the melting temperature were
not due to critical fluctuations. Varying the system size (up and
down) showed that the fluctuations in total energy scaled as
would be expected from eq 1 (σE� (N)1/2). The difference close
to melting can therefore not be attributed to critical fluctuations.
We also checked the sensitivity of the normal mode distribution
to system size and found none.

In the Figure 2, the experimental and calculated heat capacities
of ice are plotted versus the temperature. The experimental ones
fit a straight line starting at zero for T = 0 with a slight deviation
upward around 100 K. The QM corrected simulation data agree
with experimental; results up to about 200 K, including the
upward deviation from the straight line. At higher temperatures,
the calculated heat capacities deviate upward in a way that could
be described by a quadratic correction. The classical heat capacity
calculated from the energy fluctuations is also shown. This is
20�50 J/mol 3K larger than the experimental one, approaches
the constant Dulong�Petit value, 6kB = 49.9 J/mol 3K at low
temperatures, but is about 13 J/mol 3K higher close to melting.

Table 1. cV’s of Liquid Water and Ice Calculated from
Experimental cp’s

24 Using eq 3 with Experimental Thermal
Expansion Coefficients and Compressibility Modulii23

phase l s

T [K] 300 273 273 263 243 223 173 93 23

cV [J/mol K] 74.1 74.8 37.0 35.6 33.1 30.4 24.3 14.9 3.1

cp [J/mol K] 75.2 75.9 38.0 36.5 33.8 31.0 24.5 14.9 3.1

Figure 1. Calculated versus experimental heat capacities at different
temperatures. The simulation figures are given with an error bar of
1 J/mol 3K. The straight line (y = x) indicates perfect agreement.

Table 2. Calculated (Classical and Quantum Corrected) and
Experimental (from Table 1) Heat Capacities in J/mol 3K for
Liquid Water and Ice at Different Temperaturesa

T class cV QM corr. corr. cV exptl. cV

300 K (l), flex. 122.9( 1.4 �37.1 85.8 74.1

300 K (l), rigid 86.6( 0.7 �14.4 72.2 74.1

273 K (l), rigid 88.8( 0.7 �14.6 74.2 74.8

273 K (s) 62.2 ( 0.3 �19.3 42.9 37.0

263 K (s) 60.5( 0.3 �20.5 40.0 35.6

243 K (s) 58.2( 0.3 �22.5 35.7 33.1

223 K (s) 56.3( 0.3 �24.4 31.9 30.4

173 K (s) 53.9( 0.5 �28.9 25.0 24.3

93 K (s) 52.0( 0.3 �38.0 14.0 14.9

23 K (s) 50.0( 0.4 �47.0 3.0 3.1
aThe total statistical error is estimated to be around (1 J/mol 3K from
the statistical error in column 2 and an error in the quantum correction
of (0.5 J/mol 3K due to insufficient sampling of the normal mode
distribution.

Figure 2. Experimental and calculated heat capacities versus tempera-
ture. The calculated heat capacities are (i) the classical ones containing
harmonic as well as anharmonic contributions, (ii) the heat capacity
from quantum mechanical harmonic oscillators, and (iii) the classical
heat capacity with the harmonic part quantum-corrected.
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This indicates that anharmonicities play an increasing role with
temperature. It is, however, reassuring that experimental and
calculated quantum corrected heat capacities agree at low
temperatures when anharmonic contributions are expected to
be small. Alternatively, one may apply a pure quantum harmonic
oscillator model with the angular frequencies taken from the
classical normal-mode analysis.

The heat capacities resulting from this model are also shown in
Figure 2. It it clear that this model substantially underestimates
the heat capacity except for very low temperatures (at which the
anharmonic contribution is negligible). The quantum-corrected
classical result could alternatively be viewed as the superposition
of this result with the classical anharmonic contribution. This
clearly reduces the error compared to when the anharmonic
contribution is entirely neglected. For the highest temperatures,
it does, however, overestimate the heat capacity since it misses
the quantum corrections to the anharmonic contribution, which
certainly would reduce the heat capacity if they could be included
properly. In the liquid, the calculated heat capacity is, on the
contrary, slightly on the low side, although almost within the
statistical accuracy. Still, the deviation from the Dulong�Petits
law is substantially larger in the liquid, indicating large anhar-
monic contributions to the heat capacity. These are, however,
softer and thus more or less classical.

PIMD/MC methods5,10�13 give the heat capacity without
resorting to harmonic approximations. A recent study29 employ-
ing a slightly reparametrized TIP4P/2005 model (TIP4PQ/
2005) produces excellent agreement for the temperature-depen-
dent heat capacity of ice as well as liquid water. Some of the
earlier studies show less good results. The reason for that may be
either that the underlying classical model is not good enough or
that the fairly time-consuming simulations have not been per-
formed long enough to produce adequate sampling.

The calculated normal mode distributions are shown in
Figures 3�5. Figure 3 shows the normal mode distributions of
the liquid and solid at 273 K. For ice, four broad peaks can be
resolved at the angular frequencies in rad/ps or (THz) at
10(1.6), 50(8.0), 100(16), and 170(27) (corresponding to 53,
265, 530, and 900 cm�1 in spectroscopic units). For liquid water,
the two lowest peaks are well resolved with just slight position
shifts compared to ice. The pronounced minimum in the normal

mode distribution of ice at 75 rad/ps is absent in the liquid, and
the two broad peaks at higher frequencies are replaced by a
broader distribution. Both densities of state drop to zero just
above 200 rad/ps. The normal mode distribution of ice may be
compared to the experimental density of states obtained from
neutron scattering.25 The pronouncedminimum between 75 and
100 rad/ps in the simulated distribution agrees with a similar
minimum in the experimental distribution. Otherwise, the spec-
tra are qualitatively similar. The difference between the densities
of state of H2O and D2O shows26 clearly that the high-ω part of
the spectrum (above the minimum) is due to rotational vibra-
tions, while the lower part is due to translational vibrations. We
verified this in simulations by increasing the mass of the hydro-
gens to 4 and reducing the oxygen mass to 8. Thus, the total mass
of the molecule remained constant, which should result in an
unaltered translational part of the spectrum. On the contrary, the
rotational part should move down a factor 2 due to the 4-fold
increase of the moment of inertia. We did observe (not shown)
an essentially unaltered low-ω part of the density of states, while
the part above 75 rad/ps was shifted down by a factor 2.

The fairly linear variation of the heat capacity with temperature
shown in Figure 2 results from the broad distribution of oscillator
frequencies but also from the fact that a single quantum oscillator
(see eq 4) has a smooth variation of the heat capacity with the
temperature. The heat capacity is half its classical value at the
temperature T1/2 t pω/3kB, with the change from 10% to 90%
occurring in the fairly broad temperature interval (0.5�3)T1/2.
With the peaks in the normal mode density at frequencies
corresponding to T1/2 of 25, 120, 260, and 410 K, a considerable
overlap in variation is obtained, resulting in a smooth variation of
the heat capacity, which turns out to be fairly linear.

Figure 4 shows that a small number of Gaussians fit the normal
mode distributions quite well. For ice, a decent fit is obtained using
four Gaussians, while the liquid needs five, which still do not agree
as well. Finally, the normal mode distributions of ice obtained at
different temperatures are shown in Figure 5. There are fairly small
but clear differences, and the distribution is shifted toward higher
frequencies with more pronounced peaks at lower temperatures.
This indicates that there are anharmonic parts in the potential
which come out differently in normal mode distribution derived
from the velocity autocorrelations at different temperatures. Still,
the difference is small enough to have just minor effects on the
quantum corrections. The quantum correction calculated at 273 K

Figure 3. The normal mode distributions of ice and liquid water at
273 K with fixed bond lengths and bond angles. The normal mode distri-
bution for ice with flexible bond lengths and angles is also shown. The
inset includes the high frequency bond length and bond angle vibrations.

Figure 4. The normal mode distributions of ice and water at 273 K
together with fits to 4 and 5 Gaussians, respectively.
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from the density of states taken from the 23 K simulation
is�19.8 instead of�19.3 J/mol 3K as obtained with the proper
distribution.

The inset in Figure 3 shows the normal mode distribution of
ice with flexible and rigid molecules. In the flexible model, the
angle vibrations show up as a narrow peak at 300 rad/s, while
there are two overlapping peaks close to 600 rad/ps due to bond
length vibrations. The area under the angle peak is approximately
1, while that under the double stretching peak deviates slightly
from 2. This deviation indicates a slight mixing with the soft
degrees of freedom, which is further substantiated by small
differences in the low frequency part of the normal mode spectra.
Table 3 shows the angular frequencies of the internal vibrational
modes of water molecules in different phases as obtained from
simulations using standard flexible SPC/E water. They are
compared to spectroscopically determined angular frequencies
in the liquid and gas phases. It is clear that the large experimental
downward shift and broadening of the stretching peaks in the
condensed phases are only partially reproduced in classical
simulations. The standard choices of angular frequency for the
bond stretching and bond angle vibrations used in the classical
SPC and SPC/E water models are 3.45 � 108 J/mol nm2 and
3.83� 105 J/mol rad2. As seen from Table 3, this reproduces the

experimental frequencies in the condensed phases and especially
the solid phase better than those of the gas phase. The TIP3P
and TIP4P water models use a slightly more stiff bond and
bond angle.

The heats of melting and vaporization are easily calculated
from the energy differences between the different phases. To
obtain accurate values, one may have to apply quantum correc-
tions as discussed for the liquid by Burnham and Xantheas.37 In
Table 4, we give the total energies from simulations of rigid solid
and liquid water at 273 K. For the gas, we just have 3kBT of
kinetic energy and need no simulation. Both ice and liquid water
are stable in very long time simulations at this temperature, even
if the actual solid/liquid transition temperature may be different
from the experimental one for the present (and other) water
models. The classical intermolecular energy is now corrected by
calculating the three terms in eq 7 from the normal mode
distributions from Figure 3. The correction consists of two parts.
The normal mode spectrum of the ice is shifted toward higher
angular frequencies, which gives rise to a higher zero point energy
in ice, but also to a lower average energy in the excited states in
ice. The net effect from the intermolecular part will be a change of
the melting enthalpy by �1.50 kJ/mol. The internal vibrational
frequencies contribute through different zero point energies,
smaller for ice and larger for liquid water. This gives using the
experimental vibrational frequencies an additional correction
of +2.75 kJ/mol to the heat of melting. When the total quantum
correction, 1.25 kJ/mol, is added to the classically calculated
heat of melting, 5.08 kJ/mol, a heat of melting of 6.33 kJ/mol
is obtained in good agreement with experimental value of
6.01 kJ/mol.33 The total quantum correction is smaller here
than the value suggested in ref 37 of 2.75 kJ/mol. The reason for
this is that we use different normal mode distributions for the
intermolecular degrees of ice and liquid water (calculated from
respective simulations), while Burnham and Xantheas37 used the
same normal mode distribution. For the intramolecular part, we
use the same experimental vibration frequencies as they and thus
have identical results. The classical TIP4P/2005 model has an
energy of �49.52 kJ/mol for the liquid at 273 K,38 while the
corresponding energy for the Ih-ice is �55.84 kJ/mol at 250 K.
From the latter value, we obtain �54.41 kJ/mol at 273 K using
the heat capacity of classical ice (with restrained bond lengths
and bond angles), 62.00 J/mol 3K. Thus, this model gives the
classical heat of melting, 4.89 kJ/mol. If we assume the same

Table 3. Frequencies, ν, of the Internal Bending and
Stretching (Symmetric (s) and Asymmetric (a)) Modes of
Water in Different Phases in the Spectroscopic Unit, cm�1a

phase bending stretching (s) stretching (a)

calculated g 1592 3184 3243

experiment g 1595 3657 3756

simulations l 1610 3130 3220

experiment l 1645 3280 3490

simulations s 1600 3090 3200

experiment s 1650 3085 3220
aThe experimental values are based on IR and Raman spectra and are
taken from refs 30 and 34 for the gas phase, from ref 23 for the liquid, and
from refs 35 and 36 for the ice. The calculated values for the gas phase
were obtained analytically (see, e.g., ref 32) from the geometry and force
constants of the flexible SPC/E water model. The simulation values for
the condensed phases were obtained from the normal mode distribution
of flexible water.

Table 4. Total Classical Energies (Kinetic Plus Potential) and
Harmonic Quantum Corrections for Ice, Liquid Water, and
Water Vapor at 273 Ka

energy [kJ/mol] Us Ul Ug Ul � Us Ug � Ul

intermolecular

classical rigid model �46.48 �41.40 6.81 5.08 48.21

QM corr.:u0 + ue � ucl 6.85 5.35 0.0 �1.50 �5.35

intramolecular

QM ground state 47.59 50.34 53.89 2.75 3.55

quantum corrected 7.96 14.29 60.70 6.33 46.41
aThe quantum corrections were calculated from eq 7 using the normal
mode distributions in Figure 3 for the intermolecular part, while
experimental bending and stretching frequencies (Table 3) were used
for the intramolecular ground state energy (the excited states give
negligible contributions).

Figure 5. The calculated normal mode distributions for ice at different
temperatures.
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quantum corrections as for the SPC/E model, we obtain
6.14 kJ/mol in slightly better agreement with experimental
results.

To explore the quality of the water model and the correction
scheme further, we may also calculate harmonic quantum
corrections to the heat of vaporization. Originally, the classical
potential energy was used to adjust the parameters of, for
instance, the SPC model1 to obtain the correct heat of vaporiza-
tion. Since then, lattice summations methods for the electro-
statics (instead of short cutoffs), dispersion corrections for the
Lennard-Jones interactions, and other adjustments have been
introduced. There are two quantum effects. First, the intermo-
lecular energy of the liquid increases by 5.35 kJ/mol (see
Table 4) as a net result of zero point energy and smaller energy
in the excited states. Second, Table 3 shows that the experimental
vibrational frequencies of the bond lengths are substantially
larger in the gas phase compared to the liquid phase. Thus, the
quantum mechanical ground state energy of the internal degrees
of freedom is larger in the gas phase. On the basis of the
experimental figures, we get 3.55 kJ/mol. This goes in the
opposite direction of the correction to the intermolecular
potential energy, and the net reduction of the heat of vaporiza-
tion becomes 1.80 kJ/mol. From the quantum corrected differ-
ence in energy between the gas and the liquid, 46.41 kJ/mol, we
obtain after adding the RT term the heat of vaporization, 48.69
kJ/mol (at 273 K). This is clearly larger than the experimental
value, 45.05 kJ/mol.33 One may note that the original SPC
model, which was parametrized against the heat of vaporization,
produces better agreement due to its 3.4% smaller charges. The
SPC/E model has, however, other advantages. For the TIP4P/
2005 model, the energy of the liquid at 273 K (see above38)
results in a heat of vaporization (51.78 kJ/mol) which with the
same quantum correction becomes 49.98 kJ/mol. The TIP4PQ/
2005 model, which has 3.6% larger charges, has an even more
negative energy39 resulting in a heat of vaporization around 56.2
kJ/mol after the same quantum corrections. Different PIMD/
MC studies12,13,39 indicate a difference in energy between
PIMD/PIMC and classical simulations of 4�7 kJ/mol in the
liquid state. The present quantum correction to the intermole-
cular energy, 5.35 kJ/mol, agrees favorably with this value. It is
not obvious how the different intramolecular zero-point energies
of the liquid and the gas are handled in the PIMD/MC simula-
tions. Either similar corrections to those here could be applied or
flexible molecules with different force constants in the different
phases could be simulated. We conclude that the SPC/E as well
as the TIP4P/2005 and TIP4PQ/2005models have on the order
10% too strong cohesive interactions to reproduce experimental
heats of vaporization, while the original SPCmodel seems to give
better agreement. Although the difference is noteworthy, we do
not think that this is a serious problem for the water models.

5. CONCLUSION

Simple classical rigid three-atom models for liquid water like
the SPC/E model used here (or the SPC and TIP3P models)
have essentially three parameters, the dipole moment (given by
the charge separation between the oxygen and hydrogens) and
the two Lennard-Jones parameters. The geometry of the mole-
cule, given by the bond length and bond angle does not leave
much room for variation. Thus, these three parameters can be
determined to reproduce three different properties at one given
density and temperature. Still such simple models reproduce

several other properties of the liquid reasonably well and also give
stable ice at lower temperatures. We have shown here that even
the temperature-dependent heat capacity of the ice can be
reasonably reproduced after the application of quantum correc-
tions. There is, however, still a 15% error in the heat capacity of
ice close to melting that most likely is due to quantum mechan-
ical anharmonicities. The heat of melting, which in the classical
approximation is underestimated by about 15%, is on the other
hand obtained very close to the experimental value after the
application of quantum corrections to the SPC/E as well as the
TIP4P/2005 models. The heat of vaporization is on the other
hand overestimated by about 10%, even after application of the
relatively small quantum corrections.
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ABSTRACT: We present an efficient expanded ensemble molecular dynamics method to calculate the solvation free energy (or
residual chemical potential) of small molecules with complex topologies. The methodology is validated by computing the solvation
free energy of ibuprofen in water, methanol, and ethanol at 300 K and 1 bar and comparing to reference simulation results using
Bennett’s acceptance ratio method. Difficulties with ibuprofen using conventional molecular dynamics methods stem from an
inadequate sampling of the carboxylic acid functional group, which, for the present study, is subject to free energy barriers of rotation
of 14�20 kBT. While several advances have been made to overcome such weaknesses, we demonstrate how this shortcoming is
easily overcome by using an expanded ensemble methodology to facilitate conformational sampling. Not only does the method
enhance conformational sampling but it also boosts the rate of exploration of the configurational phase space and requires only a
single simulation to calculate the solvation free energy. Agreement between the expanded ensemble and the reference calculations is
good for all three solvents, with the reported uncertainties of the expanded ensemble being comparable to the uncertainties of the
reference calculations, while requiring less simulation time; the reduced simulation time demonstrates the improved performance
gained from the expanded ensemble method.

1. INTRODUCTION AND MOTIVATION

Knowledge of the underlying free energy (or chemical potential)
of biologically active species is key to understanding their thermo-
dynamic phase behavior and is crucial for rational drug design.1

For example, it is well-known that the solubility of a drug is
dictated by its chemical potential in a pure crystalline phase
relative to the solution phase. Additionally, the ability of a drug to
partition between cell membranes is governed by the relative
chemical potential2,3 and its binding with proteins by the relative
free energy.4,5 The crucial role that free energy plays in the drug
discovery process is emphasized by the fact that entire mono-
graphs have been devoted to the topic.6,7 Likewise, insight into
the native structure and folding mechanism of proteins in
solution may be obtained by examining the solvation free energy
of individual constituent amino acid analogs.8,9

The free energy of a given species may be understood in terms
of the fundamental molecular level details via molecular simula-
tion. Several recent studies have highlighted the ability of molec-
ular simulations to precisely and accurately compute the solva-
tion free energy of amino acid analogs10�12 and small drug and
drug-like molecules.13�15 However, the work of Hodel et al.16

warned that even for small polypeptides, inadequate conforma-
tional sampling with molecular dynamics (MD) could lead to
errors in free energy calculations in much greater excess of any
other source of error. As the size and complexity of the molecule
increases, the problem becomes even worse. This warning was
reiterated in the recent work of Leitgeb et al.17 for amino acids and
by Klimovich and Mobley15 for the case of small drug molecules.

It follows that extreme care must be taken to ensure that
systems studied using molecular simulation are ergodic.18,19

For complex systems, it is common that ergodicity is “broken”
over the time scale of the simulation.20,21 That is, the important
regions of the configurational phase space may be separated by
large free energy barriers which are not overcome during the
course of conventional simulations, yielding erroneous results.
While this challenge can be overcome with advanced Monte
Carlo (MC) methods,22 it is often difficult to formulate a general
protocol to ensure adequate sampling by MD. Many highly
efficient MD algorithms have been developed to enhance the
sampling of configurational phase space;23�30 these methods
may be applied to enhance sampling when performing free energy
calculations.17,25,31,32 However, given the diversity of methods
available, proper method selection poses a huge challenge when
computational efficiency is important.

Recently, Paluch et al.33 demonstrated the use of expanded
ensemble (EE)34�36 methods to increase the rate of exploration
of the important regions of configurational phase space when
performing free energy calculations, when MD is used to sample
configurational phase space within each subensemble. Not only
does EE improve the rate of exploration of configurational phase
space, but themethod allows for the calculation of the free energy
in an efficient manner, requiring the use of a single simulation.
Moreover, the method may be readily implemented in existing
MD simulation software. The present study extends our previous
work33 by showing how EE may additionally be used to seam-
lessly increase the rate of conformational sampling of molecules
of complex topologies within an MD framework.

Received: June 6, 2011
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Klimovich and Mobley15 illustrated the inability of conven-
tional MD-based free energy calculations to observe conforma-
tional changes of the H�O�C�O dihedral angle of carboxylic
acid functional groups of small drug molecules in water and the
impact this had on the computed free energy. In the present
study, we have repeated the calculations of Klimovich and
Mobley15 for ibuprofen (Figure 1), which contains a carboxylic
acid functional group, in water, methanol, and ethanol using
MD-based EE. We will demonstrate how this technique over-
comes H�O�C�O barriers of rotation of approximately 14�
20 kBT unhindered. Furthermore, akin to replica exchange (or
parallel tempering) simulations,26 ensemble average configura-
tional properties may be calculated within each subensemble,
allowing the use of EEwhenever advanced conformational sampling
is required. We anticipate that the technique presented in the
present study, combined with previous free energy methodo-
logies,2,4,37,38 will aid in the rational drug design process.1 In
Section 2 we will present an overview of the EE methodology,
followed by the relevant computational details in Section 3.
Results and discussion are given in Section 4, followed by a
summary of our findings in Section 5.

2. METHODOLOGY

An EE procedure was used to compute the free energy of
solvation. The method is described in detail elsewhere,33 so only
a brief summary of the essential concepts and modification from
our previous work is provided here. The basic idea behind the EE
method34�36 is to construct an augmented ensemble as a sum of
MTotal + 1 subensembles. This series of subensembles connects
two systems of interest by gradually performing transitions
between the two systems. In the present work, the systems of
interest are a noninteracting solute (ibuprofen) molecule in a
pure solvent (i.e., the solute is in an ideal gas state) and a single
fully interacting solute molecule in the solvent, with both states at
the same temperature and pressure. The free energy difference
between these two systems gives the free energy of solvation.
Typically, the intermediate EE subensembles between the non-
interacting and fully interacting solute subensembles serve to scale
only the intermolecular interaction potential of the solute.33,38�41

To improve the conformational sampling of the solute, we have
additionally introduced intermediate subensembles to scale the
intramolecular interaction potential of the solute; this addition is
similar to the torsion angle potential fluctuation method of Liu
and Berne24 and the simulated scalingmethod of Hongzhi et al.25

A specific subensemble is designated by indexm, where the solute
intermolecular Lennard-Jones (LJ) and the electrostatic interac-
tions are regulated by the subensemble-dependent coupling
parameters λm

LJ and λm
elec, respectively, and the intramolecular

torsional potential of the solute is regulated by λm
tors. These

coupling parameters vary from 0e λm
LJe 1, 0e λm

elece 1, and, in
the present study, 0.1 e λm

tors e 1.

While within a given subensemble, configurational phase space is
sampled using MD within an isothermal�isobaric (NPT) en-
semble. Periodically, a stochastic transition to an adjacent sub-
ensemble is attempted. The transitions are accepted using an
appropriate acceptance rule.33 However, as the free energy be-
tween subensembles increases, the probability of accepting a
move decreases exponentially. This adversity is overcome by
employing a biasing scheme that utilizes a combined Wang�
Landau (WL)42�44 and Bennett’s acceptance ratio (BAR)45�48

method.33 The difference in free energy between the two end
states and hence the free energy of solvation is calculated using
BAR. Complete details can be found elsewhere.33

3. COMPUTATIONAL DETAILS

Molecular Models. For the solvents and solute (ibuprofen),
nonbonded intermolecular interactions were treated using a
combined LJ and fixed point charge model of the form:

UnbðrijÞ ¼ 4εij
σij

rij

 !12

� σij

rij

 !6
2
4

3
5 þ 1

4πε0

qiqj
rij

ð1Þ

where rij is the site separation distance between atoms i and j, εij
and σij are LJ parameters, and qi and qj are the partial charge
values of atoms i and j, respectively. For interactions between un-
like LJ sites, Lorentz�Berthelot49 combining rules were employed.
To prevent instabilities in the trajectory when the solute was

nearly decoupled from the system, that is when λm
LJ≈ 0, solute�

solvent intermolecular nonbonded LJ interactions were modeled
with a modified “soft-core” potential, ULJ

sc , of the form:11,50,51

Usc
LJðrij;mÞ ¼ 4λLJm εij

σ12
ij

½ð1� λLJm ÞRLJσ6
ij þ r6ij�2

(

� σ6
ij

½ð1� λLJm ÞRLJσ6
ij þ r6ij �

)
ð2Þ

where rij, εij, and σij are the same LJ parameters as in eq 1, λm
LJ is

the subensemble-dependent coupling strength of the LJ poten-
tial, and RLJ is a constant, taken in this study to be 1/2. When the
solute is fully coupled to the system, λm

LJ = 1, and eq 2 reduces to
the normal LJ potential given by eq 1. When the solute is nearly
decoupled, λm

LJ approaches 0, and eq 2 becomes a smooth in-
teraction function that allows solvent molecules to overlap the
solute with finite energy. When the solute is decoupled from the
system, λm

LJ = 0, and the solute has no interaction with the solvent.
Thus, the potential form in eq 2 correctly represents the limiting
behavior of the solute�solvent interactions, while eliminating
instabilities when λm

LJ f 0.
Moreover, the use of eq 2 improves the configurational phase

space overlap between the decoupled and nearly decoupled solute
subensembles as compared to linearly scaling eq 1. This is clearly
illustrated by the fact that when the solute is decoupled from the
system, λm

LJ = 0, the solute will explore all regions of configura-
tional phase space with equal probability. When the solute is
nearly decoupled, λm

LJ ≈ 0, a scaled form of eq 1 would perfectly
exclude configurations in which the solute overlaps the solvent
from the available phase space. On the other hand, use of eq 2
allows overlapping configurations to be observed with finite
energy (and hence finite probability) for the nearly decoupled
states, thereby increasing the regions of configurational phase

Figure 1. The chemical structure of ibuprofen.
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space mutual to both the decoupled and nearly decoupled sub-
ensembles. An increase in the configurational phase space over-
lap ultimately leads to a decrease in the bias of the calculated free
energy between the decoupled and nearly decoupled suben-
sembles.52,53

Solute intermolecular electrostatic interactionswere decoupled in
a linear fashion via the coupling parameter λm

elec; a detailed de-
scription regarding the decoupling of intermolecular interactions
with Ewald summation may be found elsewhere.33

The same standard LJ and electrostatic interaction potential
(eq 1) and combining rules were used for all intramolecular non-
bonded interactions by all pairs of atoms separated by four or
more bonds. For the case in which the intramolecular sites were
separated by exactly three bonds, the LJ and electrostatic inter-
actions were scaled by factors of 1/2 and 5/6,54,55 respectively,
for ibuprofen. These interactions were not necessary for the
solvents studied here.
All of the molecules were modeled with flexible bonds, angles,

and dihedral angles. The bond stretching and angle bending
intramolecular interactions between sites separated by one and
two bonds, respectively, were modeled by simple harmonic
potentials of the form:

UbondðrijÞ ¼ kijðrij � r0ijÞ2 ð3Þ
and

UangleðθijkÞ ¼ kijkðθijk � θ0ijkÞ2 ð4Þ
where kij, rij, and rij

0 are the force constant, distance between sites i
and j, and the corresponding nominal bond length, respectively.
Likewise, kijk, θijk, and θijk

0 are the force constant, angle between
sites i, j, and k, and the corresponding nominal bond angle,
respectively. The torsional potential describing the intramole-
cular interaction between sites separated by three bonds was
modeled by a potential of the form:

UtorsðϕijklÞ ¼ ∑
5

n¼ 0
Kncos

nðϕijkl � 180�Þ ð5Þ

where ϕijkl is the dihedral angle between sites i, j, k, and l, and the
Kn coefficients are constants. The same torsional potential was
used to describe improper dihedral angles, meant to keep planar
groups planar and to prevent unrealistic chiral inversions. The
torsional potential of the solute molecule was scaled linearly via
the coupling parameter λm

tors.
The molecular models for methanol and ethanol were taken

from the united-atom transferable potential for phase equilibria
(TraPPE-UA) force field of Siepmann and co-workers.56,57 The
TraPPE-UA models have rigid bond lengths; to avoid the use of
constraints during the MD simulations, missing harmonic bond
parameters were taken from the AMBER Parm94 force field.58

For water, we employed the simple point charge59 flexible water
(SPC/Fw) model of Wu et al.60 Parameters for ibuprofen are
from the general AMBER force field (GAFF)54,55 and were taken
directly from Klimovich and Mobley.15

Further, to increase the MD time step of the EE simulations,
we redistributed the mass of the studied molecules as suggested
by Feenstra et al.;61 the procedure involved redistributing a small
amount of the mass of carbon and oxygen atoms bonded to a
hydrogen to slow the corresponding vibrational frequency and to
increase the simulation stability. Additionally, to slow the CdO
carbonyl vibrational frequency, themass of oxygenwas redistributed

such that both atoms had an atomic mass of 14 amu. Note that
while redistributing the mass alters the dynamics of the system, it
has no effect on the solvation free energy.61,62 All of the force field
files (which include atomic masses) used in the present study are
provided in the Supporting Information.
Simulation Details. EE. All of the EE calculations were

performed with amodified version of theMD simulation package
MDynaMix 5.2.63,64 For these simulations, LJ interactions were
truncated at a distance of rcut = 14 Å, and standard uniform fluid
tail corrections were applied to both the energy and the pressure,
assuming g(r) = 1 beyond the cutoff.22,49 Electrostatic interac-
tions were evaluated with an Ewald summation with tin foil
boundary conditions,22,49 with real space interactions truncated
at rcut. A damping parameter of Rrcut = 3.14 was used, and the
maximum number of reciprocal space lattice vectors was set by
Kmax = 7.0 for water and Kmax = 7.3 for methanol and ethanol.
Integration of the equations of motion was performed with the
multiple-time step method of Tuckerman et al.65 in Cartesian
coordinates. A short time step of 0.2 fs was used for fast in-
tramolecular degrees of freedom and nonbonded interactions
within a cutoff of rshort = 8 Å, and a time step of 4 fs was used for
all other interactions. An Andersen thermostat66 and Ander-
sen�Hoover barostat66�68 were used with the collision time for
the thermostat set to 0.5 ps, and the time constant for the
barostat set to 1.5 ps. Modifications to MDynaMix include
implementation of the Andersen thermostat, the “soft-core”
potential (eq 2), separate decoupling of LJ and electrostatic
solute intermolecular interactions for EE calculations, scaling of
the solute torsional potential for EE calculations, WL-BAR,
modification of the Ewald summation with EE fractional particles,33

and other minor additions.
For each ibuprofen�solvent system studied, five independent

simulations were performed. The systems were set up by randomly
inserting a gas-phase minimized ibuprofen molecule into five
previously equilibrated pure solvent boxes for each of the sol-
vents studied. The boxes contained 1000 water, 500methanol, or
350 ethanol molecules, which gave cubic box lengths of approxi-
mately 31�33 Å (water�ethanol). The velocities of each of the
systems were initialized from aMaxwell�Boltzmann distribution
with a unique seed to the random number generator. Production
runs were carried out in an EE-NPT ensemble at 300 K and 1 bar
for a total of 24 ns. Each of the five independent systems for each
solvent was initialized with a unique random seed for the random
number generator used by the thermostat and for the MC
random walk. The system began in the subensemble with a
noninteracting solute molecule, and attempts to change suben-
sembles were made every 32 fs. Over the first 0.5 ns, the random
walk was carried out with WL biasing, in which the WL weight
factor was initially taken to be υWL = 0.5 and reduced as υWL

new =
0.25υWL

old every 0.1 ns. During the entire course of the simulation,
transition energies (in both directions) were computed each time
a transition between subensembles was attempted/proposed,
and new subensemble weights were computed from BAR every
0.5 ns.33 To access the ability of EE to sample the H�O�C�O
carboxylic acid dihedral angle of ibuprofen, after every proposed
subensemble transition (32 fs), the current subensemble and
atomic positions of ibuprofen were saved for postsimulation
analysis.
In the reference subensemble (i.e., ideal gas state), m = 0, the

solute is noninteracting with the rest of the system (λ0
LJ = 0 and

λ0
elec = 0), but the intramolecular interactions are full (λ0

tors = 1).
The solute was taken from the reference subensemble to the
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target subensemble, m = MTotal, with a fully interacting solute
molecule (λMTotal

LJ = 1, λMTotal

elec = 1, and λMTotal

tors = 1) by first reducing
the solute intramolecular torsional potential over Mtors

ig = 3
subensembles. For theseMtors

ig subensembles, the intermolecular
interactions remained off, and the torsional potential was re-
duced as λm

tors ={0.7, 0.3, and 0.1} over the range 1eme 3. Next,
while the torsional potential was reduced, the intermolecular
interactions were brought to full strength by first bringing the
intermolecular LJ interaction to full strength and then adding in
the intermolecular electrostatic interactions. The addition of the
LJ and electrostatic interactions were performed separately in
MLJ = 15 andMelec = 4 steps, respectively, for a total of 19 steps.
First, for the MLJ steps, the intermolecular electrostatic interac-
tions were turned off, and the intermolecular LJ interactions were
strengthened as λm

LJ ={0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.65,
0.70, 0.75, 0.80, 0.85, 0.90, 0.95, and 1.0} over the range 4eme 18.
Next, the intermolecular electrostatic interactions were strength-
ened as λm

elec ={0.25, 0.50, 0.75, and 1.0} over the range
19 e m e 22; details regarding the coupling/decoupling of
intermolecular interactions with Ewald summation may be found
in our previous work.33 Lastly, with the intermolecular interac-
tions at full strength, the intramolecular torsional potential of the
solute was restored (or restrengthened) over the last Mtors

full = 3
subensembles. For these Mtors

full subensembles, the torsional
potential was strengthened as λm

tors ={0.3, 0.7, and 1.0} over
the range 23 e m e 25. Therefore there were MTotal = 25
subensembles. The intermolecular subensembles were chosen to
agree with previous work of Mobley et al.13�15 No attempt was
made to optimize the intramolecular scaling; however, the
employed intramolecular scaling scheme was found to be ade-
quate to obtain full rotations of the problematic carboxylic acid
dihedral angle of ibuprofen in both the reference and fully in-
teracting (target) subensembles. All of the reported EE results are
taken as the average value of the property computed by our five
independent simulations, and the uncertainty is taken as one
standard deviation.
Conventional MD. Reference calculations were performed

using BAR with Gromacs 3.3.469 and directly followed the proto-
col of Klimovich andMobley.15 Generally, simulation parameters
were similar for both the EE and reference calculations. Minor
differences included the use of different MD integrators, a dif-
ferent thermostat and barostat, the use of constrained dynamics
for bonds involving hydrogen for methanol, ethanol, and ibuprofen,
the use of LJ and electrostatic cutoffs (rcut) of 10.2, 11.25, and 11.85Å
for water, methanol, and ethanol, respectively, and a different
treatment of the long-range electrostatic interactions. These differ-
ences resulted from the use of differentMD simulation software and
attempts to efficiently perform both the EE and reference calcula-
tions. We recently found that similar small discrepancies did not
yield statistically significant differences when computing the hydra-
tion free energies of amino acid analogs.33

The BAR calculations were performed in 20 steps, composed
of an ideal gas reference state and the same 19 (MLJ and Melec)
steps to couple/decouple the intermolecular interactions of the
solute as were used for the EE calculations. Note that the torsional
potential was not perturbed for the reference calculations. An
independent 5 ns simulation was performed for each state, for a
total of 100 ns. The time step for integrating the equations of
motion was 2 fs for simulations involving methanol and ethanol
and 1 fs for water.
As mentioned previously, the reference simulations suffered

from an inadequate sampling of the carboxylic acid dihedral angle

H�O�C�O. As a result, a “confine-and-release” framework70

was necessary to include the free energy of the conformational
transformation. This was performed separately using umbrella
sampling71 to compute the potential of mean force (PMF) of the
dihedral angle,72 again following the work of Klimovich and
Mobley15 with Gromacs 3.3.4. Each PMF was constructed of 24
umbrellas. For each umbrella, a 0.5 ns simulation was conducted,
for a total of 12 ns of simulation time per PMF.

4. RESULTS AND DISCUSSION

As alluded to earlier, conventional MD simulations of ibupro-
fen in water, methanol, and ethanol are unable to effectively
sample the H�O�C�O dihedral angle of the carboxylic acid
functional group. For reference, an illustration of the conforma-
tional minima of the carboxylic acid dihedral angle is given in
Figure 2. An understanding of the molecular level origin of this
inefficiency may be understood by looking at the computed PMF
of the dihedral angle in an ideal gas state and in solution; PMF
calculations were performed using conventional MD as men-
tioned previously (Section 3). As illustrated in Figure 3, in the
ideal gas state, the H�O�C�O dihedral angle has a strong pre-
ference to remain in the range of�90 to +90� (conformation “a”).
This conformation corresponds to the terminal H pointed
toward the terminal O, resulting in a strong intramolecular hy-
drogen bond. The strength of the interaction is emphasized by
the fact that the barrier of rotation is on the order of 20 kBT,

Figure 2. An illustration81 of the conformational minima of the
H�O�C�O dihedral angle of the carboxylic acid functional group of
ibuprofen with: (a) the terminal H pointed toward the terminal O (ϕ =0�),
in what we term conformation “a”, and (b) the terminal H pointed away
from the terminal O (ϕ = ( 180�), in what we term conformation “b”.
Note that the illustration shows only the rotation of the hydroxyl group;
the rest of the molecule is left in the same conformation.
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and the corresponding conformational minima differ by approxi-
mately 7 kBT.

On the other hand, Figure 3 shows that for water and me-
thanol, the H�O�C�O dihedral angle favors conformations in
the range of�180 to�90 and +90 to +180� (conformation “b”).
For the case of ethanol, conformation “a” is slightly favored over
conformation “b”. Moreover, the barrier of rotation in all of the
solvents is reduced to approximately 14 kBT, and the conforma-
tional minima differ by only approximately 1 kBT. This change in
behavior results from the presence of a hydrogen-bond accepting
solvent. Whereas in the ideal gas state the strongest interaction
present was the intramolecular hydrogen bond, in solution a
competing hydrogen bonding scenario exists for the terminal H
to hydrogen bond with the solvent. The strength of the inter-
molecular hydrogen bond directly influences the PMFminima of
conformation “a” relative to “b” in solution. From Figure 3, we
find that the difference in PMF minima between conformation
“a” and “b” follows the trend: ethanol < methanol < water. As
anticipated, this observation agrees with the trend of increasing
strength of the hydrogen bond formed between the terminal H of
the carboxylic acid group and the O of the solvent: ethanol <
methanol < water.73,74

The inefficiencies of conventional MD simulations to com-
pute the solvation free energy of the systems of interest are now
evident. When performing free energy calculations, regardless of
the employed technique, it is crucial that all of the important
configurational phase space of the system be adequately sampled
in order to obtain a meaningful result. In the present study, this
condition demands that both conformations “a” and “b” of the
carboxylic acid functional group be sampled in both the ideal gas
(reference) and solution (target) states. This would require
routinely overcoming barriers for rotation of approximately
14�20 kBT to sample both conformations and is not realistic
using conventionalMD simulations. Correctionsmay bemade to

the computed free energy to compensate for the inadequate
sampling postsimulation using a “confine-and-release” frame-
work.15,70 These corrections, however, require that the ineffi-
ciency and its cause are identified prior to calculating a solvation
free energy, and subsequent umbrella sampling calculations be
performed to compute the PMF along the relevant reaction
coordinate. This requires human intervention and planning, so it
would be highly advantageous to avoid such calculations alto-
gether. Another key reason to solve this problem is that it may
not always be clear when simulations suffer from inadequate
conformational sampling. The large barrier of rotation encoun-
tered in the present study is a concerted effect of the intramo-
lecular hydrogen bonding and the torsional potentials of both the
carboxylic acid group (H�O�C�O) dihedral and the dihedral
of the hydroxyl of the carboxylic acid group and the R carbon
(H�O�C�C); the torsional potential of these two dihedral
angles used in the present study is similar to other force fields
commonly used for biological simulations.75�77 A recent study of
benzoic acid, acetylsalicylic acid, and ibuprofen (all of which
contain carboxylic acid functional groups) in water assumed that
a conventional NPT MD simulation of 5 ns was sufficient to
sample all of the important configurational phase space;78 the
present results suggest that this may not be the case irrespective
of the employed force field, motivating the present study.

Contrary to conventional MD simulations, the use of EE may
alleviate the need to identify the inadequacy of sampling and the
relevant reaction coordinate, dismissing the need to perform
subsequent simulations to compute the relevant correction to the
free energy. As seen in Figures 4�6, for EE calculations of
ibuprofen in water, methanol, and ethanol, respectively, both
conformations “a” and “b” of the problematic H�O�C�O
dihedral angle of ibuprofen in solution are adequately sampled.
This apparent gain in efficiency is a result of the introduction of

Figure 4. The visited states histogram of observing an H�O�C�O
dihedral angle of ibuprofen with EE in the target (solution) and
reference (ideal gas) subensemble for water. The x-axis corresponds
to the H�O�C�O dihedral angle, and the y-axis is the negative
logarithm of the visited states probability of observing an H�O�C�O
dihedral angle relative to the minimum negative logarithm visited states
probability. The error bars correspond to the uncertainty taken as the
standard deviation of five independent simulations.

Figure 3. The PMF of rotation of the carboxylic acid dihedral angle of
ibuprofen in the reference (ideal gas) subensemble and in water,
methanol, and ethanol The x-axis corresponds to the H�O�C�O
dihedral angle, and the y-axis is the dimensionless PMF (or relative free
energy). The error bars correspond to the uncertainty of the umbrella
sampling calculations.
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intermediate subensembles in which the torsional barrier of
rotation is reduced, greatly increasing the frequency of confor-
mational changes in these subensembles. Analogous to replica
exchange simulations, the conformations of the intermediate
subensembles are then propagated between the target and re-
ference subensembles, thereby effectively enhancing the confor-
mational sampling. This characteristic behavior may be seen in
Figure 7; we see in Figure 7 that when ibuprofen is interacting in
solution with scaled torsional potentials, the reduced barrier of
rotation allows for interconversion between conformation “a”
and “b”. These conformations are then propagated to our target
subensemble. However, we should expect that the lowering of
the torsional barrier of rotation in the intermediate subensembles
will expand the important configurational phase space of the
system. Nevertheless, as compared to conventional MD simula-
tions, the use of EE naturally decreases the configurational cor-
relation time, increasing the rate of exploration of phase space.33

Ultimately, the significant increase in computational time
necessary to sufficiently sample conformational changes of the
H�O�C�O dihedral angle far outweighs the cost associated with
the increase in the important configurational phase space of the
system.

Note that in Figures 4�6, it appears that data are missing for
conformations of the carboxylic acid dihedral angle near�90 and
+90�, corresponding to the maximum of the PMF in the ideal gas
(reference) and solution (target) states (Figure 3). However, this
is an artifact of collecting data after every proposed subensemble
transition (32 fs) and the propagation of conformations between
subensembles. The time spent at these intermediate dihedral
angles is short-lived in solution and in the ideal gas state, and as a
result, they are not seen in our collected data for the correspond-
ing subensembles. The observance of these dihedral angles is
confirmed, however, by the fact that we observe transitions

between conformation “a” and “b” during our EE simulations,
as shown in Figure 7. Similarly, note that in Figures 4�6, while
the observed distribution of conformations of the carboxylic acid
dihedral angle in the ideal gas (reference) subensemble are
statistically equivalent for all three systems studied, the uncer-
tainties over the range of �90 to �180 and +90 to +180� are
much larger than over than range of �90 to +90�. This results
simply because these states are so improbable. The uncertainty
could be reduced by running longer simulations; however, the
impact of this on the computed free energy is negligible.

Having confirmed that enhanced conformation sampling is
obtained with EE, we next draw our attention to the calculation of
the solvation free energy.Table 1 compares the free energies com-
puted using EE to reference calculations using BAR with additional
conformational corrections.15 The average absolute difference be-
tween EE and the reference calculations for the three systems studied
is 0.5 ( 0.6 kBT. For methanol and ethanol, agreement is excellent,
with the EE and reference results being statistically equivalent. For
water, the discrepancy is larger, 1.0( 0.7 kBT, where the uncertainty
is computed frompropagation of errors and is taken as one standard
deviation. This is still within two standard deviations, reaffirming
confidence in the performance of the EE method.

Furthermore, Table 1 demonstrates how poor the uncorrected
results are with conventional MD. If an unaware practitioner did
not perform the necessary PMF corrections, then they would
obtain nonsensical results. This is emphasized by the fact that the
PMF correction is 10.5 and 5.6 kBT for water and methanol,
respectively; the magnitude of the PMF correction is 89 and 24%
of the magnitude of the uncorrected (BAR) free energy in water
and methanol, respectively. These absurd results would have an
adverse effect on computed properties of biological interest.2,4,37,38

Additionally, two points may be made to emphasize the im-
proved performance gained from employing EE over conventional

Figure 5. The visited states histogram of observing an H�O�C�O
dihedral angle of ibuprofen with EE in the target (solution) and
reference (ideal gas) subensemble for methanol. The x-axis corresponds
to the H�O�C�O dihedral angle, and the y-axis is the negative
logarithm of the visited states probability of observing an H�O�C�O
dihedral angle relative to the minimum negative logarithm visited states
probability. The error bars correspond to the uncertainty taken as the
standard deviation of five independent simulations.

Figure 6. The visited states histogram of observing an H�O�C�O
dihedral angle of ibuprofen with EE in the target (solution) and
reference (ideal gas) subensemble for ethanol. The x-axis corresponds
to the H�O�C�O dihedral angle, and the y-axis is the negative
logarithm of the visited states probability of observing an H�O�C�O
dihedral angle relative to the minimum negative logarithm visited states
probability. The error bars correspond to the uncertainty taken as the
standard deviation of five independent simulations.
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MD simulations. First, for each system studied using EE, we
performed 5 independent 24 ns simulations, for a total of 120 ns
of simulation time. For the conventional MD calculations, 20
independent 5 ns simulations were conducted to obtain the
uncorrected solvation free energy, followed by 72 independent
0.5 ns simulations for the 3 necessary PMF corrections,15 for a
total of 136 ns of simulation time. Therefore, as seen in Table 1,
for less simulation time, EE computes solvation free energies
with comparable precision to the conventional MD simulations.
The efficiency of free energy calculations using conventional MD
is limited by the configurational correlation time of the system.
On the other hand, for EE, subensemble transitions are periodi-
cally attempted. When a transition is accepted, the system begins
sampling in a different subensemble. This transitioning reduces
the configurational correlation time of the system and increases
the rate of configurational phase space sampling, akin to replica
exchange simulations, leading to the apparent improved effi-
ciency of EE as compared to conventional MD. Note that both
the EE and conventional MD simulations could have been run

longer to improve the precision of the calculations; however, we
anticipate that the EE calculations would remain more efficient.

However, although the net simulation time required by the EE
simulations was less than the conventional MD simulations, it
should be noted that with parallelization, the “wall-clock” time of
the conventional MD simulations may be less than that of the EE
simulations. This is because conventional MD uses more short
simulations, while EE uses fewer long simulations. In practice,
however, we believe the benefits of running a few simulations to
get a solvation free energy directly as opposed to having to run
many simulations with subsequent postprocessing corrections
argues in favor of the EE method. In addition, implementation of
the present EE method in a replica exchange26 formalism would
be a promising solution to reduce the “wall-clock” time.

Second, for the present study, we expect that the relative
solvation free energies of ibuprofen in methanol and ethanol to
be related to their relative solubility limits by the following re-
lation:38

ΔβGmethanol
solv �ΔβGethanol

solv ¼ ln
xethanol
xmethanol

ð6Þ

where ΔβGsolv
methanol and ΔβGsolv

ethanol are the dimensionless Gibbs
free energy of solvation of ibuprofen in methanol and ethanol,
respectively, xmethanol and xethanol are the mole fraction solubility
limit of ibuprofen in methanol and ethanol, respectively, and
β = 1/kBT. Experimentally,

79 we find that ln xethanol/xethanol = 0.33.
This is in good agreement with the EE results which give
ΔβGsolv

methanol � ΔβGsolv
ethanol = 0.1 ( 0.4 but is contrary to the

results of the reference calculations which give ΔβGsolv
methanol �

ΔβGsolv
ethanol = �0.4 ( 0.4. That is, the reference calculations

incorrectly predict that ibuprofen is more soluble in methanol
relative to ethanol. While the results are statistically equivalent,
the EE result is more accurate. Note that the Gibbs free energy of
solvation for water predicted using the reference calculations is
in excellent agreement with the reported experimental value of
�11.8 kBT.

80 However, without further investigation, it is
impossible to determine whether this is a success of the model
or just a coincidence, especially since the present study does not
account for dissociation of the carboxylic acid functional group
in water.

5. SUMMARY AND CONCLUSION

Results have been presented that demonstrate that enhanced
conformational sampling may be readily achieved via expanded
ensemble molecular dynamics simulations. As a result of the
ability of the carboxylic acid functional group of ibuprofen to
form both intramolecular and intermolecular hydrogen bonds
in the presence of hydrogen-bond accepting solvents, the
H�O�C�O dihedral angle is subject to barriers of rotation of
14�20 kBT. Consequently, conventional molecular dynamics
simulations are unable to sufficiently observe conformational
changes between conformation “a” and “b” during reasonable
simulation time scales. This deficiency is particularly problematic
when performing free energy calculations for which all of the
important configurational phase space needs to be adequately
sampled to obtain meaningful results. While the computed free
energy may be corrected for inadequate sampling with subse-
quent calculations, this requires a careful practitioner to identify the
problem and the relevant reaction coordinate necessary for the
correction.

Table 1. Comparison of the Computed Dimensionless Gibbs
Free Energy of Solvation, ΔβGsolv, using EE and Conven-
tional Reference MD Simulationsa

EE reference

system ΔβGsolv ΔβGsolv ΔβGsolv
BAR ΔβGsolv

PMF

water �12.8 ( 0.3 �11.8 ( 0.5 �22.3 ( 0.4 10.5 ( 0.3

methanol �22.9 ( 0.3 �23.2 ( 0.3 �28.8 ( 0.1 5.6 ( 0.3

ethanol �23.0 ( 0.2 �22.8 ( 0.3 �22.5 ( 0.1 �0.3 ( 0.3
aThe reference results are composed of a BAR contribution (ΔβGsolv

BAR)
and a “confine-and-release” (PMF) correction (ΔβGsolv

PMF) accounting
for inadequate sampling of the ibuprofen H�O�C�O dihedral angle.
Uncertainties of the EE calculations are taken as the standard deviation
of the five independent simulations.

Figure 7. A sample plot of the time evolution of the EE subensemble
and the cosine of the H�O�C�O carboxylic acid dihedral angle in
water. The plot corresponds to 200 ps of simulation time from our first
of five independent simulations of ibuprofen in water and is representa-
tive of the enhanced sampling behavior observed in each solvent.



2917 dx.doi.org/10.1021/ct200377w |J. Chem. Theory Comput. 2011, 7, 2910–2918

Journal of Chemical Theory and Computation ARTICLE

On the other hand, the sampling of the important regions of
configurational phase space may easily be improved through use
of an expanded ensemble methodology. The method not only
boosts the rate of sampling of configurational phase space but
also additional subensembles may be introduced to improve the
conformational sampling of the solute. The additional suben-
sembles used to enhance conformational sampling do not require
an explicit definition of the relevant (burdensome) reaction co-
ordinate. Rather, the torsional potential of all rotatable dihedral
angles of the solute may be scaled without complication, while
ensuring sufficient conformational sampling of the solute.

The gain obtained by using an expanded ensemble method
was emphasized by calculating the solvation free energy of ibupro-
fen in water, methanol, and ethanol, and by comparing to reference
simulation results; the reference simulation results required sub-
sequent calculations to correct for insufficient sampling of the
carboxylic acid dihedral angle. Agreement for methanol and
ethanol was excellent. Deviations were larger for the results in
water, but the expanded ensemble and reference results were
within two standard deviations of each other. The agreement
reinforced the effectiveness of the expanded ensemble method.
Furthermore, the comparable precision obtained by the ex-
panded ensemble and reference calculations, with the expanded
ensemble requiring less simulation time, emphasized the en-
hanced computational efficiency gained. Also, the expanded en-
semble calculations require performing only a single simulation
and, unlike the reference results, were able to properly rank the
solubility of ibuprofen in the studied solvents.

The results are extremely promising and suggest that the
expanded ensemble may be used to study the solvation free
energies of a wide range of molecules having complicated intra-
molecular potential energy surfaces. Application of the method
to more complicated problems, including protein�ligand bind-
ing, is currently being successfully applied in one of our labora-
tories and will be described in detail in a subsequent paper.
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ABSTRACT: Computational techniques have been employed to fundamentally understand the behavior of helically structured
amylose in water/DMSO mixtures. Using a computationally generated amylose helix of 55 glucose residues, we have investigated
the time-dependent behavior of intra- and intermolecular hydrogen bonds, particularly between O2 and O3 of adjacent glucose
molecules and between O6 and neighboring O2 and O3 groups. The helix character was defined by the total number of residually
existing hydrogen bonds. Our results parallel the experimental finding that increasing the percentage of DMSO results in increasing
helical stability. It can be shown that O6�O2/O3 hydrogen bonds are preferentially lost when the helix starts to unfold to a finally
resulting random coil structure. While water is small enough to interact with every hydroxyl group at the helix surface and finally
penetrate the helix coil, DMSO can initially only form single hydrogen bonds to part of the OH groups of the amylose molecule,
thereby allowing a longer conservation of intramolecular hydrogen bonds that are necessary to maintain the helix. However, given a
long enough time for interaction, the helical structure of amylose is lost in water as well as inDMSO, yielding a random orientation of
the glucose strand.

’ INTRODUCTION

Amylose, naturally occurring as the unbranched component of
starch, is a linear polysaccharide consisting of R-(1f4)-linked
glucose units. Featuring a large number of rotatable glycosidic
linkages, the polymer can adopt a virtually unlimited variety
of possible conformations. As the actual secondary structure
greatly influences the properties of a molecule, the elucidation
of amylose conformations has been an objective of extensive
research. Most of the available structural information has been
obtained with X-ray1�3 and electron diffraction,4 which are
restricted to the study of crystalline phases. The conformation
of amylose in solution, however, still remains uncertain to some
extent, as it lacksmethods for direct unambiguous determination.
Results from static and dynamic light scattering as well as studies
of viscosity, sedimentation equilibrium, osmotic pressure, and
specific optical rotation led to differing conclusions for amylose
in water, ranging from a random coil without any helical
character5 to a random coil built up by helical segments6 of
more than 100 glucose units each.7 The latter conclusion has
essentially been supported by Monte Carlo studies.8�10 The
secondary structure of amylose in DMSO has also been inter-
preted controversially. While some authors describe it as a
random coil,6,11,12 others consider it to be rigidly or at least
openly helical.13�15 It has been pointed out that an influence of
molecular weight on the global amylose structure may not be
neglected in this respect.16 On the basis of NMR spectroscopic
results, the existence of intramolecular hydrogen bonds between
OH2 and OH3 of amylose in DMSO has been assumed,17,18

which as a result of a conformational analysis is supposed to be
not true for aqueous solution.19 Evidence from another more
recent study contradicts the occurrence of intramolecular H
bonding for the case of DMSO as well.15 According to Cheetham
and Tao,20 who performed optical rotation, limiting viscosity,
and 13C NMR measurements in addition to butanol and iodine

complexing experiments, the amylose conformation in water/
DMSO mixtures changes from a tight helix to a looser helix and
finally to a random coil with the water content increasing from 0
to 66%. Along with these transitions, the number of intramole-
cular OH2 to OH3 hydrogen bonds is said to diminish.20

With the intention of eventually studying inclusion complexes
of amylose with a variety of organic compounds on a molecular
basis, we have started to look into the stability of uncomplexed
amylose in water and DMSO and mixtures thereof by use of
force-field-based molecular modeling and molecular dynamics
techniques. We find that we can reproduce the differing behavior
of helical amylose in these solvents in that we can show an
increasing helical stability with an increasing percentage of
DMSO in DMSO/water mixtures. In the end, however, the
entropy driven intermolecular interactions win over intramole-
cular hydrogen bonds with the result that the helical structure
transforms to a random coil conformation.

’MATERIALS AND METHODS

Generation of a V-Amylose Molecular Model. The molec-
ular model of V-amylose employed in this study was derived
from X-ray fiber diffraction data1 of thin amylose�DMSO films.
Following a mathematical procedure, the provided set of atomic
coordinates was amplified to yield a 6-fold left-handed amylose
helix comprising 55 glucose residues.
General Setup of Molecular Dynamics Simulations. All

calculations were carried out with the simulation program
GROMACS using the GROMOS96 force field21,22 together
with the DMSO model proposed by Geerke et al.23 and either
the simple point charge (SPC) water model,24,25 the SPC/E
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model,26 or the TIP4P model.27 The parametrization of the
polysaccharide model was done in accordance with the para-
meters described by Lins and H€unenberger.28

Preparation of Solvent Mixtures. In a preliminary series of
simulations, starting configurations for six solvent compositions
were generated (water mass fractions ωwater = 0.0, 0.2, 0.4, 0.6,
0.8, 1.0), investigating the performance of three different water
models: SPC, SPC/E, and TIP4P. To this end, every mixture
was simulated for 25 ns with a time step of 2 fs by means of
the leapfrog integrator.29 The temperature was maintained at
298.15 K and the pressure at 1.0 bar using the V-rescale30 and
the Berendsen algorithm,31 respectively. Isothermal compressi-
bilities for the pure solvents were set equal to the experimental
values of 8.718 � 10�4 (kJ mol�1 nm�3)�1 for DMSO32 and
7.51 � 10�4 (kJ mol�1 nm�3)�1 for water,33 while a linear
combination of these values was assigned to the water/DMSO
mixtures.
The LINCS procedure34 with a fourth-order expansion of the

constraint coupling matrix was applied to constrain all bond
lengths and all bond angles involving H atoms. Van-der-Waals
interactions were treated using a twin-range cutoff scheme.35

Within a spherical short-range cutoff radius of 0.8 nm, the
van-der-Waals energy was calculated every time step on the basis
of a neighbor list updated every five time steps. The medium-
range interactions up to a long-range cutoff radius of 1.4 nm
were evaluated simultaneously with each neighbor list update
and kept constant between re-evaluations. To account for
electrostatic interactions, the reaction-field method36 was
employed with a cutoff of 0.8 nm, assigning a relative dielectric
permittivity of 4632 and 78.533 to pure DMSO and pure water,
respectively. For the mixtures, linear combinations of these
values were used.
As a measure of quality for the equilibration of the different

systems, the potential energy and the density F were monitored
during the preliminary simulations, with the latter being com-
pared to experimental data37 (see Figure 3). As a result, the
models SPC/E and SPCwere chosen to be used in all subsequent
calculations.
Amylose MD Simulations. The dynamic behavior of the

amylose helix was simulated in water�DMSO mixtures at six
different compositions (water mass fractions ωwater = 0.0, 0.24,
0.46, 0.63, 0.83, 1.0; see Table 1). For this purpose, the model
was centered in a dodecahedral box with a volume of approxi-
mately 885 nm3 and solvated by means of the previously
prepared solvent sets. After being subjected to short energy
minimization simulations (1. steepest descent algorithm: max-
imum step size 0.01 nm, force tolerance 10 kJ mol�1 nm�1; 2.
conjugated gradient algorithm: maximum step size 0.001 nm,

force tolerance 1 kJ mol�1 nm�1; not more than 1000 steps
either simulation), each of the systems thus generated was
simulated in a series of five MD simulations for a time of 25.2
ns, employing an identical MD setup to that for the preliminary
simulations (vide supra). This yields a total number of 55 MD
simulations, with 5� 5 simulations involving SPC/E water, 5�
5 simulations with SPC water, and 5 simulations in pure DMSO.
In addition to that, three analogous simulations were carried out
over an amplified period of 100 ns, one in each of the pure
solvents.
The number of hydrogen bonds was counted with the

program g_hbond in GROMACS, applying cutoffs of 3.5 Å
for the distance ODonor�OAcceptor and of 30� for the angle
H�ODonor�OAcceptor. Subsequently, the absolute numbers were
evaluated on the basis of moving averages with subsets of 10 ps
for the simulation interval between 0 and 0.05 ns, of 100 ps for
0.05 to 0.125 ns, and of 250 ps for the rest of the trajectory. In
reading the calculated values, fractional numbers were rounded
to the next integer; i.e., a value of 49.5 was interpreted as of 50 H
bonds, for instance.

’RESULTS AND DISCUSSION

Amylose Structure. In preparing our conformational studies
on amylose single helices in solution, the reproduction of an
idealized three-dimensional V-amylose model as a basis for our
work turned out to be a nontrivial problem. The use of compar-
able models has been scarcely reported, including the work of
Immel and Lichtenthaler on the hydrophobic topography of
amylose38 where a V-amylose helix comprising 30 glucose residues
was employed. Structural data available in the literature usually
are limited to the atomic coordinates of one glucose residue and
specification of the space group with the respective unit cell
measures.1�4 On the basis of these data, other residues can be
generated by applying the 65-helix symmetry operation, which of
course may be accomplished by means of suitable crystallo-
graphic software. In the following, we describe an alternative
mathematical procedure, that is readily doable with every spread-
sheet program and which is easily adaptable to the generation of
other amylose helices as well.
Themolecular model of V-amylose employed in this study was

derived from atomic coordinates based on X-ray fiber diffraction
data.1 Starting from the given position xBi of an atom Xi in glucose
unit i, every analogous atom Xi+1 in glucose unit i + 1 of the
amylose chain can be localized according to the recursive
mathematical sequence

xiþ1
ssF ¼

cosð � 2π=nÞ �sinð � 2π=nÞ 0
sinð � 2π=nÞ cosð � 2π=nÞ 0

0 0 1

0
BB@

1
CCA 3 xi

sF þ
0
0
p=n

0
BB@

1
CCA

ð1Þ
where i is the glucose residue number, n = 6 is the number of
repeating units per turn, and p = 8.05 represents the helix pitch
in Ångstroms. In detail, the formula consists of a rotational
matrix, generating a clockwise turn through 60� around the z axis,
and a displacement vector that results in a translational move-
ment by one-sixth of the helix pitch in the z axis direction. This
amplification procedure creates the required geometry of a 6-fold
left-handed helix (Figure 1). It, however, implies that adjacent
monosaccharide units overlap with atomsO4 andO1. Hence, the
coordinates of the redundant atoms O1, H1, and H4 were

Table 1. Overview of the Simulated Water DMSO Systems:
Number of Molecules, Water Mass Fraction ω, Water Mole
Fraction χ

H2O DMSO ω(H2O) χ(H2O)

29124 0 1.00 1.00

23596 1128 0.83 0.95

17759 2400 0.63 0.88

13028 3521 0.46 0.79

6870 4903 0.24 0.58

0 6869 0.00 0.00
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deleted in each contemplable position, respectively, so that the
generated overlapping monosaccharide units could be concate-
nated by glycosidic bonds.
In this manner, an amylose strand of nine 6-fold turns of

overall 54 glucose residues plus one additional capping unit was
generated (C330H552O276; see Figure 2). The resulting helical
structure measures about 5.4 Å in inner and 13.5 Å in outer
diameter, respectively, and is about 73.8 Å long.
Solvent Mixtures. Six varying solvent compositions were

provided for the amylose MD simulations, comprising pure
water, pure DMSO, and in addition four different binary
mixtures.
During the simulations for preparing the solvent starting

configurations, the status of equilibration was monitored by
means of the potential energy and the mass density F of the
systems. Despite the fact that these parameters leveled off
sufficiently within the first 100 ps, a total of 1 ns was provided
to ensure equilibration.
In order to compare and classify the performances of the

three employed water models in interaction with DMSO, the
mass density F was evaluated over the whole simulation period
of 25 ns, in this case leaving a margin of 0.2 ns for equilibration
(Figure 3).
Obviously, the models generally underestimate the experi-

mental density of the various water DMSO configurations. For
pure water, the mean relative deviation is 3.3% in the case of the
SPC model, while SPC/E and TIP4P obtain better approaches
with 0.8% and 1.3% difference, respectively. For absolute DMSO,
the simulated value averages 1.4% too low. Similar values for the
DMSO model and SPC water were previously reported by
Geerke et al.23

Correlation coefficients (Pearson’s r) between the calculated
data sets and the experimental record are 0.985 for SPC, 0.996
for SPC/E, and 0.991 for TIP4P. Hence, the nonlinear curvature

of the experimental density graph is sufficiently well reproduced
by all three of the models, with slightly better performances of
SPC/E and TIP4P.
Taking into account the higher level of complexity in TIP4P

and the resulting greater computational costs as compared to
SPC/E and SPC, this model was ruled out for further use in this
study. SPC/E, offering the best results at comparatively low
computational expense, was considered to be most suitable for
our purposes and was therefore employed as the main water
model in all subsequent amylose MD simulations. Moreover, all
simulations were also carried out with SPC water for further
validation, which is closely related to SPC/E and thus does not
require any additional setup procedures. For reasons of simplicity
and comprehensibility, only the results obtained using the SPC/
E model will be presented in the following.
Characterization of the Amylose Helix. The stability of a

V-amylose helical structure essentially relies on intramolecular
hydrogen bonds,20 distinguishable into two types of hydrogen
bonds that we define as interturn H bonds (O6�O2 and
O6�O3) and intraturn H bonds between adjacent glucose
units (O2�O3), respectively (Figure 4). The hydrogen bond
O6�O3 is taken into account despite its rather weak nature in
the crystal structure,39 as the actual O�O distances within the
amylose molecule are expected to fluctuate considerably in
solution. Another noteworthy issue with respect to the in-
tramolecular H-bond pattern is the effect of hydrogen bond
cooperativity. As hydroxyl groups can build both accepting
and donating hydrogen bonds, a continuous network can be
established. The resulting mutual polarization in the func-
tional groups leads to an enhanced stability of their hydrogen
bonding network.
The idealized amylose model used in this study exhibits a total

number of intramolecular hydrogen bondsNtot of 152, which will
be used as a reference point in the characterization of the helical
content of the employed amylose (Figure 4).
Degradation of the Helical Secondary Structure. In all of

the 55 amylose simulations, a continuous degradation of the
helical structure can be observed. After a simulated time of 25 ns,
the amylose chain independently of the solvent configuration has
adopted an apparently randomly coiled conformation, and no
helical content is evident anymore. This trend can numerically be
tracked on the basis of the sum of intramolecular hydrogen bonds
Ntot, which roughly speaking shows a continuous decline over
the simulation time. This is true in water, as well as in DMSO
and in mixtures thereof and finally results in a rather low number
of intramolecular hydrogen bonds after 25 ns in each case
(Figure 5).
Solvent Composition Impact on the Rate of Decomposi-

tion of the Helical Secondary Structure. A comparison of the
amylose structures in DMSO and water with respect to their

Figure 1. Schematic representation of the V-amylose modeling. By
successive application of eq 1 to the atomic coordinates of one given
glucose residue, a helical conformation is generated. The symmetry
operation consists of a clockwise turn through 60� around the z axis and
a displacement by 1.34 Å in the z axis direction.

Figure 2. Views of the calculated amylose model. Lateral view and view along the helix axis (z axis) with an estimated molecular surface.
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time-dependent development, however, reveals significant dif-
ferences. An illustration for this is shown in Figure 6, which
depicts schematic snapshots of the amylose molecule at selected
points in simulation time. In general, the total number of
hydrogen bonds present in the amylose helix after its generation
is already reduced to 80 in water and to 99 in DMSO,
respectively, after initial equilibration with the steepest descent
and conjugated gradient algorithms. In the following MD
simulation using water, Ntot is reduced rather quickly after only
0.21 ns from 80 to 50 (�Ntot/Nmax≈ 30%), resulting in a visible
distortion of the helical structure, while in DMSO at the same
time only aminor loss of H bonds and only slight deviations from
the ideal helix can be recognized. It takes about 4.71 ns until the
number of intramolecular H bonds in DMSO has reached a
similar value (Ntot = 47). By this time, the structure in water
already appears to be randomly orientated. Even after 25 ns,
when the amylose model does not exhibit any obvious helix
content anymore in either water or DMSO, there is still an
unambiguously higher Ntot in the aprotic solvent DMSO as
compared to water (17 versus 5). In this respect, it is noteworthy

that the exemplary performed MD simulations of the systems in
DMSO and water over a period of 100 ns show that even beyond
25 ns the numbers of H bonds continue to decrease, eventually
leveling out near zero (Figure 7). A differentiation of amylose
structures on the basis of intramolecular hydrogen bonds is then
not possible anymore.
In the case of water, the substitution of intramolecular by

intermolecular hydrogen bonds results in a considerable gain
of Coulomb interactions for the amylose molecule (Figure 8).
A comparison of the energy balances at the beginning
(≈ �11 700 kJ/mol) and at the end (≈ �16 600 kJ/mol) of
the 100 ns simulation time yields a benefit of around 4900 kJ/
mol. In contrast, the unwinding of the helix in DMSO is
obviously not energetically favorable in this context (deficit
of 1300 kJ/mol), so there must be a considerable influence of
entropic factors acting as a driving force for the decay
process.
Considering the entire series of six different solvent composi-

tions, one can detect a distinct gradual tendency in the rate of the
helical decay. Essentially, the number of H bonds (Ntot)
diminishes most rapidly in pure water and more slowly when
the DMSO mass fraction ωDMSO is increased. This is shown
in Figure 9. Starting from pure DMSO, the simulation time
τsim at which Ntot falls below values of 50%, 40%, and 30% of
the original value Nmax of 152 decreases with an increasing
percentage of water. The shape of the three curves is very
similar and indicates a gradual tendency of the decomposition

Figure 4. Schematic representation of the particular intramolecular
hydrogen bonds in V-amylose and their respective length values. The
table provides the absolute counts of the H bonds occurring in the used
model structure (55 glucose residues).

Figure 5. Reduction of Ntot over time in one exemplary series
of MD simulations in SPC/E water. The table provides values for
Ntot after 25 ns averaged over all five simulations for each solvent
mixture.

Figure 3. Density values fromMD simulations and experimental data37

versus mass fractions ω of water/DMSO in the solvent mixtures. The
points were calculated as mean values of the trajectory (25 ns) of a given
MD simulation, omitting an initial equilibration period of 0.2 ns. The
error bars represent 2σ confidence intervals, with σ being the estimated
standard deviation.
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rate of the helical secondary structure depending on the
solvent composition. Noteworthy is the change of the slope
at ωwater ≈ 63%, which resembles the discontinuities in a
number of physical properties of amylose reported in the
literature.20,6 In addition, the results compare well to the
experimental finding that an amylose helix is more stable in
80% to 100% DMSO than in water.40,20

This behavior can be explained by comparing the interaction
of the two solvents, water and DMSO, with the amylose helix
(Figures 10 and 11). The water molecule is strongly dipolar and
is capable of forming a maximum of four hydrogen bonds at a
time, two as a hydrogen donor and two as a hydrogen acceptor.
Furthermore, it is small enough to deeply intrude into the
polysaccharide’s secondary structure, thereby weakening the
intramolecular hydrogen bond network. DMSO, on the other
hand, is equally polar but can only act as a 2-fold hydrogen bond
acceptor. In addition, occupying a van der Waals volume about
4.5 times as high as that of water, and featuring a rather branched
structure, DMSO is by far the bulkier molecule. Due to this
sterical hindrance, it is impossible for DMSO to bind to each of
the hydroxyl groups on the amylose surface (Figure 11). Never-
theless, it is conceivable that one DMSO molecule for instance
simultaneously binds both OH2 and OH3 of one single or two
adjacent glucose molecules. However, such an intensive interac-
tion would create a rather unfavorable situation as it would lower
the partial negative charge of the DMSO oxygen and thus would
result in two rather weak H bonds. Instead, a more convenient
situation would exist, if one DMSO molecule each attached to
only one or two of the three different hydroxyl groups in the
amylose chain, since this would leave two or at least one OH
group per glucose residue free, which in turn would then be
available for intramolecular hydrogen bonding. This results in a

Figure 6. Corresponding snapshots of the amylose secondary structure (schematic) from two exemplary MD simulations in pure water (left) and pure
DMSO (right). The depicted conformations were chosen at a point in simulation time where the ratioNtot/Nmax in the two solvents is 0.3, which is after
0.21 ns in water, while only after 4.71 ns in DMSO. In addition, the starting point is shown, i.e., after geometrical optimization using steepest descent and
conjugated gradient energy minimization, as well as the end point of the simulation after 25 ns.

Figure 7. Development of Ntot over 100 ns in pure DMSO and
pure water.
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strengthening effect of cooperative hydrogen bonding described
in the literature.40

As a result, after equilibration of the water box including the
OH groups of amylose with an otherwise constrained helical
structure, we find water molecules within H bond distance to
every hydroxyl group of amylose. In a representative snapshot of
this simulation, shown in Figure 10, one can see that at a given
time adjacent OH2 and OH3 groups can simultaneously be
hydrated by water molecules, independent of being situated on
adjacent glucose residues (A) or on the same residue (B). The
spatial demand of water is small enough that the OH6 groups
close by are at the same time also hydrated and are in some cases
even coordinated by two water molecules (C).
In contrast, as DMSO molecules are about 4.5 times as

voluminous as water molecules and can only act as a 2-fold
direction-dependent hydrogen bond acceptor, DMSO only in-
completely binds the amylose hydroxyl groups, and there are
always one or two OH groups free per glucose unit. As a result,
we find a lower molar density of DMSO on the helix surface as
compared to that of water (Figure 11).
Interestingly, the graph in Figure 9 shows a strongly nonlinear

behavior for the disruption of the helical structure, featuring a
very flat slope in the region ofωwaterJ 60% and a rapid increase
when more DMSO is added to the mixture, indicating that
there is a limiting concentration of DMSO above which the decay
of intramolecular hydrogen bonds in amylose is progressively

decelerated. Qualitatively similar discontinuities have been ob-
served for a number of physical properties of amylose in the
regarded binary system, such as limiting viscosity20 and specific
optical rotation.6 Moreover, evidence has been presented that a
minimum volume fraction of ∼60% water (equivalent to ωwater ≈
0.6) is necessary for amylose to be capable of forming detectable
complexes with butanol20 or iodine.18,20 These observations have
partially been attributed to the relative effectiveness of water
and DMSO in solvating amylose, i.e., a competitive behavior
of the two solvents.18,20 Accordingly, the role of water in the

Figure 8. Intra- and intermolecular Coulomb interaction energies of
amylose over 100 ns in pure DMSO and pure water.

Figure 10. Orthographic snapshot of a V-amylose molecule solvated by
water. Dashed lines (cyan) indicate hydrogen bonds. For the sake of
clarity, only selected water molecules are drawn in CPK style. Due to
their small size and ability to donate and accept hydrogen bonds in four
different directions, water molecules can bind theoretically every
hydroxyl group of amylose at one time. The picture shows examples
for simultaneous hydration of OH2 and OH3 on adjacent glucose
residues (A) as well as on the same residue (B). The respective opposing
OH6 groups are also in a hydrated state, in one case even coordinated by
two water molecules (C).

Figure 9. Average simulation period for a reduction ofNtot/Nmax below
values of about 50%, 40%, and 30% of the initial value as a function of
solvent composition. For example, the upper line gives the results for the
six solvent mixtures used from pure DMSO (left) to pure water (right)
and indicates the average point in simulation time at which the total
number of intramolecular H bonds of amylose Ntot in the given solvent
mixture has decreased to 30% of its initial value (Nmax = 152).
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solvation of amylose and its influence on the helical structure can
be considered to be predominant over that of DMSO exclusively
in the region ofωwaterJ 60%, which is equivalent to a molar ratio
of water/DMSO of at least 6:1 and essentially coincides with the
flat region of the curves in Figure 9.
At higher DMSO concentrations, there is presumably not

enough free water present for an effective amylose hydration
due to the formation of DMSO hydrates. Data on excess heat
of mixing, density, and viscosity41 as well as NMR42 and neutron
diffraction experiments43,44 and molecular dynamics simula-

tions43,45�47 have revealed that these water�DMSO complexes
consist of two or three water molecules attached to one single
DMSO molecule strongly stabilized by hydrogen bonds. The
higher basicity of the DMSO oxygen in comparison with the
water oxygen makes it a better acceptor for available hydrogen
bonds, consequently making the DMSO hydrates more energe-
tically favorable than just water�water interactions. The reduced
number of mobile water molecules in the mixture results in
decreased stress on the intramolecular hydrogen bonding net-
work of amylose. It is even conceivable that DMSO hydrates
interact with amylose hydroxyl groups in a similar way as
DMSO molecules do, thereby strengthening the remaining
amylose H bonds.40 Hence, the predefined helical conformation
is degraded at a lesser rate than in pure water.
Above the threshold ofωDMSO≈ 80%, which corresponds to a

molar ratio of DMSO/water of about 1:1, solvation of amylose by
free DMSO may be expected to predominate over solvation by
water and hydrated DMSO, respectively, particularly since DMSO
is the stronger hydrogen bond acceptor than water.40 This leaves a
large percentage of the amylose H-bonding network intact, which
yields a further increase in conformational stability accompanied by
another rise in the slope of the time graphs in Figure 9.
Differentiation of Hydrogen Bonds. The differentiation of

the intramolecular hydrogen bonds was made in terms of inter-
turn and intraturn character, referring to turns as the repetitive
loops of the helical structure. O6�O2 and O6�O3 H bonds
were treated as equivalent since either of them represents an interturn
connection within the same pair of glucose residues (Figure 4).
Figure 6 reveals that O2�O3 and O6�O2/3 H bonds are

degraded at unequal rates, in water as well as in DMSO. At the
starting point (0 ns), i.e., after energy minimization, more than
half of the O6�O2/3 H bonds have already been destroyed,
probably in part due to the fact that one of the two bonds had to
be considered weak even in the underlying crystal structure.

Figure 11. Orthographic snapshot of a V-amylose molecule solvated by
DMSO. Dashed lines (cyan) indicate hydrogen bonds. For the sake of
clarity, only selected DMSOmolecules are drawn in CPK style. Note the
lowermolar density of DMSOon the helix surface as compared to that of
water (Figure 10).

Figure 12. Total number of H bonds NO2�O3 (black) and NO6�O2/3 (red) versus simulation time (ps). Each of the six solvent ratios investigated is
shown as a representative graph from the series of five MD simulatons.
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In the following simulation period, there is a permanent dom-
inance of intraturn over interturn H bonds. In water, this remains
on the same order of magnitude, while in DMSO, it distinctly
increases between 0.21 and 4.71 ns. From that point on to the
end of the simulation, the difference diminishes in DMSO as the
remaining number of O6�O2/3 H bonds is close to zero anyway.
The time dependence of inter- and intraturn H bonds is given

in Figure 12. While each solvent system was simulated in a series
of five MD simulations, the graphs show the data of only one
representative exemplary simulation. Generally, the impression
of a dominance of O2�O3 over O6�O2/3 H bonds is con-
firmed here, which implies that the intraturn H bonds are
retained longer than the interturn ones. From this, it can be
hypothesized that the first step of the helix degradation consists
of a widening of the helical pitch by breaking the interturn H
bonds directed along the z axis, meaning that the helix loses its
compactness in this direction.
The degree of helical curvature depends on the orientation of

subsequent glucose residues toward each other, i.e., basically on
the glycosidic angles ϕ andψ. Alterations of these angles directly
influence the length and thus the stability of the O2�O3H bond
but do not implicitly break it within a certain margin. The overall
conformational changes that result from the sum of many of
these small torsional alterations across the amylose chain are of
course much more significant. As the O6�O2/3 H bonds are
situated between different turns of the helix and are therefore
much more conformation dependent than the relatively fixed
O2�O3 H bonds, one can expect a greater distortion for these.
This explains the longer conservation of intraturn H bonds as
compared to interturn ones.
The dominance of O2�O3 over O6�O2/3 H bonds as seen

in Figures 6 and 13 and its chronological development is by far
most significant for pure DMSO and is gradually reduced along
with the increasing percentage of water. As the helical loops start
to come apart, the sterically demanding DMSO molecules can
first of all solvate the OH6 group, having a rather exposed
location remote from the glucose ring. OH2 and OH3, in
contrast, cannot be solvated simultaneously, at least not until
the amylose chain becomes further unfolded and is completely
surrounded by the solvent. In the process of helix degradation,
this leads to an increased tendency of DMSO for breaking
interturn H bonds. The smaller water molecules (free or in
DMSO hydrates) on the other hand can readily solvate OH2 and

OH3 at the same time so that the preference for solvation of
OH6 is not as pronounced as in pure DMSO.
Furthermore, this effect can also clearly be seen at the end of

the simulation. Figure 13 shows that after a simulation period of
25 ns the average NO6�O2/3 of each of the six solvent mixtures is
not higher than 3.6. With regard to the standard deviation
ranging from 1.1 for ωwater = 63% to 2.8 for ωwater = 100%,
the difference of interturn H bonds between the solvent systems
is statistically identical. There is, however, the expected trend in
the respective NO2�O3 values. While there is a comparatively
high average value of 17.2 for ωwater = 0%, it gradually decreases
to values between 3 and 5 for ωwater = 63% to 100%. This curve
shape obviously corresponds to the graphs in Figure 9 and may
similarly be interpreted taking into account the specific hydrogen
bonding capacities, steric features, and mixture characteristics of
the two solvents, water and DMSO.
A general aspect of the parameterNtot and its use in describing

the helix character of amylose becomes apparent in the differ-
entiation of hydrogen bonds as shown in Figures 6, 12, and 13.
The exemplary amylose structures at 0.21 and 4.71 ns in water

Figure 14. Time-dependent development of the glycosidic torsion
angles ϕ (O5�C1�O4�C4) and ψ (C1�O4�C4�C3) in 100 ns
simulations using water andDMSO as solvents, respectively. Data points
are shown in differently colored time intervals of 5 ns. For the sake of
clarity, only selected time intervals are shown in the region between 25
and 100 ns.

Figure 13. Average numbers of inter- and intraturn H bonds vs ωwater,
obtained after a simulation time of 25 ns.
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and DMSO, respectively, are rated as very similar in terms ofNtot

despite being conformationally rather different. A numerical
difference only becomes visible on inspection of NO2�O3 and
NO6�O2/3. While in water, the numbers are on the same order of
magnitude, Ntot in DMSO is almost exclusively based on
O2�O3 H bonds. This finding demonstrates that the total
number of intramolecular hydrogen bonds Ntot only to some
extent correctly describes a generally defined “helical content” in
the conformation of amylose. An exhaustive comparison of two
such conformations in terms of their helix character, therefore,
requires a weighting of the particular interturn and intraturn
summands of Ntot.
This can alternatively be analyzed by evaluating the glycosidic

torsion angle distribution, which is depicted in Figure 14 for
the two 100 ns simulations in pure water and pure DMSO. In
either case, the helical degradation is characterized by distinct
changes of the dihedral angles ϕ (O5�C1�O4�C4) and ψ
(C1�O4�C4�C3). Especially ϕ undergoes a pronounced
decrease, namely, from an average 107� (τsim = 0 to 0.1 ns) to
an average 62� (95 to 100 ns) in DMSO and from 102� to 63�
in water. The major part of this development proceeds during
the first 5 ns of the simulation in water, whereas the process is
more extended in DMSO, which parallels the pathways of the
respective number of intramolecular H bonds Ntot (Figure 7).

’CONCLUSION

Modeling of Amylose Structures. In spite of the extensive
research on structural features of V-amylose, the availability of
atomic coordinates for this system is rather limited. X-ray and
electron diffraction data in the literature1�4 yield structural
data of one glucose unit and do not provide atomic data for an
amplified structure of monomers in either one of the known
amylose conformations. Building an idealized model structure of
customized length, as the one used in this study, therefore
requires the utilization of adequate crystallographic software that
allows performing the respective symmetry operations in order
to generate a molecule coordinate file. As an alternative, the
rather simple linear algebraic approach presented in this work has
the advantage that it can technically be managed by a common
spreadsheet program or even a programmable calculator.
Modeling of Water/DMSO Mixtures. In preparation for our

studies on the behavior of an amylose helix in water, DMSO, and
various mixtures thereof, we have compared the performances of
three water models (SPC,24,25 SPC/E,26 and TIP4P27) in terms
of their ability to reproduce an experimental density record37 of
various water DMSO mixtures by molecular dynamics proce-
dures (Figure 3). All three models reproduce the known non-
linear density behavior of the considered series of binary solvent
mixtures to a satisfactory degree. Despite its lower level of
complexity as compared to TIP4P, the SPC/E model provides
the best approximation to the experimental density curve. It can
thus be recommended for being used in simulations of water
DMSOmixtures employing the DMSOmodel by Geerke et al.23

Amylose MD Simulations. Our results suggest that with
enough time given for interaction between amylose and the
solvent the helix is not stable in either water or DMSO and rather
unfolds to a randomly coiled structure. The intramolecular H
bonds between OH2 and OH3, OH6 and OH2, and OH6 and
OH3 hydroxyl groups of adjacent glucose residues, which are
responsible for maintaining the helical structure, are lost in favor
of intermolecular H bonds between the solvent and the OH

groups of amylose combined with a gain in entropy. We can
reproduce the experimentally known difference in helix stability20,40

with a progressively faster disruption of the helical structure with an
increasing percentage of water in water/DMSOmixtures, as shown
in Figures 6 and 9. While Figure 6 gives a good visual impression of
the different behavior of the amylose helix in water and DMSO,
respectively, the strongly nonlinear behavior of the graph in Figure 9
even reflects the observed discontinuities in physical properties of
the system described in the literature, such as limiting viscosity,20

specific optical rotation,6 and the ability to form detectable com-
plexes with butanol20 or iodine.18,20 Obviously, water molecules
promote the helix decay due to their small size and increased
hydrogen bonding capabilities as compared with DMSOmolecules.
Between approximately 40% and 80% DMSO, the formation of
DMSO hydrates decelerates the helix degradation by reducing the
number of free water molecules, and above 80% DMSO, the excess
of DMSO molecules leads to another even more distinct decelera-
tion of the process.
Our modeling results furthermore can differentiate between

the types of H bonds involved in stabilizing the helical amylose
structure. We can show that there is a dominance of O2�O3
versus O6�O2/3 H bonds of adjacent glucose residues; i.e., the
intraturn H bonds are more stable than the interturn ones
(Figures 6, 13). This result suggests that helix degradation
begins with a widening of the helical pitch by breaking the
interturn H bonds directed along the z axis, accompanied by a
loss of compactness in this direction. On account of the higher
steric demand of DMSO molecules relative to water mol-
ecules, their preference for breaking O6�O2/3 H bonds is
considerably more significant, especially as the OH6 groups
are more readily accessible than the OH2 and OH3 groups close
to the glucose ring.
In summary, our simulations show that, independent of the

solvent, the helical structure is destroyed in water as well as in
DMSO, with the distinct difference of a slower interference of
DMSO with the structure preserving intramolecular H bonds of
amylose. In the long run, however, the vast excess of solvent
molecules substitutes the intra- with intermolecular H bonds,
which is driven by entropic factors.
A stable V-helical amylose structure, therefore, requires more

stabilization than can be derived from intermolecular H bonds.
Themost commonly known example is of course the well-known
complex of iodine and starch.48,49

Stabilization in this case is gained from the inside of the helix
as amylose and iodine form an inclusion complex. Such com-
plexes are also known with organic compounds, even as small as
butanol.50 More prominent examples, however, are inclusion
complexes from amylose and fatty acids or fatty alcohols51 and
those formed by vine-twining polymerization, when glucose is
enzymatically polymerized around synthetic polymers.52,53

These systems are of great potential industrial use, and simula-
tions along these lines are, therefore, in progress in our laboratory.
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and Noncovalent Interactions: OMx Methods Are Almost As Accurate
and Robust As DFT-GGA Methods for Organic Molecules
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ABSTRACT: Semiempirical quantum mechanical (SQM) methods offer a fast approximate treatment of the electronic structure
and the properties of large molecules. Careful benchmarks are required to establish their accuracy. Here, we report a validation of
standard SQM methods using a subset of the comprehensive GMTKN24 database for general main group thermochemistry,
kinetics, and noncovalent interactions, which has recently been introduced to evaluate density functional theory (DFT) methods
(J. Chem. Theory Comput. 2010, 6, 107). For all SQMmethods considered presently, parameters are available for the elements H, C,
N, and O, and consequently, we have extracted from the GMTKN24 database all species containing only these four elements
(excluding multireference cases). The resulting GMTKN24-hcno database has 370 entries (derived from 593 energies) compared
with 715 entries (derived from 1033 energies) in the original GMTKN24 database. The current benchmark covers established
standard SQM methods (AM1, PM6), more recent approaches with orthogonalization corrections (OM1, OM2, OM3), and the
self-consistent-charge density functional tight binding method (SCC-DFTB). The results are compared against each other and
against DFT results using standard functionals. We find that the OMx methods outperform AM1, PM6, and SCC-DFTB by a
significant margin, with a substantial gain in accuracy especially for OM2 and OM3. These latter methods are quite accurate even in
comparison with DFT, with an overall mean absolute deviation of 6.6 kcal/mol for PBE and 7.9 kcal/mol for OM3. The OMx
methods are also remarkably robust with regard to the unusual bonding situations encountered in the “mindless”MB08�165 test
set, for which all other SQM methods fail badly.

1. INTRODUCTION

Semiempirical quantum mechanical (SQM) methods are
based on self-consistent-field molecular orbital theory. They
employ a minimal valence basis set, integral approximations,
and parametrized matrix elements that are normally fitted against
experimental data. The most popular SQMmethods make use of
the NDDO (neglect of diatomic differential overlap) integral
approximation as implemented in the MNDO (modified neglect
of differential overlap) model,1 for example, AM1,2 PM3,3 and
PM6.4 More recent NDDO-based approaches go beyond the
MNDO model by including orthogonalization corrections into
the Fockmatrix. OM15 incorporates these corrections only in the
one-center part of the core Hamiltonian matrix, while OM26,7

and OM38 include them also in the two-center part. OM3 differs
formally from OM2 by neglecting some of the smaller correction
terms, which results in a speedup without loss of accuracy.8,9

SQM methods are widely applied as an efficient tool in
computational studies of large molecules, and there are several
reviews that describe the underlying theory and typical
applications.10�15 In their formalism, they retain the essential
physics of molecular systems by variationally optimizing the
electronic wave function (thereby taking into account, for
example, polarization and charge transfer effects). However,
the severe approximations adopted in these methods must cause
errors which can only partially be compensated for by the
parametrization against (mostly experimental) reference data.
Careful validation of SQMmethods is thus essential to establish-
ing their accuracy and robustness, and corresponding evaluations
are available for all popular SQM methods. These evaluations

normally utilize benchmark data sets assembled in the SQM
community2�4,8,9,16�19 as well as data commonly used in the ab
initio and DFT communities like the G2 and G3 sets.20�22

Validations of existing SQM methods need to be updated
when more comprehensive and/or more accurate benchmark
data sets become available. In this article, we report the results of
such an evaluation against the recently proposed GMTKN24
database23 for two of the established MNDO-type methods
(AM1, PM6) and three NDDO-based methods with orthogo-
nalization corrections (OM1, OM2, OM3). AM1 is still the most
widely used SQM method, PM6 is the latest and most refined
parametrization of MNDO-type models, and the methods of the
OMx family have been most promising in previous SQM
validations.9 In our comparisons, we include the self-consistent-
charge density functional tight binding (SCC-DFTB) method,24

which is derived within a simplified DFT formalism but shares
many features with standard SQMmethods.9 Furthermore, we also
address the performance of standard DFT methods (PBE,25

B3LYP26,27) to put the SQM results into perspective.

2. THE GMTKN24 BENCHMARK DATABASE

Recently, Goerigk and Grimme introduced a comprehensive
quantum chemistry benchmark database for general main group
thermochemistry, kinetics, and noncovalent interactions named
GMTKN24.23 It consists of 24 different, chemically relevant
subsets that are either taken from the literature or compiled

Received: June 22, 2011
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specifically for the purpose of benchmarking. It includes both
theoretical or experimental reference values. When running the
full benchmark (including multireference cases), 1049 single-
point calculations are needed to determine 731 relative energies,
which can then be compared with the accurate reference data.
Extensive tests have shown the chemical relevance of the
GMTKN24 database and its usefulness for evaluating the overall
performance of theoretical methods. Goerigk and Grimme
recommend validation against their benchmark data for the
evaluation of the “true” performance of new quantummechanical
methods.23

Table 1 lists, in alphabetical order, the 21 subsets of the
GMTKN24 database that contain molecules consisting only of
the elements H, C, N, and O (excluding three presently irrelevant
subsets without such molecules). Several subsets focus on non-
covalent interactions and conformational preferences (ACONF,
IDISP, PCONF, S22, SCONF, WATER27). Others address
reaction, isomerization, and atomization energies (BH76RC,
DARC, G2RC, ISO34, W4�08); barrier heights (BH76,
BHPERI); electron affinities (G21EA); ionization potentials
(G21IP); proton affinities (PA); and radical stabilization energies
(RSE43), and there are two sets that collect difficult cases for DFT
methods (DC9, SIE11). The MB08�16528 subset is special in that
it is based on a diversity-oriented approach. It consists of randomly
generated artificial molecules which are constructed by applying
systematic constraints (rather than any chemical bias) to open the
narrow structural space of chemical intuition and to produce
“electronically difficult” specieswith unusual and diverse geometries.
The artificial molecules in the MB08�165 subset contain eight
main-group atoms and are of single-reference character. The
MB08�165 reference data are reaction energies for decom-
position into small hydrides and diatomics obtained from coupled
cluster [CCSD(T)] calculations with complete basis set (CBS)

extrapolation.28 The performance for the MB08�165 subset is
considered to be a good indicator for general robustness in diverse
chemical applications; this is supported by the finding that the
performance ranking for DFT functionals is similar for the
MB08�165 subset and for the whole GMTKN24 database,
indicating the usefulness of this “mindless” benchmark for a quick
performance assessment.23,28

In the original GMTKN24 publication, the authors used mean
absolute deviations (MADs) in their comparisons for individual
subsets and weighted total MADs (WTMADs) in their overall
statistical analysis.23 WTMADs take into account the number of
entries in the test set (like a simple overall MAD would) but also
subset-specific factors defined as the ratio between the corre-
sponding MADs for the BLYP and B2PLY-D methods, in order
to capture the “difficulty” of a certain subset and the importance
of crucial dispersion interactions. Because of the large difference
in the accuracy of BLYP and B2PLYP-D for dispersion effects,
the subsets focusing on noncovalent interactions acquire parti-
cularly large weights and thus contribute prominently to the
WTMAD values: the IDISP, PCONF, and S22 sets account for
38 out of 740 entries in the database and typically for almost one-
fifth of the WTMAD value.23 As a result, the inclusion of
dispersion corrections in DFT methods leads to a general and
rather large improvement with regard to WTMAD but to a less
pronounced and less systematic improvement with regard to the
overall MAD (OVMAD) for the whole database (which is
available from the Supporting Information of the original
GMTKN24 publication23). Furthermore, for DFT methods
without dispersion corrections, the ranking of the different
functionals is similar with respect to the WTMAD and OVMAD
values. In this article, we shall present both WTMAD and
OVMAD values but focus on the latter in the statistical analysis
since they seem better suited for a general-purpose evaluation

Table 1. Description of the Subsets within the GMTKN24-hcno Databasea

set description no. entries (orig.b) av. energy reference data

ACONF relative energies of alkane conformers 15(15) 1.8 W1h-val

BH76RC reaction energies of the BH76 set 17(30) 21.5 W1 and theor. est.

BH76 barriers of substitution and association reactions 38(76) 18.5 W1 and theor. est.

BHPERI barriers of pericyclic reactions 22(26) 19.4 W1 and CBS-QB3

DARC reaction energies of Diels�Alder reactions 14(14) 32.2 est. CCSDT/CBS

DC9 nine difficult cases for DFT 6(9) 35.7 theor. and expt.

G21EA adiabatic electron affinities 11(25) 33.6 exptl.

G21IP adiabatic ionization potentials 13(36) 250.8 exptl.

G2RC reaction energies of selected G2/97 systems 12(25) 50.6 exptl.

IDISP intramolecular dispersion interactions 6(6) 14.1 theor. and exptl.

ISO34 isomerization energies of organic molecules 34(34) 14.3 exptl.

MB08�165 decomposition energies of artificial molecules 21(165) 117.2 est. CCSD(T)/CBS

O3ADD6 energies and barriers for ozone reactions 6(6) 22.7 est. CCSD(T)/CBS

PA adiabatic proton affinities 8(12) 174.9 est. CCSD(T)/CBS and W1

PCONF relative energies of tripeptide conformers 10(10) 1.5 est. CCSD(T)/CBS

RSE43 radical stabilization energies 28(43) 7.5 est. CCSD(T)/CBS

S22 binding energies of noncovalently bound dimers 22(22) 7.4 est. CCSD(T)/CBS

SCONF relative energies of sugar conformers 17(17) 4.9 est. CCSD(T)/CBS

SIE11 self-interaction error related problems 4(11) 34.0 est. CCSD(T)/CBS

W4�08woMR atomization energies of small molecules 39(83) 237.5 W4

WATER27 binding energies of water/H+/OH� clusters 27(27) 82.0 est. CCSD(T)/CBS; MP2/CBS
aBased on a similar table in ref 23. bNumber of entries in the full GMTKN24 database.
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of SQM methods (avoiding special emphasis on dispersion
interactions). Regardless of this choice, it is clear that dispersion
corrections are essential when noncovalent interactions play an
important role, and we thus evaluate the performance of SQM
methods without and with dispersion corrections.29�33

An extended version of the GMTKN24 database, named
GMTKN30,34 was published shortly after completion of our
study. The new database contains six additional benchmark sets,
three of which are made up of molecules with elements other
than H, C, N, and O (ALK6, RG6, HEAVY28) and can thus not
be applied here. The remaining three sets address further non-
covalent interactions (ADIM), further isomerization reactions
(ISOL22) for large molecules with less accurate SCS-MP3/CBS
reference data, and hydrocarbon bond separation reactions (BSR36)
with significant differences between the theoretical and experi-
mental reference values. We consider these additional data in the
GMTKN30 database34 to be less crucial in the present context
and thus decided to disregard them and to focus on the com-
parison between GMTKN24 and GMTKN24-hcno results.

3. THE GMTKN24-HCNO BENCHMARK DATABASE

Starting from the original GMTKN24 database, we have
compiled the GMTKN24-hcno benchmark for SQM methods
by stripping the 715 relative energies (1033 single-point en-
ergies) of the original set (excluding multireference cases) from
all entries that contain elements other than H, C, N, and O, thus
arriving at 370 relative energies (593 single-point energies) that
are suited for all common SQM methods considered presently.

Table 1 shows the resulting number of entries for all subsets.
From the original GMTKN24 database, the three subsets

focusing on aluminum (AL2X), boron (NBRC), and sulfur
(CYCONF) chemistry were completely skipped, as all entries
contain either aluminum, boron, or sulfur. Owing to its pro-
nounced diversity, only 21 of 165 entries of the MB08�165
benchmark could be kept. A large number of entries had to be
skipped also for the G21EA, G21IP, G2RC, SIE11, and W4�08
sets (up to two-thirds) and for the BH76RC, BH76, BHPERI,
DC9, PA, and RSE43 sets (up to one-half). All entries could be
retained for ACONF, DARC, IDISP, ISO34, O3ADD6,
PCONF, S22, SCONF, and WATER27.

Is the difficulty of the GMTKN24 benchmark greatly dimin-
ished by leaving out the entries specified above? This question
can be addressed by comparingMADs fromDFT calculations for
the full GMTKN24 database and the reduced GMTKN24-hcno
database. We have thus performed PBE/TZVP calculations for
the reduced and full sets and compared the results with the
published PBE/(aug-)def2-QZVP data for the full set.23 The
MADs for most subsets are obviously quite similar (see Table 2),
indicating that the reduced GMTKN24-hcno subsets indeed
retain the characteristic features of the full GMTKN24 subsets.
Large discrepancies are found only in subsets that focus on
electron affinities (G21EA) or negatively charged species
(WATER27) and thus exhibit a strong basis set dependence in
DFT calculations, as has been documented previously.23

One may also ask whether the overall performance of SQM
methods can be assessed from benchmarking systems containing
only H, C, N, and O. This can be checked for SQMmethods that
have also been parametrized for other elements, by adding to
GMTKN24-hcno the corresponding reference data from the full
GMTKN24 database. We tested this with PM6 for the full
MB08�165 subset (165 rather than 21 entries) and found only
small changes in performance (MAD 119.0 rather than 128.4
kcal/mol). In the case of the orthogonalization-corrected SQM
methods (OM1, OM2, OM3), we extended the GMTKN24-
hcno database by including all molecules also containing fluorine
(413 instead of 370 entries), which led to only minor changes of
0.1�0.4 kcal/mol in the OVMAD values, with similar trends in
performance for the fluorine-containing and othermolecules (for
further details see section 5.3).

In summary, these tests suggest that the GMTKN24-hcno
benchmark database is well suited to serve for the purpose of
evaluating SQM methods.

4. COMPUTATIONAL DETAILS

PBE25 and B3LYP26,27 DFT calculations with and without
dispersion corrections of DFT-D2 type35 were done using the
Turbomole 5.9 software,36 TZVP Gaussian basis sets,37 and (in the
case of PBE) the resolution-of-identity approximation38,39 for two-
electron integrals. SQM calculations were carried out with
MOPAC200940 for AM1 and PM6; with DFTBplus41 for SCC-
DFTB; and with MNDO9942,43 for OM1, OM2, and OM3, as well
as PM33 and PM3-PDDG.18 The SQM methods were enhanced
with standard D2 dispersion corrections using the published para-
meters for AM1-D,33 PM6-D,33 OMx-D,30 and SCC-DFTB-D.31

These corrections do not involve any changes in the standard SQM
parameters, unlike an alternative AM1-based approach.29 The SQM
calculations for open-shell molecules employed a restricted ROHF
treatment in the case of MNDO99 and an unrestricted UHF
scheme in the case of MOPAC2009. Entries involving triplets or
quartets were skipped for SCC-DFTB, because the available soft-
ware did not allow black-box benchmarking of such species.

Table 2. Mean Absolute Deviations (MADs) in kcal/mol
for the GMTKN24-hnco and Full GMTKN24 Sets with PBE

method PBE/(aug-)def2-QZVPa PBE/TZVPb PBE/TZVPb

sets GMTKN24 GMTKN24 GMTKN24-hcno

ACONF 0.6 0.65 0.65

BH76 9.2 9.92 8.94

BH76RC 4.3 3.63 3.54

BHPERI 2.9 2.34 2.84

DARC 6.8 5.48 5.48

DC9 10.8 12.03 9.30

G21EA 3.4 6.43 7.17

G21IP 3.9 3.71 4.83

G2RC 6.2 9.07 7.71

IDISP 12.3 11.50 11.50

ISO34 1.8 1.68 1.68

MB08�165 9.0 9.26 9.87

O3ADD6 4.4 4.71 4.71

PA 2.1 2.29 2.47

PCONF 3.9 3.54 3.54

RSE43 3.4 3.48 3.62

S22 2.6 2.31 2.31

SCONF 0.4 0.78 0.78

SIE11 12.0 10.66 12.78

W4�08 11.0 8.65 10.41

WATER27 3.2 20.87 20.87
a From the Supporting Information of ref 23. Diffuse functions added to
aug-cc-pVQZ for G21EA and WATER27. bThis work.
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5. RESULTS AND DISCUSSION

We begin with two introductory remarks. First, when calculat-
ing proton affinities with SQM methods, we follow the conven-
tion to use the experimental heat of formation for the proton
since all investigated SQM methods are known to be off by
several tens of kilocalories per mole for this quantity. Second, the
cage/bowl isomerization of C20 in the DC9 subset—which is
known to be problematic even for high-level ab initio methods
because of partial multireference effects—is not described ade-
quately by any of the investigated SQM methods, with errors
exceeding 100 kcal/mol (see Table 3), which are thus much
larger than the estimated uncertainty of about 10 kcal/mol in the
ab initio reference value.23 We therefore decided to exclude this
item from the statistical analysis, thus reducing the number of
entries in our GMTKN24-hcno database to 370. Removing this
outlier decreases the OVMAD values for the SQM methods by
0.3�0.8 kcal/mol but does not influence our conclusions on
their relative merits.

The results of our benchmarks are presented as follows: Tables 4
and 5 show SQM and DFT results for the GMTKN24-hcno
benchmark database without and with empirical dispersion correc-
tions. Table 6 summarizes the OVMAD values for several SQM
and DFT methods. Table 7 shows the effect of including entries
with F on the OMx MADs. Figures 1 and 2 compare the MAD
values of OM3 with those of PM6 and PBE, respectively. Figure 3
shows the element-wise error of PM6 for the MB08�165 subset.
We use Tables 4 and 5 and Figure 1 to compare the SQMmethods
with each other (subsection 5.1), Tables 4�6 and Figure 2 to
compare the SQM methods with DFT (subsection 5.2), and
Table 7 and Figure 3 to discuss the effect of taking other elements
into account (subsection 5.3).
5.1. Comparison of SQM Methods. Perusing Table 4, the

following observations regarding the different SQMmethods can
be made:
For most subsets, all OMx methods perform roughly similarly

well. Exceptions are the PA and O3ADD6 sets where OM1 is
best, whereas OM2 and OM3 are better than OM1 for the
G21IP, G21EA, and WATER27 sets as well as in the description
of noncovalent interactions (see for instance the IDISP set; the
effect of including empirical dispersion corrections is discussed
below separately). Consequently, the overall deviation (OVMAD)
is substantially lower for OM2 and OM3 (8.3 and 7.9 kcal/mol,
respectively) than for OM1 (10.9 kcal/mol). The differences
between OM2 and the slightly faster OM3method are small, but

Table 3. Errors (kcal/mol) with PBE and SQM Methods for
the C20 Cage/Bowl Isomerization, Relative to the CCSD(T)/
CBS Estimate

PBE/TZVP PM6 AM1 OM3 OM2 OM1

C20 cage/bowl �5.7 102.6 203.8 206.9 193.4 325.4

Table 4. Mean Absolute Deviations (MADs) in kcal/mol for the GMTKN24-hnco Sets: PBE/TZVP, B3LYP/TZVP, and SQM
Methods

set PBE B3LYP OM3 OM2 OM1 PM6 AM1 SCC-DFTB

ACONF 0.65 0.77 0.86 0.63 0.52 0.56 0.44 0.23

BH76 8.94 4.82 8.69 7.58 10.42 13.81 10.88 14.82

BH76RC 3.54 2.42 6.18 4.09 5.13 17.64 12.46 12.64

BHPERI 2.84 4.42 8.82 8.79 11.31 10.36 10.59 6.98

DARC 5.48 13.65 4.91 7.25 4.10 3.91 4.65 3.55

DC9 9.30 11.36 13.20 13.60 11.40 5.18 15.68 15.22

G21EA 7.17 8.50 9.91 11.70 24.45 22.06 23.03 7.77

G21IP 4.83 4.82 12.72 12.53 22.07 40.14 24.31 15.96

G2RC 7.71 2.69 4.53 8.58 8.68 30.87 12.43 27.97

IDISP 11.50 17.04 6.67 8.19 14.17 14.27 14.01 13.13

ISO34 1.68 2.39 4.37 4.44 4.45 3.46 6.45 4.66

MB08�165 9.87 5.85 21.32 22.00 18.82 128.43 44.44 100.20

O3ADD6 4.71 1.83 10.97 12.24 4.01 2.03 10.57 7.51

PA 2.47 3.06 11.85 14.69 4.90 18.41 12.82 18.58

PCONF 3.54 3.84 1.32 1.28 3.60 2.27 5.35 1.68

RSE43 3.62 2.50 5.24 4.28 3.95 5.20 2.46 9.56

S22 2.31 3.49 3.58 3.07 5.14 3.41 6.83 3.55

SCONF 0.78 0.33 1.32 1.66 5.87 2.62 2.39 2.08

SIE11 12.78 6.53 5.00 9.38 5.15 3.29 10.65 20.83

W4�08woMR 10.41 3.46 11.82 12.79 12.08 15.57 14.35 13.90

WATER27 20.87 11.42 9.19 12.11 36.09 17.81 48.60 22.87

OVMAD 6.60 4.82 7.86 8.33 10.93 18.19 14.52

OVMADa 5.89 4.73 6.76 7.06 9.68 14.60 13.54 13.87

OVMAD*b 6.40 4.76 7.05 7.51 10.46 11.56 12.72

OVMAD*a,b 5.78 4.80 6.21 6.68 9.51 10.04 12.17 10.26

WTMAD 5.7 5.1 6.4 6.7 9.1 13.3 11.6
aWithout entries involving triplets or quartets, which reduces the size of the GMTKN24-hcno benchmark database from 370 to 299 entries. bOverall
MAD without contributions from the MB08�165 subset.
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OM3 generally outperforms OM2 when larger differences occur
(G2RC, SIE11), making OM3 overall the best OMxmodel in the
GMTKN24-hcno benchmark.
PM6 improves upon AM1 for a number of demanding subsets

(DC9, O3ADD6, SIE11) and in the treatment of noncovalent
interactions (PCONF, S22, WATER27) but is less convincing
than AM1 for a number of other sets with electronically com-
plicated species (BH76RC, G21IP, G21EA, G2RC, PA, RSE43).
AM1 has large problems with theMB08�165 subset (MAD 44.4
kcal/mol), but PM6 performs even worse (MAD 128.4 kcal/
mol). Mostly for this reason, the overall deviation (OVMAD) is

larger for PM6 (18.2 kcal/mol) than for AM1 (14.5 kcal/mol).
OM3 clearly outperforms both PM6 and AM1 on a number of
subsets (G21IP, G21EA, G2RC, IDISP, WATER27, and most
importantly MB08�165) but fails to reach the outstanding
accuracy of PM6 for DC9 and O3ADD6.
SCC-DFTB improves upon PM6 and AM1 for the G21EA,

G21IP, and G2RC sets but shows large errors for SIE11 and

Table 5. Mean Absolute Deviations (MADs) in kcal/mol for the GMTKN24-hnco Sets: PBE/TZVP, B3LYP/TZVP, and SQM
Methods with Empirical Dispersion Corrections (-D)

set PBE-D B3LYP-D OM3-D OM2-D OM1-D PM6-D AM1-D SCC-DFTB-D

ACONF 0.22 0.21 0.32 0.31 0.41 0.69 1.83 0.53

BH76 9.06 3.90 8.98 7.51 10.01 13.78 10.62 14.88

BH76RC 3.56 2.50 6.30 4.00 5.22 17.65 12.47 12.65

BHPERI 3.55 3.07 7.51 7.14 9.47 9.78 8.50 7.27

DARC 3.67 9.61 8.30 9.99 3.98 4.50 7.65 4.62

DC9 8.04 8.44 12.31 15.07 9.75 4.68 12.47 15.27

G21EA 8.85 8.45 9.92 11.71 24.46 22.06 23.03 7.77

G21IP 4.83 4.83 12.73 12.55 22.09 40.14 24.31 15.96

G2RC 7.87 2.68 4.02 8.10 8.20 30.85 12.04 28.00

IDISP 6.11 7.38 8.42 12.43 13.24 15.51 15.29 12.24

ISO34 1.60 2.08 4.43 4.44 4.37 3.42 6.54 4.60

MB08�165 9.92 5.57 21.92 21.88 18.78 128.51 45.85 100.02

O3ADD6 4.93 1.86 11.13 12.67 3.57 1.81 9.48 7.46

PA 2.62 3.05 11.66 14.76 4.98 18.40 12.67 18.54

PCONF 1.36 0.58 2.07 2.01 4.01 3.02 5.13 0.67

RSE43 3.43 2.27 4.98 4.03 3.84 5.19 2.38 9.53

S22 0.86 0.76 1.10 1.06 2.41 1.65 2.95 1.86

SCONF 0.87 0.57 1.40 1.64 5.18 2.68 1.87 2.12

SIE11 13.51 7.32 5.51 9.96 5.08 3.11 8.77 21.01

W4�08woMR 10.41 3.67 11.65 12.61 11.90 15.56 14.20 13.90

WATER27 26.19 19.43 7.80 4.24 27.58 14.92 36.78 22.21

OVMAD 6.76 4.58 7.70 7.69 9.87 17.89 13.40

OVMADa 6.05 4.60 6.57 6.31 8.42 14.23 12.14 13.72

OVMAD*b 6.57 4.52 6.84 6.83 9.34 11.24 11.45

OVMAD*a,b 5.92 4.64 5.97 5.89 8.19 9.65 10.65 10.11

WTMAD 5.2 3.9 6.2 6.3 8.8 12.9 10.5
aWithout entries involving triplets or quartets, which reduces the size of the GMTKN24-hcno benchmark database from 370 to 299 entries. bOverall
MAD without contributions from the MB08�165 subset.

Table 6. Overall Mean Absolute Deviations (OVMADs) in
kcal/mol for the GMTKN24-hnco Set: DFT/TZVP and SQM
Methods

method without -D with -D

PM6 18.2 17.9

AM1 14.5 13.4

OM3 7.9 7.7

BLYP 6.6 6.3

PBE 6.6 6.8

BP86 6.0 6.2

TPSS 5.5 5.6

B3LYP 4.8 4.6

Table 7. Mean Absolute Deviations (MADs) in kcal/mol for
the GMTKN24-hnco Set and the GMTKN24-hcnof Set
(Including Entries with F): OM1, OM2, and OM3

OM1 OM2 OM3

set hcno hcnof hcno hcnof hcno hcnof

BH76 10.39 10.42 7.58 9.72 8.69 10.66

BH76RC 5.28 5.13 4.09 4.29 6.18 5.37

G21EA 24.81 24.45 11.70 11.39 9.91 9.31

G21IP 22.45 22.07 12.53 12.00 12.72 11.45

G2RC 9.07 8.68 8.58 8.23 4.53 4.16

MB08�165 19.47 18.82 22.00 22.47 21.32 19.46

RSE43 3.86 3.95 4.28 4.02 5.24 4.96

SIE11 4.40 5.15 9.38 9.38 5.00 5.00

W4�08woMR 11.49 12.08 11.82 12.28 11.82 11.38

all 11.01 10.93 8.33 8.68 7.86 8.01
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especially for the MB08�165 set (like PM6 and AM1). SCC-
DFTB is inferior to OM3 for the G2RC, PA, RSE43, and
WATER27 sets and even more so for SIE11 and MB08�165. As
noted above (section 4), triplet and quartet species were excluded
from the SCC-DFTB benchmark runs for technical reasons, and
hence the overall deviation (OVMAD 13.9 kcal/mol) refers to a
smaller sample. For the sake of comparison, OVMAD values for
this smaller sample are given in Table 4 also for the other methods.
In addition to the methods shown in Table 4, we have also

looked at the performance of the pairwise distance directed
Gaussian (PDDG)18 approach in combination with PM33 as
implemented in MNDO99. The OVMAD value of PDDG-PM3
is 17.1 kcal/mol (12.5 kcal/mol without the MB08�165 set),
about 2 kcal/mol (1 kcal/mol) higher than the value for PM3
itself (14.7 and 11.4 kcal/mol), which performs similarly to AM1
(14.5 and 12.7 kcal/mol) for our database.
Since the “mindless” MB08�165 benchmark set with its

artifical molecules is particularly demanding, we also provide in
Table 4 overall deviations without the MB08�165 contributions

(OVMAD*). These deviations decrease in the following order:

AM1 > SCC-DFTB≈PM6 >OM1 . OM2≈OM3 > PBE > B3LYP

The OVMAD* values for AM1, PM6, SCC-DFTB, and OM1
are rather similar (ranging between 12.7 and 10.3 kcal/mol)
although the performance for a specific subset may be quite
different between these methods. OM2 and OM3 are distinctly
more accurate (OVMAD* 7.5 and 7.1 kcal/mol, respectively)
and actually approach the overall accuracy of PBE (OVMAD* 6.4
kcal/mol) while B3LYP performs best (OVMAD* 4.8 kcal/mol).
Inclusion of the artificial molecules from the MB08�165 set

generally deteriorates the error statistics, but to different extents.
The overall deviations (OVMAD vs OVMAD*) become much
worse for PM6 and SCC-DFTB (increase by 6.6 and 3.6 kcal/
mol), somewhat worse for AM1 (by 1.8 kcal/mol), and only
slightly worse for the OMx methods (by 0.5�0.8 kcal/mol). The
OMx methods are thus remarkably robust in this regard, again
reminiscent of the performance of PBE (increase by 0.2 kcal/
mol). The superior performance of the OMx methods
(compared with the other SQM methods) may be viewed as
support for the OMx approach of going beyond the MNDO
model: including more physics in the model appears to be a
better strategy for coping with the electronically demanding
MB08�165 species than going for a better parametrization. On
the basis of theOVMAD values, the overall deviations decrease in
the following sequence:

PM6 . SCC-DFTB≈AM1 . OM1 . OM2≈OM3 > PBE > B3LYP

Figure 1 illustrates the relative merits of OM3 and PM6 by
plots of the overall deviations (OVMAD) and of the deviations
(MAD) of the individual subsets of the GMTKN24-hcno
benchmark.
Table 5 shows that the inclusion of empirical dispersion

corrections into the SQMmethods leads to a clear improvement
for all subsets in which intermolecular noncovalent interactions
play an important role (most notably S22 and WATER27), but
there is also some minor deterioration for other subsets. Overall,
there is a general small gain in accuracy for all SQM methods
considered, with a decrease of 0.2�1.3 kcal/mol in the OVMAD
and OVMAD* values. The accuracy ranking of the SQM
methods in our benchmark is not affected by the inclusion of
empirical dispersion corrections, since their effect on the

Figure 1. Comparison of OM3 and PM6 results for the GMTKN24-
hcno set.

Figure 2. Comparison of OM3 and PBE/TZVP results for the
GMTKN24-hcno set.

Figure 3. Element-wise MAD values relative to hydrogen for the
MB08�165 set (see text for details).
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statistics is smaller than the underlying intrinsic differences and
since all SQM methods benefit to a similar extent.
As noted above (see section 2), the use of weighted total

MADs (WTMADs) emphasizes the importance of noncovalent
interactions in the benchmark. These WTMADs are listed in
Tables 4 and 5. They clearly reflect the gain from adding
dispersion corrections to the DFT methods: Upon inclusion of
these corrections, the WTMADs decrease by 0.5 kcal/mol for
PBE and by 1.2 kcal/mol for B3LYP, while the OVMADs change
by only 0.2 kcal/mol (increasing for PBE and decreasing for
B3LYP). In the case of the SQM methods, both the WTMADs
and OVMADs are generally lowered by the dispersion correc-
tions, typically by 0.2 to 0.6 kcal/mol (for OM1 and AM1 by up
to 1.1 kcal/mol). Focusing on the dispersion-corrected methods
(Table 5) the WTMADs are always smaller than the OVMADs
(PBE-D by 1.6 kcal/mol, B3LYP-D by 0.7 kcal/mol, OMx-D by
1.1 to 1.5 kcal/mol, other SQM-D by 2.9 to 5.0 kcal/mol), with
OM2-D andOM3-D again showing the best performance among
all SQM methods and approaching PBE-D accuracy. Since the
emphasis of this study is not on noncovalent interactions, we will
disregard dispersion corrections from now on and again employ
OVMAD instead of WTMAD values in the analysis.
5.2. Comparison of SQM and DFT Methods. OM3 is the

most accurate and robust of the SQM methods considered
presently and has therefore been chosen for a comparison with
DFT/TZVP methods. Among the available DFT functionals, we
focus mainly on PBE and B3LYP, which are commonly used
representatives of GGA (generalized gradient approximation)
and hybrid-GGA functionals. The data in Tables 4 and 6 indicate
that B3LYP (OVMAD 4.8 kcal/mol) is on average more accurate
than PBE (OVMAD 6.6 kcal/mol) for organic molecules. Other
common GGA functionals perform similarly to PBE (OVMAD
6.6 kcal/mol for BLYP, 6.0 kcal/mol for BP86), while at the
meta-GGA level, TPSS shows an intermediate performance
(OVMAD 5.5 kcal/mol). OM3 (OVMAD 7.9 kcal/mol) is
surprisingly close in overall accuracy to standard DFT-GGA
methods. This is visualized in Figure 2 showing theMADs for the
subsets of the GMTKN24-hcno benchmark for OM3 and the
PBE functional. It is obvious that PBE outperforms OM3 for
several sets (BHPERI, G21IP, MB08�165, O3ADD4, PA), but
there are also sets where the opposite is true (IDISP, SIE11,
WATER27). These latter cases merit further comments.
The IDISP set contains molecules in which intramolecular

noncovalent interactions are of crucial importance. Such intra-
molecular effects are partially taken into account by the OM3
parametrization (unlike intermolecular effects that are not cover-
ed), and it is therefore not surprising that the inclusion of
empirical dispersion corrections actually deteriorates the OM3
results for IDISP (in contrast to the improvements for S22 where
intermolecular dispersion effects are dominant). On the other
hand, dispersion is generally missing at the PBE level, and the
dispersion corrections in PBE-D thus yield substantial improve-
ments both for IDISP and S22. Consequently, PBE-D has slightly
lower MADs than OM3-D for both sets (IDISP, S22). This also
suggests that a reparameterization of SQM methods with dis-
persion corrections included in the fit process is likely to be
worthwhile, offering the chance for a more balanced treatment of
intra- and intermolecular dispersion interactions.
The WATER27 set contains several negatively charged spe-

cies. It is well-known23 that accurate PBE calculations on these
species require basis sets that are larger than the TZVP basis
used presently, and extending the basis from TZVP to

(aug-)def2-QZVP lowers the MAD of PBE for the WATER27
set from 20.9 to 3.2 kcal/mol (Table 2).When using a sufficiently
large basis, PBE thus outperforms OM3 also for the WATER27
set (OM3 MAD 9.2 kcal/mol). On the other hand, the PBE
problems related to self-interaction errors (SIE11) seem genuine
since they are not alleviated by basis set extension (Table 2).
In summary, the PBE/TZVP results for the GMTKN24-hcno

benchmark are somewhat more accurate than the OM3 results
(OVMAD 6.6 vs 7.9 kcal/mol), which remains true after includ-
ing empirical dispersion corrections (OVMAD 6.8 vs 7.7 kcal/
mol). It should also be noted, that “high-end” functionals like the
M0n family or double hybrids are substantially more accurate
than the commonly used PBE and B3LYP methods for the
benchmark sets featured in the GMTKN24 and GMTKN30
databases: The GMTKN24 WTMAD and OVMAD values for
M06�2X44 are both 2.2 kcal/mol, compared to 6.2 and 7.0 kcal/
mol for PBE. The M06�2X OVMAD value for our reduced
“hcno” set drops from 2.2 to 1.8 kcal/mol, well in line with the
change for PBE from 7.0 to 6.6 kcal/mol, which provides further
support to the transferability of our hcno results. An extensive
collection of DFT data and a detailed analysis of the relative
performance of a wide range of DFT functionals can be found in
the original GMTKN24 and GMTKN30 publications by
Grimme and Goerigk.23,34

5.3. Element-Specific Error Analysis. PM6 has parameters
for all elements appearing in the full GMTKN24 benchmark. We
can therefore use PM6 to check whether and how the errors
depend on the elements that are present in the reference
molecules. For this purpose, we have analyzed the performance
of PM6 for the full MB08�165 benchmark set (i.e., our most
demanding subset containing artificial molecules with compli-
cated electronic structure). Figure 3 shows the element-specific
errors obtained as follows: For a given entry in the MB08�165
set, each element is assigned a fraction of the error in the
computed absolute reaction energy according to its occurrence
(number of atoms present divided by the total number of atoms).
Then, an average is taken over the resulting values for all entries
and weighted with the elemental occurrence in the full set, and
finally this average value is divided by the corresponding value for
hydrogen for the purpose of normalization.28 The resulting error
distribution in Figure 3 looks fairly balanced both for PM6 and
for the PBE functional, indicating that the quality of the PM6
results is reasonably uniform for different elements. This implies
that the present GMTKN24-hcno benchmark is expected to be of
general relevance and that the conclusions derived from molecules
containing only H, C, N, and O may be valid in general.
In a second test, we have extended the GMTKN24-hcno

database by including all species from the full database that also
include fluorine atoms. The resulting GMTKN24-hcnof data-
base contains 413 entries derived from 654 single-point calcula-
tions (compared with 371 entries and 595 single-point
calculations in GMTKN24-hcno). The corresponding OMx
results are shown in Table 7 for all subsets that differ in the
two databases. It is obvious that the MAD values remain
essentially unchanged upon the addition of fluorine-containing
molecules, with variations in the overall deviations (OVMAD)
for the complete benchmark database of 0.1�0.4 kcal/mol.
The outcome of both tests suggests that our GMTKN24-hcno

benchmark database is indeed well suited to serve the purpose of
evaluating SQM methods.
5.4. Computational Costs. The overall performance of OM3

seems satisfactory especially in view of the fact that the OM3
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calculations are about 3 orders of magnitude faster than the PBE/
TZVP calculations: Computation times are 4.5 s for OM3, 8296 s
for PBE/TZVP, and 11865 s for B3LYP/TZVP (ratio 1:1844:2637)
on one core of an Intel Xeon 5670 processor for the whole
GMTKN24-hcno benchmark database. To compare the com-
putational costs of the different SQMmethods with each other,
we use averages over 100 calculations of the complete database.
For the systems investigated here, substantial differences are
found mainly between programs and less so between methods.
MNDO99 needs on average about 4 s for the complete database
(AM1 3.9s, PM3 4.0s, OM2 4.2s, OM1 4.3s, OM3 4.5s); this
value is roughly doubled for MOPAC2009 (AM1 8.0s, PM6 8.1s)
and larger by a factor of about 9 for DFTB+ (SCC-DFTB 35.4s)

6. SUMMARY

We have presented a thorough evaluation of semiempirical
QM methods based on a reduced version of the recently
introduced GMTKN24 benchmark database. We find that the
OMx family of methods outperforms the established SQM
methods AM1, PM6, and SCC-DFTB by a significant margin.
The overall differences between AM1, PM6, and SCC-DFTB are
rather small, while OM2 and OM3 are substantially more
accurate (by about 3 kcal/mol on average). Furthermore, the
OMx family of methods is remarkably robust with regard to
the unusual bonding situations in the artificial molecules from the
“mindless”MB08�165 benchmark, where all other SQM meth-
ods fail badly. This provides further support to the OMx strategy
of improving the adopted semiempirical model (instead of
further parameter refinement). In the present GMTKN24-hcno
benchmark, the OM2 and OM3 results are reasonably accurate
and robust even in comparison to DFT(PBE) calculations.
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ABSTRACT: The aqueous solution of Ni2+ was investigated using first principles molecular dynamics (FPMD) simulation based
on periodic density-functional theory (DFT) calculations. The experimental structural parameters of the Ni(aq) complex are
reproduced well by the simulation. An exchange event of the water molecule in the first solvation shell is observed, supporting the
proposed dissociative mechanism of exchange. The calculated dynamic characteristics of the surrounding water molecules indicate
too slow translational diffusion in comparison to experimental results, in agreement with other FPMD studies employing a similar
level of theory. We also find that the reorientational dynamics of water are an order of magnitude slower as compared to
experimental data. On the other hand, the angular momentum dynamics are in better agreement with the experimental data than the
previously reported results fromMD simulations employing empirical force fields. The obtained MD trajectory can supply accurate
structures for the calculation of magnetic properties.

’ INTRODUCTION

The structure of hydrated multivalent ions is notoriously
problematic to describe by classical nonpolarizable force fields.
The case of the hydrated Ni2+ ion has been studied experimen-
tally by neutron scattering and X-ray methods1�3 and computa-
tionally using molecular dynamics (MD) simulations.4�10 In the
latter context, force fields have been developed that correctly
model the average octahedral coordination of Ni2+ with six
surrounding water molecules in the first solvation shell; however,
the details differ among the various modeling studies. The
problem originating from water polarization in the ion vicinity
has been treated by an effective nonpolarizable two-body poten-
tial,6,9 combined quantum mechanics/molecular mechanics
(QM/MM) approach,7,8,10 and, for a few different ions, accu-
rately parametrized polarizable force fields.11�13 As a further
possible approach, first-principles molecular dynamics (FPMD)
has been utilized for ion solvation.14�20 It can be a priori assumed
that FPMD should be superior to the other approaches, since it
naturally includes polarization as well as other many-body effects.
Within FPMD, one does not need to parametrize the ion�water
potential and incorporate it into a particular water force field. The
QM/MM approach lacks uniformity of description of the whole
system, as manifested, e.g., in the practical difficulty in dealing
with the exchange of molecules between the QM and MM
regions. FPMD, on the other hand, treats the solvent�solvent
as well as solvent�ion interactions on an equal footing. The
FPMD steps require, however, either the diagonalization of the
electronic Hamiltonian as well as subsequent force evaluation or
an effective algorithm such as that due to Car and Parrinello21 for
approximately following the Born�Oppenheimer surface.22

Consequently, FPMD is computationally expensive, limiting
the length of the simulations as compared to parametrized

empirical models. Furthermore, the underlying electronic struc-
ture method, usually density-functional theory (DFT), imposes
its own restrictions on the accuracy of the intermolecular forces,
as the van der Waals dispersion interaction is not well-described
at standard DFT levels.23 Properties of liquid water obtained
from FPMD simulations have been discussed extensively.24�30

Depending on the level of theory used in FPMD, primarily, the
choice of the exchange-correlation functional (ECF), substan-
tially varying structural (e.g., interatomic distances described by
radial distribution functions, RDFs) and dynamical (e.g., transla-
tional and rotational diffusion) properties of water are obtained.

This work reports a very extensive FPMD simulation of the
Ni2+ ion in aqueous solution. We investigate a variety of
structural and dynamical properties. In the first part of this paper,
we carefully investigate the RDFs between Ni2+ and the water
atoms, the O�Ni�O angle distribution revealing the arrange-
ment of ligand molecules around the Ni2+ ion, and the tilt angle
of water molecules of the first and second solvation shells (FSS
and SSS, respectively). Furthermore, we report the RDFs among
the water atoms, their translational and rotational diffusion, and
the angular momentum dynamics.

The six- as well as five-coordinated cases represent the
prevailing situations in the solution as well as the fleeing inter-
mediate occurring in the dissociative exchange reaction in the
FSS, respectively. We were able to witness one such exchange
process in our FPMD simulation, which is longer than compar-
able first-principles studies hitherto performed.

The paper is organized as follows: We start with a quantum-
chemical (QC) study of the static structure of the unsolvated

Received: May 10, 2011
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hexa-aqua Ni(H2O)6
2+ complex, giving information on the

performance of DFT ECFs against correlated ab initio calcula-
tions. Results from the static structure calculations are linked to
the results from the FPMD simulation and compared to experi-
mental data. Subsequently, the following sections are dedicated
to the structure of the solution reported via RDFs, tilt angles,
ligand�central ion�ligand angles, and dynamic properties such
as self-diffusion coefficients, as well as reorientational and angular
momentum correlation functions. Finally, details of the exchange
process are reported.

’METHODS

Quantum-Chemical Calculations. The FSS of the aqueous
nickel ion, Ni(H2O)n

2+ (n = 5, 6), was investigated via struc-
ture optimization. For the structure optimization of the static
FSS models, DFT in the ORCA program31 was used with
different ECFs (PBE, PBE0,32,33 BLYP,34�36 B3LYP,35,37,38

BHandHLYP39). Spin-scaled second-orderMøller�Plesset theory
(SCS-MP240) was used for comparison. Basis sets from the def2-
XVP (X = S, TZ, aug-TZ, QZ) series41 were used. The PBE
functional was selected for the FPMD simulation.
First Principles Molecular Dynamics. The initial configura-

tions of systems containing one Ni2+ and either 127 or 255 water
molecules were prepared using empirical MD in the GROMACS
4 code.42 The size of the cubic simulation box corresponds to
experimental water density at 343 K with the side lengths of
19.8591 Å used for 255 water molecules and 15.7622 Å for 127
molecules. The boxes accommodate well both FSS and SSS; in
particular, the latter has the shape of a sphere with a roughly 10 Å
diameter. The two different system sizes were simulated to be
able to test finite size effects on the static and dynamic char-
acteristics important for the current and future calculations of
molecular properties.
The production trajectories were run using Born�

Oppenheimer MD with DFT forces calculated “on the fly”, as
implemented in the QUICKSTEP43 module of the CP2K
package.44 In QUICKSTEP, a combination of the atom-centered
Gaussian basis set and auxiliary plane waves (PW) is used. The
PW basis is used together with the Gaussian basis to expand the
electron density. The method employs a pseudopotential on
each atom. For water, we tested DZVP, TZVP, TZV2P, and
QZV3P valence basis sets.43 The Ni�O distance in the Ni-
(H2O)6

2+ complex is well-converged already using the DZVP
basis set, which was therefore selected for production runs. The
Goedecker�Teter�Hutter pseudopotentials45 for the PBE
functional were used. For the Ni2+ ion, the DZV basis set avail-
able in CP2K in combination with a pseudopotential spanning
18 core electrons was used.
Furthermore, we investigated the dependence of the Ni�O

distance in the Ni(H2O)6
2+ complex on the cutoff kinetic energy

of the plane waves. Calculations using 1200, 600, 310, 280, and
250 Ry cutoffs for the larger simulation box revealed that 310 Ry
yields a converged Ni�O distance. This cutoff was used for both
sizes of the simulation box.
We tested the choice of the integration time-step of the

equations of motion, which were propagated using the velocity
Verlet algorithm.46 Among the tested values 0.5, 0.7, 1, and 2 fs,
the total energy of the Ni2+/127 H2O system within the NVE
ensemble was well-conserved (drift 3.0� 10�7 au/ps) using the
1 fs time-step, provided that a sufficiently tight self-consistent

field (SCF) convergence criterion (εSCF = 1 � 10�7a.u.)
was used.
The systems with 127 and 255 water molecules (both with one

Ni2+ ion) were simulated for the total lengths of 90 and 33 ps of
production trajectories, respectively. The simulation boxes,
which were prepared using the classical force field in the
GROMACS code, were further equilibrated in the initial phase
of the FPMD simulation. The velocity scaling thermostat was used
to prepare the system at the desired temperature of 343 K. Later,
the production simulations continued in the NVE ensemble. The
temperature was monitored, and the Ni�O radial distribution
function (RDF) was monitored in the thermalization phase, until
a stable situation was reached. The RDFs were calculated using
VMD.47 The self-diffusion coefficient D was calculated using the
Einstein relation48

ÆjrðτÞ � rð0Þj2æ ¼ 6Dτ ð1Þ
where r(τ) is the position of the center-of-mass of the water
molecule at time τ, and the angular brackets denote averaging
over molecules and time origins. Reorientational dynamics of the
water molecules was investigated via the autocorrelation function
of the principal axes of the moment of inertia tensor I. For the
principal axis î, the relation for the unnormalized function at time
offset τ is written as

Cn
iaðτÞ ¼ ÆPnðcos θaÞæ, a ¼ x, y, z ð2Þ

θa ¼ — ð̂iað0Þ, îaðτÞÞ ð3Þ
where Pn is the nth order Legendre polynomial. The angular
momentum correlation function was calculated in the Eckart
frame49,50 to minimize the vibrational contributions. The for-
mula for the correlation function at time offset τ is written

ClaðτÞ ¼ Ælað0Þ laðτÞæ, a ¼ x, y, z ð4Þ
where la is the Cartesian angular momentum component along
the a axis of the molecule-fixed Eckart frame.

’RESULTS AND DISCUSSION

Structures of Ni(H2O)6
2+ and Ni(H2O)5

2+ Complexes. A
schematic illustration of the hexa-aqua and penta-aqua com-
plexes of Ni2+ is given in Figure 1. The basis-set requirements and
the effect of the choice of ECF were first tested on the geometry
parameters of the Ni(H2O)6

2+ complex, evaluated primarily via
the Ni�Odistance. The results are shown in Tables 1 and 2. The
broad range of existing experimental data encompasses essen-
tially all of our computational results. In the calculations using the
ORCA code at the PBE level, the Ni�O distance of 2.086 Å was
converged using the def2-TZVP basis set (in vacuo), which was
then used for further tests of hexa-aqua Ni2+ structure. Periodic
CP2K calculation of the finite Ni(H2O)6

2+ system using the
same functional converges at a slightly longer distance, possibly
due to the fact that pseudopotentials are used in CP2K. The
r(Ni�O) distance and the tilt angle between the Ni�O vector
and the bisector of the OH vectors of a water molecule behave
systematically as functions of the exact exchange admixture in the
ECF. The hybrid functionals lead to a shorter distance and
smaller angle. In particular, in vacuo, the tilt angle using hybrid
DFT or SCS-MP2 practically vanishes. With the COSMO
solvation models, however, the results are brought into quanti-
tative agreement with experimental results by the increase of the
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tilt angle to 33�46�. At the same time, a notable decrease of 1�2
pm in the r(Ni�O) distance takes place. Of the two tested GGA
functionals (PBE and BLYP), PBE performs better for the
structure as compared to the reference SCS-MP2 structure.
The “optimal” amount of exact exchange appears to be somewhat
below the 50% of BHandHLYP.
In general, due to error cancellation between the exact-

exchange and pure DFT components, hybrid functionals lead
to smaller self-interaction or, alternatively, delocalization error
than pure GGAs.51 Because of their additional computational
cost, the hybrid functionals could not, however, be considered
for the FPMD simulation of the required trajectory length and
system size.
The structure of the 5-fold coordinated Ni2+ complex has also

been calculated, as theNi(H2O)5
2+ is the composition of the FSS

of the transition structure during the exchange of coordinating
water molecules. The structural parameters are listed in Table S1
(Supporting Information). Since the water molecules in Ni-
(H2O)5

2+ are not equivalent, we report values for each molecule
separately. On average, however, the length r(Ni�O) is shorter
compared to the 6-fold coordinated Ni2+ ion, whereas the average
tilt angle does not differ significantly between the 5- and 6-fold
structures.
Electronic Structure of Ni(H2O)6

2+ and Ni(H2O)5
2+ Com-

plexes. In the companion article,52 we thoroughly discuss the
molecular magnetic properties obtained from the QM calcula-
tion. For the open-shell system, spin density is one such property
quantitatively manifested in hyperfine coupling constants of the

water nuclei. Here, we state only a few things. The discussion
refers to single-point calculation on structures optimized by the
corresponding method.
Comparing calculations with different DFT functionals, we see

a systematic increase of the gap between the highest occupied
and lowest unoccupied “R-spin” orbitals with an increasing
amount of exact exchange. The same holds for the “β” orbitals.
The finding is fully analogous to the commonly known trend of
a HOMO�LUMO gap in closed-shell systems. The same is true
for five- and six-fold coordinated complexes. In the case of the
six-fold coordination, the two singly occupied molecular orbitals
(SOMO) are almost exactly degenerate with energies differing
by ca. 0.002�0.02 eV. The situation is different for the 5-fold
coordinated complex for which the two SOMOs have an energy
difference increased to the order of 0.1 eV, which in a qualitative
way relates to the less symmetric structure of the five-coordinated
complex.
Ni2+ Solvation Structure in Liquid Solution. In agreement

with the accepted opinion, the Ni2+ complex is predominantly
6-fold coordinated in our FPMD trajectory. The main structural
parameters of the hexa-aqua complex are summarized in Table 3,
along with selected literature results. From the FPMD simula-
tions, the maxima of the Ni�O and Ni�HRDF (vide infra) lie at
2.105 Å and 2.705 Å, respectively. The geometry optimization of
Ni(H2O)6

2+ without dynamical corrections and using the COS-
MO solvation model at the PBE/def-TZVP level resulted in a
Ni�Odistance of 2.076 Å (Table 2). The ϕ(ONiO) angle values
would in our case of octahedral geometry be expected at 90� and
180�. The ϕ(ONiO) angle of the six-coordinated ion, reported in
Table 3, is very close to these values. The simulated distribution
of the angle is given in Figure S1 of the Supporting Information.
The 5-fold coordinated intermediate preserves to a large extent
the octahedral symmetry. The same feature was observed during
the optimization of the 5-fold coordinated ion (Figure 1). In
the 5-fold part of the FPMD trajectory, the Ni�O and Ni�H
distances are contracted by 6�7 pm as compared to the
6-fold case.
The tilt angle of water molecules around the central ion,

reported in Table 3, is defined as the angle between the ion�
oxygen vector and the bisector of the HOH angle. In contrast, θ
is the angle between the ion�oxygen vector and the plane of the

Figure 1. Structures of (a) Ni(H2O)6
2+ and (b) Ni(H2O)5

2+ obtained by geometry optimization at the SCS-MP2/def2-TZVP level using the COSMO
solvation model. The positions of the water molecules are close to octahedral symmetry also in the penta-aqua complex.

Table 1. Basis-Set Dependence of the Distance (Å) between
the Nickel Atom and Oxygen, r(Ni�O), in Ni(H2O)6

2+ a

program r(Ni�O) with indicated basis sets exptl.b

Orca def2-SVP def2-TZVP def2-aug-TZVP def2-QZVP

2.073 2.086 2.086 2.086 2.05�2.15

CP2K DZVP TZVP TZV2P QZV3P

2.100 2.089 2.093 2.092
aThe PBE functional was used in density-functional calculations
in vacuo. For the CP2K calculation, the plane wave cutoff was set to
280 Ry in a cubic box with the side length 19.8591 Å. b See Table 3 for a
more detailed list of values and references.
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water molecule, which is defined by its normal vector. Figure S2
(Supporting Information) illustrates the two definitions as well
as the simulated distributions of the two angles. In the FSS, only a
small difference between θ and tilt angle exists, so they are not
distinguished in further discussion. A broad range of tilt angles
have been reported for the aqueous Ni2+ solution. Numerous
older experimental data1,53,54 show a tilted geometry, while a
newer EXAFS study3 is in agreement with angle oscillating
around 0�. Inada et al.8 reported, using the QM/MM method,
a flat maximum around 0�, using the modest unrestricted
Hartree�Fock level of theory for the QM part. Chillemi et al.9

developed an empirical potential according to the experimental
results of D’Angelo et al.3 Classical MD using this potential also
resulted in an around-zero tilt angle. Odelius et al.6 obtained the
angle of 35� from a classical MD simulation in a study concerning
magnetic properties.
In agreement with the majority of experimental data, the

current FPMD trajectories show an average tilt angle significantly
distinct from zero. The average value from the 6-fold coordinated
part of the FPMD trajectory is 43.5�, and the maximum of the
distribution is near 47�. The same angle was observed in our
simulations with both 127 and 255 solvent molecules. Static
Ni(H2O)6

2+ structures (Table 2) obtained by optimization in
implicit (COSMO) water also yielded a tilted water geometry
(angle of ca. 45� at PBE level), representing very well the FPMD
distribution. Hybrid functionals yield a somewhat less tilted
geometry at 30�38�, however.
FPMD simulations of solvated paramagnetic ions have seldom

been reported. Hence, there are very few data at the first
principles level with which the present findings can be compared.
As an example, in a simulation of the gadolinium ion reported by
Yazyev and Helm,55 an average tilt angle of 35� was obtained,

whereas the experimental values in that case range between 10�
and 24�.1 In contrast, distribution of the tilt angle was found to be
rather narrow, centered around zero degrees when using classical
MD together with a polarizable force field.11 It remains some-
what unclear how well the tilt angle distributions obtained
presently for Ni2+ reflect the physical reality since the range of
experimental results is very broad.
The distributions of the tilt and θ angles in SSS are also

depicted in Figure S2 (Supporting Information). The two
differently defined angles have differing distributions in SSS, in
contrast to FSS. Both distributions aremuch broader than in FSS,
reflecting the much stronger orientational bias in FSS. The SSS
tilt angle distribution has two flat maxima, one around 50� where
the oxygen is directed toward the central ion, reminiscent of the
prevailing situation in FSS. The secondmaximum corresponds to
the oxygen atoms pointing outward (the ∼105� local maximum
in Figure S2). Distribution of the θ angle shows that there is
vanishing probability for the plane of the water molecule to be
perpendicular to the oxygen�ion vector.
Structure of the Surrounding Water. The parameters of the

simulated RDF of the water atoms as well as published data (the
latter obtained for pure water) are summarized in Table 4. It is
known from the literature and also apparent from Table 4 that
FPMD based on DFT tends to overstructure water. This is
shown both in the O�O and H�H RDF peak locations that are
found at values that are slightly smaller than in the experimental
data and in the heights of the peaks that are too large. Whereas
the height of the first experimental maximum of the O�O RDF
falls into the range of 2.6�2.8, FPMD based on PBE typically
predicts values over 3.2. Our work is well in line with the FPMD
studies of pure water using the PBE functional,26,29,28 implying a
very small relative effect of the ion on the average water structure

Table 3. Structural Characteristics of the Aqueous Solution of Ni2+ a

r(Ni�O) (Å) r(Ni�H) (Å) —(NiO,OH2) (deg) ϕ(ONiO) (deg)

FPMD(6)b 2.11 2.71 43.5 89�90, 172�173

FPMD(5)c 2.05 2.64 44.0 89�90

QM/MMd 2.14 2.81 ∼0 89.1, 172.7

MD 2.06,e 2.06e 2.67,f 2.76f ∼35,e ∼0f ∼90f

exptl. 2.05�2.10(2.15),g,h 2.072,i 2.05j 2.77i 30, 40,g,k 0�42,l 42,m ∼0i ∼90, 180i

aThe location (Å) of the first maxima of Ni�O and Ni�H radial distribution functions, the tilt angle of water molecules —(NiO,OH2) (deg,) and the
oxygen�nickel�oxygen average angle ϕ(ONiO) (deg) in the first solvation shell of Ni2+ are listed. bThis work, first principles molecular dynamics using
the PBE functional and themodel with 128 water molecules. The part of the trajectory with a 6-fold coordinated Ni2+ ion. cAs footnote b, but for the part
of the trajectory with a 5-fold coordinated Ni2+ ion. dRef 8. Quantum mechanics/molecular mechanics with the UHF/double-ζ/Los Alamos effective
core potential (Ni) level of theory used for QM. eRef 6. Empirical MD using a nonpolarizable force field. fRefs 3 and 9. Empirical MD using a
nonpolarizable force field. gReviewed in ref 1, with original literature cited therein. hRange of 26 experimental results from X-ray diffraction, EXAFS,
and neutron diffraction. Only one report of 2.15 Å. iRef 3. Extended X-ray absorption fine structure (EXAFS). jRef 2. EXAFS. kNeutron scattering data.
lRef 53. Neutron scattering, 0 ( 20� at low concentration, 34 ( 8 or 42 ( 8� at 4.4 M. mRef 54. Neutron scattering.

Table 2. Dependence on the DFT Exchange-Correlation Functional of the Distance (Å) between the Nickel Atom and Oxygen,
r(Ni�O), and the Tilt Angle [—(NiO,OH2), (deg)] of Water Molecules in Ni(H2O)6

2+ a

solvation model parameter BLYP B3LYP BHandHLYP PBE PBE0 SCS-MP2 exptl.b

COSMO r(Ni�O) 2.098 2.074 2.061 2.076 2.057 2.066 2.05�2.15

—(NiO,OH2) 44.1 37.7 30.7 45.7 38.4 33.0 0�50

in vacuo r(Ni�O) 2.109 2.086 2.078 2.086 2.069 2.082

—(NiO,OH2) 22.0 2.3 2.5 23.0 3.1 0.1
aThe tilt angle is illustrated in Figure S2 of the Supporting Information. Both calculations were performed with the Orca program, in vacuo or using the
COSMO solvation model as indicated. The def2-TZVP basis set was used. For comparison, SCS-MP2 and experimental results are also given. b See
Table 3 for a more detailed list of values and references.
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in our simulation. In the work of Schmidt et al.,28 an empirical
dispersion correction57,58 is included. The best results are
obtained using BLYP-D, which in a constant pressure simulation
also results in a nearly experimental water density. The role of the
“D” correction on the static structure may, however, be relatively
small, as the PBE calculations with and without the dispersion
corrections produce practically similar results. It appears that the
computationally demanding hybrid DFT functionals also lead to
some improvements over FPMD performed using GGA
functionals.26 The structural properties of water obtained from
the classical AMOEBA56 model, which is generally considered

good for the water structure and dynamics, produces over-
estimated interatomic distances, in contrast to the underestima-
tion found for FPMD. However, the RDF peak values remain too
large with the empirical simulation.
The features of the intrawater O�O, O�H, and H�H RDF

curves in Figure 2 are practically identical for both simulations,
with 127 and 255 water molecules. In contrast, the Ni�O and
Ni�HRDFs show small differences between the two simulations
after the first maximum. TheO�ORDF calculated separately for
SSS is shifted by ca. 0.02 Å toward a shorter distance, indicating
the effect of the central ion (Figure 2f). The height of the

Table 4. Comparison of the Position of the Simulated Maxima (rmax) and Peak Values (gmax) of Intermolecular Radial
Distribution Functions of Liquid Water from the First Principles Molecular Dynamics Simulation of the Aqueous Solution
of the Ni2+ Ion (This Work) and Pure Water (Literature)a

method rmax
OO (Å) gmax

OO rmax
OH (Å) gmax

OH rmax
HH (Å) gmax

HH

FPMD/PBEb 2.71/4.4 3.25/1.42 1.71/3.22 1.70/1.63 2.25/3.80 1.76/1.23

MDc 2.82/4.62 3.15/1.11 1.86/3.30 1.52/1.62 2.44/3.82 1.56/1.17

FPMD/BLYPd 2.82�2.84 3.12�3.24

FPMD/BLYP-Dd 2.80 2.78

FPMD/PBE-Dd 2.76 3.35

FPMD/PBE 2.76,d 2.73,e 2.70f 3.28�3.54,d 3.25,e 2.99f

FPMD/PBE0 2.74f 2.58f

exptl.g 2.76/4.52 2.62/1.15 1.78/3.31 1.11/1.52 2.35/3.85 1.28/1.17

2.8/4.5h 2.8/1.13h

aThe columns contain the properties of the first/second maximum if both are available. bThis work; parameters extracted from the analysis of all water
molecules regardless of their localization in the solvation structure of the ion. The values are identical for the smaller (127 water molecules) and larger
(255) simulated systems. c Empirical MD using the polarizable AMOEBA force field.56 dRef 28. “D” in BLYP-D and PBE-D indicates the dispersion
correction.57,58 eRef 29. fRef 26. gRef 59. Neutron diffraction. hRef 60. X-ray scattering.

Figure 2. Radial distribution functions g(r) and running coordination numbers Z(r) in the first principles molecular dynamics simulations of the
aqueous solution of the Ni2+ ion. (a) Ni�O, (b) Ni�H, (c) H�H, (d) O�O, (e) O�H, and (f) O�O RDFs. The solid blue and dotted red lines
represent the RDF curves for the simulation containing 255 (33.75 ps) and 127 (90 ps) water molecules, respectively. The dashed blue (255) and dash-
dotted red (127) lines represent the running coordination numbers. Panel f shows the differences in the radial distribution functions between the bulk
water and the water molecules of the second coordination shell.
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maximum of the second shell RDF is lowered as compared to the
bulk simulation by the fact that the molecules in the SSS have on
average fewer neighbors than the molecules of the bulk.
We have neglected the effects of the quantum dynamics of the

nuclei. Specialized simulations with path-integral treatment of
quantum effects61,62 are reported to perform better than the
classical dynamics models, giving RDFs very close to the experi-
mental results for liquid water.
Translational Diffusion in Water. In contrast to the average

structural properties of water, the dynamic properties obtained
by the different methods span a much broader range. Literature
reports about dynamic properties of water by FPMD are by and
large restricted to the coefficient of translational diffusion D.
Therein, FPMD delivers results that deviate by an order of
magnitude from the experimental values.25�30 From Table 5, we
can observe that the diffusion coefficients D that we obtain for
water in the aqueous solution of Ni2+ are near the GGA-based
FPMD simulations of pure water by others but are clearly too
small as compared to the experimental results. D resulting from
the larger simulation box is doubled with respect to the results
corresponding to the smaller box. This may indicate a finite size
effect due to insufficient size of the simulation cell. Indeed, the
results of the corresponding FPMD simulation of pure water29

give a still larger value, when extrapolated to an infinite box size.
We have to point out, however, that the average simulation
temperature of the bigger system was almost 10 K higher in our
work, which influences the numerical values. It is noteworthy that
hybrid DFT-based FPMD led to much improved diffusion
constants,26 in qualitative agreement with the experiment. A
high-quality empirical simulation using a polarizable force field
(but also other force fields not listed here) also provides better
data than obtained with FPMD using the PBE functional.
Rotational Dynamics in Water. The reorientational correla-

tion times are compared in Table 5. To be able to relate our
results to the available experimental data, we calculated the
rotational correlation functions associated with both the first-
and second-order Legendre polynomials, eq 2. To obtain the
correlation time τ, we calculated the integrals of the normalized
correlation function:

τ ¼
Z ∞

0
cðtÞ dt ð5Þ

cðtÞ ¼ CðtÞ
ÆCð0Þæ ð6Þ

in which the dominant first part was obtained by numerical
integration, whereas the tail region was integrated analytically
after extrapolation by a fitted biexponential function. We also
report τ obtained via an alternative route, corresponding directly
to a biexponential fit to the correlation function. Since the two fit
parameters are sensitive to the sampling of the trajectory, we only
report the longer τ corresponding to the tail region. The shorter
time, corresponding to the fast-decaying exponent, reflects the
initial, complex behavior of the correlation function.
Ultrafast time-resolved experimental data66 imply that the

reorientational dynamics differ from simple diffusive rotation.
A jump model of water reorientation was recently described, e.g.,
in refs 63, 68�70. The details of the reorientational dynamics are
essential, for example, for the correct evaluation of the NMR
relaxation data, see, e.g., ref 71. There are, however, no other
FPMD studies available for comparison with our simulation. The

numbers obtained from our work are three or more times larger
than the experimental values. This implies a connection to the
glassy behavior of FPMD water discussed, e.g., in refs 27, 72, and
73. Slow dynamics by FPMD are therefore manifested not only
in the translational diffusion as described above but also in the
reorientational dynamics. Comparison of the reorientational
dynamics around the different molecule-fixed axes in Figure 3
indicates relatively similar dynamics in the FSS around the
direction of the molecular dipole moment as well as that of the
normal of the plane of the molecule. In contrast, hindered
rotation around the remaining in-plane direction is observed.
Beyond FSS, a somewhat faster, isotropic reorientational motion
is seen.
Angular Momentum Dynamics in Water. Further insight

into the dynamical properties of water is brought by the angular
velocity correlation function or, when including the moment of
inertia, the angular momentum correlation function. The results
from our simulations are given in Table 6. Figure 4 compares the
functions for the different molecular axes and different location
in solution (FSS, SSS, and bulk). See Figures S3 and S4
(Supporting Information) for an analysis of the differences
between the molecule-fixed axes and effects of the simulation
cell size, respectively. The literature data in Table 6 include the
available empirical MD simulations74�76 and inelastic neutron
scattering data.77 Numbers from our simulation are those for the
angular momentum correlation function that are, however,
identical to those of the angular velocity correlation function
within the reported precision. [For test purposes, both angular
momentum and an angular velocity correlation function have
been calculated and compared.] Clearly, the FPMD simulation
produces, albeit at higher temperatures than in the other data, the
time of first minimum closest to the experimental data. Among
the empirical simulations, there are large differences in τmin for

Table 5. Comparison of the Self-Diffusion Coefficient D As
Well As τ1 and τ2 Correlation Times of the Rotational
Autocorrelation Functions for PureWater (Literature Values)
and an Aqueous Solution of Ni2+ (Present Work)

method D (Å2/ps) τ1 (ps)
a τ2 (ps)

a temperature (K)

FPMD/PBEb,c 0.02 38, 34 26, 18 368

FPMD/PBEc,d 0.04 33, 30 21, 16 378

FPMD/PBEe 0.047 350

FPMD/PBE0e 0.28 350

FPMD/PBEf 0.079 300

MD 0.202g,h 6.6g,i 3.5g,i 298

exptl. 0.23j 2.5k 298

exptl.l 0.7,13

exptl.m 2.07 313
aThe correlation times τ1 and τ2 are simulated using first- and second-
order Legendre polynomials, eq 2. bThis work; first-principles molecular
dynamics using the PBE functional, 127 water molecules. cTwo values
for both the first- and second-order correlation times τ are presented:
the longer time of a biexponential fit and the “integral” time, in this order
(see text). dAs footnote b, but for 255 water molecules. eRef 26. To be
compared with ca. 0.5 Å2/ps of 350 K for D2O.

fRef 29. Result
extrapolated to an infinite simulation box size. gRef 56. Empirical
molecular dynamics using the polarizable AMOEBA force field. hRef
56. iRef 63. jRef 64. Diaphragm-cell technique. kRef 65. Femtosecond
infrared pump�probe experiment. lRef 66. Femtosecond infrared
pump�probe experiment, two constants of biexponential decay, tem-
perature not reported. mRef 67. 1H NMR relaxation.
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the two simulations at nearly identical temperatures using the
MCYL and TIP4P force fields.74,75 Differences between, on the
one hand, the classical TIP4P model and, on the other hand,
TIP4P with nuclear quantum effects appear to be of minor
importance around room temperature. All of the simulations
point to a slightly anisotropic behavior of the angular momentum
correlation function, with the decay of the off-plane direction
slightly slower than that in the two in-plane directions.
From the value of the angular momentum correlation function

at its first minimum, we can reconfirm the previous observation
that the intermolecular interactions within the FPMD simulation
restrict the motion more than required. Nevertheless, the decay
rate of the angular momentum is reproduced better than by
classical force fields.
We further present a detailed analysis of the angular momen-

tum correlation functions from our simulation in Figure 4 as well
as in Figures S3 and S4 (Supporting Information). FromFigure 4,
it may be concluded that FSS, which interacts strongly with the
metal ion, features faster fluctuations of the angular momentum
than SSS and bulk water. The breakdown of the angular
momentum correlation function in terms of the Cartesian
components of l in molecule-fixed frame (Figure S3) reveals
that the short time-scale dynamics are roughly isotropic, meaning
that the angular momenta about the three molecular axes behave
similarly. The two in-plane components lx and ly also behave
similarly in SSS and bulk water, whereas the perpendicular
component lz exhibits the slowest time-scale.
There exists in FSS a regularly oscillating, slowly decaying

angular momentum autocorrelation function, particularly in the y
direction (molecular dipole moment) as compared to the more
distant molecules from the ion. In Figure S4 (Supporting
Information), the comparison of the smaller (127 water
molecules) and larger (255) simulated systems is plotted for
FSS and bulk water, here, molecules beyond FSS. FromFigure S4

(a�c), we observe that in the larger simulation box the periodic
oscillations become significantly more damped for the FSS water
molecules. There also exists a tiny difference in the rate of the
oscillation: the smaller simulation box corresponds to slightly
faster oscillations of l. Since this observation applies only to FSS
(the bulk water is practically unaffected), the difference cannot be
explained by the 10 K difference in the simulation temperature of
the smaller and larger system. The finite size of the periodic box
clearly exaggerates the oscillatory behavior. Hence, one should be
careful in FPMD simulations that require small simulation cells,

Table 6. Features of the Angular Velocity Correlation Func-
tion ofWaterMolecules in Simulated Aqueous Solution ofNi2+

Ion (This Work) or Pure Liquid Water (Literature)a

method τmin (fs)
b TCFmin

c temperature (K)

FPMDd 20, 20, 25 �0.68, �0.67, �0.68 368

MDe 45, 45, 55 �0.52, �0.54, �0.52 300

MDf 25, 29, 31 �0.59, �0.51, �0.58 298

MDg 25, 30, 32 �0.59, �0.48, �0.54 298

MDh 24, 24, 31 �0.5, �0.5, �0.5 286

exptl.i 14 �0.44 300
aMolecular axes are depicted in Figure 3a. b Literature numbers were
extracted from published graphs. τmin is the time of the first minimum
corresponding to x, y, and z axes, in this order. cThe value of the
correlation function at the first minimum. dThis work, first-principles
molecular dynamics simulation of Ni2+ in liquid water (127 molecules,
PBE functional). eRef 74. Ab-initio-based parametrized empirical
potential MCYL. fRef 75. Empirical TIP4P simulation. gRef 75. TIP4P
with nuclear quantum effects. hRef 76. MCY potential. iRef 77. Inelastic
neutron scattering.

Figure 4. Angular momentum correlation functions of the water
molecules in the aqueous solution of Ni2+ from first-principles molecular
dynamics simulation with 127water molecules. Comparison of the water
property in the first and second solvation shells as well as bulk, for the
different molecular axes. Here, “bulk” denotes all water molecules except
those in the first and second solvation shells. See Figure 3a for the
definition of the molecule-fixed axes.

Figure 3. Reorientational correlation functions of the water molecule in
aqueous Ni2+ from first-principles molecular dynamics simulation with
127 solvent molecules. The functions appropriate for the different
molecule-fixed axes are illustrated in (a) first solvation shell and (b)
bulk water as well as (c) the x direction in both. The inset of panel a
indicates the choice of the molecule-fixed axis system. êa (a = x,y,z)
denotes a unit vector along the molecular axis a. Panel c shows the
uncertainty intervals for a = x for the correlation functions of the first
shell and bulk water. Here, “bulk” denotes all water molecules except
those contained in the first solvation shell.
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when evaluating data that depend on the angular momentum
correlation functions or related dynamical properties of FSS.
Figure S5 (Supporting Information) indicates that only a small
difference exists between the angularmomentum autocorrelation
function Æl(0) 3 l(τ)æ for the l vector as calculated in the labora-
tory frame and the Eckart frame, the latter enabling the above-
discussed breakdown into the different molecular-fixed axes
Ælx(0) 3 lx(τ)æ etc.
As an overall conclusion, the present FPMD simulations result

in structural parameters, in good agreement with the current
knowledge. There are better results obtained for individual
properties of pure water reported in literature. In our case,
selecting the PBE functional resulted in balanced properties of
the more complex system featuring ion solvation. The obtained
trajectory should therefore be well-suited, e.g., for the calculation
of average magnetic properties.52 As hinted by the known issues
regarding the translational diffusion constant by FPMD, the
reorientational dynamics are also too slow in FPMD with PBE.
In contrast, FPMD for angular momentum dynamics performs
significantly better. FPMD calculations of dynamical properties
require particular care.
The dispersion correction57,58 was shown to improve proper-

ties of pure water calculated by the PBE functional, though even
then the problem of overstructured water is only alleviated.28

The dynamical properties should therefore also be shifted in the
required direction. In the case of the PBE functional, an
improvement in gas-phase energies has been seen in more
complex systems of hydrated aluminum complexes, their hydro-
lysis proceeding a little faster and further compared to the
uncorrected PBE functional.20 To see how the interaction
between water and Ni2+ is affected by the a posteriori dispersion
corrections, we ran a simple potential energy scan of the Ni2+ ion
and one water molecule with fixed geometry. The curves are
nearly identical, as the dispersion correction is very small
compared to the main electrostatic forces (data not shown).
The influence of the empirical dispersion corrections on dyna-
mical properties is an interesting topic for further investigation.
Exchange in the First Solvation Shell of the Ni2+ Ion. The

mechanisms of the exchange of water molecules in the FSS of the
Ni2+ ion have been discussed in the literature. A MD study by
Inada et al.8 using the Ni�O force field obtained at the unrest-
ricted Hartree�Fock level, including a three-body correction,
pointed to a dissociative mechanism. This means for the Ni2+

complex that the exchange proceeds via a 5-fold coordinated
intermediate, i.e., one molecule leaves FSS before the new
molecule arrives. However, the same authors concluded in a
QM/MM study7 that mainly the associative mechanism prevails.
Later on, Loffler et al.10 applied the umbrella sampling method79

in a classicalMD simulation using the same three-body-corrected
potential as in ref 8 and reconfirmed the dissociative mechanism.
During our simulation with 127 water molecules, a water

exchange event in FSS was observed to proceed via a 5-fold, long-
lived intermediate. At the beginning of the process, the leaving
water molecule gradually increases its Ni�O distance after being
expelled by collisions with the other molecules in FSS. The
increase of Ni�O distance from 2.15 to 3.75 Å takes 164 fs. After
4.8 ps, another molecule approaches the 5-fold coordinated
complex. The shortening of the Ni�O distance (3.75 to
2.15 Å) takes 373 fs (Figure S6, Supporting Information). The
five remaining water molecules largely retain the structure of the
usual 6-fold coordination, similarly to the case of static quantum-
chemical structures (Figure 1). Static calculations (not shown),

in which one of the water molecules was pulled away by
extending the Ni�O distance (with the structure otherwise
relaxed), showed that the departing water molecule started
to prefer hydrogen bonding with the remaining FSS water
molecules over coordination with the ion, after rNi�O ≈ 3.1 Å.
Observation of such a FSS exchange process for a divalent ion

is uncommon in FPMD simulations, and unlikely even in our
simulation where the trajectory was exceptionally long (taking
into account the system size). To our knowledge, a correspond-
ing observation has not been described in the literature. The
dissociative mechanism that we observe is also in accordance
with a high-pressure 17O NMR experiment,80 although by
observing this single exchange event, no real conclusions can
be made.
A simple calculation addressing the activation energy of the

water-exchange mechanism has been done using the COSMO
implicit solvation model. We calculated a relaxed surface scan of
one water molecule leaving the 6-fold coordinated complex at the
PBE/dev2-TZVP level (Figure S7, Supporting Information). We
obtained a small potential well of 1.65 � 10�2 eV as compared
with kBTz 2.58� 10�2 eV at 300 K. At the same level of theory,
the 7-fold coordinated structure is unstable, pointing also to the
dissociative mechanism of water exchange, although this simple
calculation completely neglects all the effects of dynamics and
other effects of explicit solvation.

’CONCLUSIONS

We have investigated using first-principles computations the
structure and dynamics of the aqueous solution of Ni2+. Both
static quantum-chemical calculations of the hexa- and penta-aqua
complexes Ni(H2O)n

2+ (n = 5, 6), as well as first-principles
molecular dynamics simulation of the aqueous solution, were
performed. The investigated properties were the radial correla-
tion functions, translational diffusion constants, and reorienta-
tional and angular momentum correlation functions. The first
principles trajectory is the longest of its kind so far, for system and
properties of the present type. Two different simulation cells
were used with 127 and 255 water molecules and one Ni2+ ion.

The detailed structure of the first solvation shell including six
water molecules has been found sensitive to the computational
level. The optimized rNi�O distance agrees well with the experi-
ment both in the static hexa-aqua complex and in the radial
distribution functions of the simulated trajectory. The most
ambiguous structural feature of the hexa-aqua Ni2+ complex,
and also very important for subsequent calculation of the
magnetic properties of the solution, is the tilt angle of the water
molecules. We show that the structure of the hexa-aqua Ni2+

complex calculated with an implicit solvation model has a tilt
angle (∼45�) close to peak of the distribution in the first-
principlesMD (∼47�), when the same PBE exchange-correlation
functional is used. The tilt angle is larger than experimental values
(ranging between 30 and 42�), and it is likely that the actual
equilibrium tilt angle is close to 33� obtained for the hexa-aqua
complex by the reference SCS-MP2 method.

The extensive FPMD trajectory allowed us to study the
dynamics of the aqueous Ni2+ complex including the dynamic
properties of the surrounding water. Fortuitously, an exchange
event of a water molecule in the first solvation shell occurred
during the simulation, and we are, for the first time, able to
support by first-principles calculation the suggestion that it
proceeds by a dissociative mechanism through a 5-fold
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coordinated intermediate, which to a significant extent preserves
the octahedral symmetry.

The computed translational diffusion constant of the water
molecules has been compared to the experimental and various
computational results. The diffusion constant is lower by an
order of magnitude than the experimental results in pure water.
This is a common finding for the combination of FPMD and the
PBE exchange-correlation functional. The calculated diffusion
constants feature a pronounced dependence on the simulation
cell size, with the larger system leading to somewhat improved
agreement with experimental results. However, qualitatively
correct results have only been obtained in the literature with
either expensive hybrid DFT-based FPMD or by a number of
modern, empirical force fields.

We fill a gap in the literature by evaluation of the rotational
dynamics of the water molecules by FPMD. The obtained τ1
correlation time is several times longer than published experi-
mental results. τ2, which is obtained from experiments much
more frequently, differs from our simulation by roughly an order
of magnitude. The slow dynamics implies that the properties that
depend on either translational or rotational diffusion must be
evaluated with special care in FPMD simulations. For example,
the empirical AMOEBA simulations outperform the present
FPMD simulation in this respect.

Angular velocity or angular momentum correlation time of
liquid water are very seldom reported in the literature. This
quantity is of relevance for the spin-rotation mechanism of NMR
relaxation. Comparison with results from inelastic neutron
scattering indicates good performance of FPMD for this prop-
erty, yielding better results than empirical force fields. Evaluation
of the correlation time for the first solvation shell of the Ni2+ ion
in the smaller and larger simulation box reveals artifacts from
periodic boundary conditions, when a small cell is used. The
angular momentum dynamics of the first solvation shell are
overall faster than in the second shell or bulk water.
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ABSTRACT: In the framework of a recently developed scheme for a hybrid particle-field simulation technique where self-
consistent field theory (SCF) and molecular dynamics (MD) are combined [J. Chem. Phys. 2009, 130, 214106], specific coarse-
grained models for phospholipids and water have been developed. We optimized the model parameters, which are necessary in
evaluating the interactions between the particles and the density fields, so that the coarse-grainedmodel can reproduce the structural
properties of the reference particle�particle simulations. The development of these specific coarse-grained models suitable for
hybrid particle-field simulations opens the way toward simulations of large-scale systems employing models with chemical
specificity, especially for biological systems.

1. INTRODUCTION

Phospholipids are an important class of biomolecules. Their
amphiphilic nature allows them, when they are dissolved in
water, to self-assemble into a lipid bilayer with lipid tails shielded
from water and polar head groups exposed to the polar environ-
ment. In living organism, lipid bilayers form cellular membranes.
Biological membranes are complex structures, and despite the
considerable amount of information accumulated, experimental
methods able to follow their dynamics with details at the atomic
level are not yet available.1�5 For these reasons, lipid bilayers
have attracted the interest of the computational biophysics com-
munity, and atomistic molecular dynamics (MD) simulations of
these systems have been performed for a long time.6�10 How-
ever, these simulations are still computationally very expensive to
study processes occurring on the mesoscopic time (>μs) and
length scales (>100 nm).11 Therefore, to overcome this problem,
alternative computational methods aiming to bridge the time and
length scales involved in the relevant phenomena are constantly
proposed. In the past few years, coarse-grained (CG) simulations
became a very popular method for studying these systems. The
CG approach involves the reduction of degrees of freedom in the
atomic model of the simulated system by combining several
atoms to a single particle (“effective bead”). CG methods have
been successfully applied to several problems involving polymers,12

biomolecules,2 and more in general soft matter.13

For phospholipids, different types of CG models have been
developed. For a detailed overview, the reader should refer to a
recent review of Muller et al.14 Sintes and Baumg€artner15,16

developed a coarse-grained model for lipid bilayers where the
solvent is implicitly taken into account. Later, Lenz and Schmid
developed this implicit-solvent model to pure lipid bilayers
composed of saturated lipids.17 On the other hand, Goetz and
Lipowsky introduced an explicit-solvent CG model for lipid

membranes where a binary Lennard-Jones fluid for the solvent
and a short chain of beads for the amphiphilic molecules are
used.18

The degree of coarse-graining of a simulated system is related
to the type of process that one wants to investigate. Minimalist
CG models (e.g., having a very low discrimination of the
chemical details of the molecule) can be successfully applied
to study self-assembly phenomena involving many molecules
when the structure and dynamics on atomistic length scales can
be considered irrelevant for the process, and systems can be
conveniently described by only a small number of key properties,
e.g., the amphiphilic nature of the molecule. Usually for mem-
brane systems, a clear separation in length, time, and energy
scales assumed by this approach is often missing, and the
chemical specificity of the models have to be taken into account.
Furthermore, these simple models can fail to reproduce more
complex phenomena involving specific interactions of mem-
brane with other molecular systems (e.g proteins, polymers).
In these cases, the generic nature of the minimal coarse-grain
models limits their application.

To possibly avoid these problems, more specific CG models
can be developed. These CG models usually employ several
different types of beads (not just hydrophobic and hydrophilic).
A successful and very widely explored example of this approach is
theMARTINI CGmodel developed byMarrink and co-workers.19

In the MARTINI force field, the phospholipids are described by
beads having different Lennard-Jones-type interaction para-
meters that can smoothly modulate their hydrophobic/hydrophi-
lic character. In addition, water molecules are treated explicitly
with a coarse-grained reduction scheme of four molecules to one.
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Despite, its simplicity, the MARTINI force field is able to
reproduce with surprisingly good accuracy the properties of
the self-assembly of lipid bilayers.8,20,21 This model has been
successfully extended to proteins.22

On the other hand, different computational approaches based
on field representations have been proposed tomodel soft matter
systems. In particular, in the framework of the self-consistent
field (SCF) theory, the model systems are not represented by
particles but by density fields, and the mutual interactions
between segments are decoupled and replaced by an interaction
between the segments and static external fields.23 In the SCF
theories, these external fields depend on the statistical average of
the spatially inhomogeneous density distributions of segments of
independent molecules which are interacting only with these
fields. Such external fields and the particle density distributions
have to be determined self-consistently. Numerous applications
to block copolymers,24�28 proteins,29 polymer composites,30 and
colloidal particles31,32 have demonstrated that the SCF theory is a
useful and powerful method.

Several models have been reported in the literature to study
mixtures of phospholipids and water using a field-based ap-
proach.Marcelja proposed the first fieldmodel. In this model, the
head groups of the lipid molecules are modeled as a boundary to
which the tails of the lipid molecules are anchored. The intra-
molecular degrees of freedom are sampled using the rotational
isomeric state (RIS) model, where the segments interact through
an anisotropic aligning potential.33 The inequivalence of tail,
head, and solvent segments allows the modeling of bilayers as
preassembled structures, and it does not allow the study of self-
assembly. Later, a fully self-consistent framework that is capable
of describing stable, tensionless, self-assembled bilayers has been
proposed. Both random-chain and the RIS-chainmodels result in
membranes with qualitatively similar segment distributions and
with similar thermodynamic properties.34 Quantitatively, how-
ever, this approach underestimates the experimentally measured
membrane thickness by about 50%.14 More recently, molecular-
level SCF theories that are able to treat phospholipids have been
proposed.35 Themain point of these SCF techniques is to split up
the calculation of multibody interactions into two procedures: i.
e., to find the ensemble averaged conformation distribution and
to find the segment potentials based on the segment distribution.
For these purposes, differential equations have to be solved
numerically using lattice approximations, and a discrete set of
coordinates onto which segments can be placed has to be
defined. Layers are defined imposing reflecting boundary condi-
tions to mimic a multilamellar system. Parameters are defined so
that the results of the MD simulations match those of the SCF
simulations.35 M€uller and Schick36 proposed an alternative
approach developing an off-lattice representation of the field
theory and obtained the single-chain partition function via a
partial enumeration37 over a large set ofmolecular conformations
of a lipid chain with the RIS statistics. As the partition function of
a single lipid in an external field cannot be obtained analytically
for a realistic molecular architecture, one has to approximate the
probability distributions of the conformations of noninteract-
ing lipid molecules by a representative sample of single lipid
conformations.

More recently, M€uller and Smith38 introduced a hybrid ap-
proach in the framework of SCF theory by combining it with a
Monte Carlo simulation of a coarse-grained model of polymer
chains to study phase separation in binary polymermixtures. This
approach has been widely and successfully applied by M€uller and

co-workers to coarse-grained models of diblock copolymer thin
films39 and polymer nanocomposites.40 One of the advantages of
this hybrid approach is the lack of any limitation in treating
complex molecular architectures and/or intramolecular interac-
tions. With these precedents, very recently, a hybrid particle-field
approach, where the molecular dynamics (MD) method is
combined with SCF description (MD-SCF), was proposed,
and an implementation suitable for the treatment of atomistic
force fields and/or specific coarse-grained models has been
reported.41,42

Particle-based CG models like MARTINI are still computa-
tionally expensive compared to SCF approaches. In the follow-
ing, we will refer to these models as particle�particle (PP)
models. On the other hand, SCF approaches ensure accessibility
to definitely larger length and time scales but at the cost of very
low chemical specificity. The idea behind the combined MD-
SCF method is to obtain a strategy, as far as will be possible,
having the main advantages and avoiding the main disadvantages
of both techniques.

In this paper, we report the development of coarse-grained
specific models for biologically relevant phospholipids that are
suitable for the hybrid MD-SCF techniques. In the following, we
will refer to these models as particle-field (PF) models.

The paper is organized as follows: In section 2, the basis of
SCF theory, which is useful for the reader to understand in regard
to the present investigation, a brief description of the computa-
tional scheme for hybrid particle-field MD-SCF simulations, and
simulation details are reported. In section 3, the description of
the models and the strategy of the parametrization are reported.
In section 4, particle-field MD-SCF simulation results of lipid
bilayers are reported in comparison with classical MD simula-
tions using theMARTINI force field, where the latter simulations
are hereafter called PP simulations.

2. COMPUTATIONAL METHOD

2.1. MD-SCF Theory and Implementation. In this section, a
brief exposition of the recently developed hybrid PF MD-SCF
simulation scheme is reported. This section is intended to quickly
guide the reader to get the basis of the methodology and to
understand the framework of the present investigation. In order
to obtain this approach in more detail, the reader should refer to
ref 41, where the complete derivation and the implementation
are described, and to ref 23 for a general review of SCF methods.
The main feature of the hybrid PF MD-SCF approach is that

the evaluation of the nonbonded force and its potential between
atoms of different molecules, i.e., the most computationally ex-
pensive part of MD simulations, is replaced by an evaluation of
the external potential that is dependent on the local density at
position r. According to the spirit of SCF theory, a many-body
problem like molecular motion in systems composed of many
molecules is reduced to a problem of deriving the partition
function of a single molecule in an external potential V(r). Then,
nonbonded force between atoms of different molecules can be
obtained from a suitable expression of the potential V(r) and its
derivatives.
In the framework of SCF theory, a molecule is regarded as

interacting with the surrounding molecules not directly but
through a mean field. On the basis of this picture, the Hamilto-
nian of a system that is composed ofMmolecules can be split into
two parts Ĥ(Γ) = Ĥ0(Γ) + Ŵ(Γ), whereΓ specifies a point in the
phase space, which is used as shorthand for a set of positions of all
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atoms in the system.Here and also in the following, the hat symbol
indicates that the associated physical quantity is a function of the
microscopic states described by the phase space Γ.
Ĥ0(Γ) is the Hamiltonian of a reference ideal system com-

posed of noninteracting chains but with all the intramolecular
interaction terms (bond, angle, and nonbonded interactions)
that are taken into account in the standard MD simulations. The
term Ŵ(Γ) is the deviation from the reference system which is
induced by the intermolecular nonbonded interactions.
Assuming the canonical (NVT) ensemble, the partition func-

tion of this system is given by

Z ¼ 1
M!

Z
dΓ expf�β½Ĥ0ðΓÞ þ ŴðΓÞ�g ð1Þ

where β = 1/(kBT).
From microscopic point of view, the density distribution of

atoms can be defined as a sum of δ functions centered at the
center of mass of each particle as

ϕ̂ðr;ΓÞ ¼ ∑
M

p¼ 1
∑
SðpÞ

i¼ 0
δðr� rðpÞi Þ ð2Þ

where M is the total number of molecules in the system, S(p) is
the number of particles contained in pth molecule, and ri

(p) is the
position of the ith particle in pth molecule. Several assumptions
are introduced to calculate the interaction term Ŵ(Γ). First of all,
we assume that Ŵ(Γ) depends on Γ only through the particle
density ϕ̂(r;Γ) as

ŴðΓÞ ¼ W ½ϕ̂ðr;ΓÞ� ð3Þ

whereW [ϕ̂(r;Γ)] means thatW is a functional of ϕ̂(r;Γ). Using
an identity f[ϕ̂(Γ)] =

R
D{j(r)} δ[j(r)� ϕ̂(Γ)] f [j(r)] where

δ[j(r)] is the δ functional, the partition function in eq 1 can be
rewritten as

Z ¼ 1
M!

Z
DfjðrÞg

Z
DfwðrÞg exp �β �M

β
ln z

��

þW ½jðrÞ� �
Z

VðrÞ jðrÞ dr
��

ð4Þ

In this expression, z is the single molecule partition function,
w(r) is a conjugate field of j(r) which appeared in the Fourier
representation of the δ functional, and V(r) is the external
potential that is related to w(r) as V(r) = (i/β)w(r).
For evaluating this partition function approximately, the

integrals over j(r) and w(r) in eq 4 are replaced with a Gaussian
integral around the most probable state that minimizes the
argument of the exponential function on the right side of eq 4
(so-called saddle point approximation).
The minimization conditions in the form of functional deri-

vatives result in

VðrÞ ¼ δW ½ϕðrÞ�
δϕðrÞ

jðrÞ ¼ � M
βz

δz
δVðrÞ ¼ Æϕ̂ ðr;ΓÞæ ¼ ϕðrÞ

8>>><
>>>: ð5Þ

where ϕ(r) is the coarse-grained density at position r.
In terms of eq 5, it is possible to acquire an expression for a

density-dependent external potential acting on each segment.

Next, we assume that the density dependent interaction
potential W, where each component species is specified by the
index K, takes the following form:

W ½fϕKðrÞg� ¼
Z

dr
kBT
2 ∑

KK 0
χKK 0ϕKðrÞϕK0 ðrÞ þ 1

2k
ð∑
K
ϕKðrÞ � ϕ0Þ2

 !

ð6Þ
where ϕK(r) is the coarse-grained density of the species K at
position r and χKK0 represents the mean field parameters for the
interaction of a particle of type K with the density fields due to
particles of type K0. The second term of the integrand on the
right-hand side of eq 6 is the relaxed incompressibility condition.
k is the compressibility that is assumed to be sufficiently small,
and ϕ0 is the total number density of segments (we assume that
volume for all segments is the same). Then, the corresponding
mean field potential is given by

VKðrÞ ¼ δW ½fϕKðrÞg�
δϕKðrÞ

¼ kBT∑
K0
χKK 0ϕK0 ðrÞ þ 1

k
ð∑
K
ϕKðrÞ � ϕ0Þ

ð7Þ
Taking the case of a mixture of two components A and B as an

example, the mean field potential acting on a particle of type A at
position r is given by

VAðrÞ ¼ kBT½χAAϕAðrÞ þ χABϕBðrÞ� þ
1
k
½ϕAðrÞ

þ ϕBðrÞ � ϕ0� ð8Þ
Thus, the force acting on the particle A at position r imposed

by the interaction with the density field is

FAðrÞ ¼ � ∂VAðrÞ
∂r

¼ � kBT χAA
∂ϕAðrÞ
∂r

þ χAB
∂ϕBðrÞ
∂r

� �

� 1
k

∂ϕAðrÞ
∂r

þ ∂ϕBðrÞ
∂r

� �
ð9Þ

The main advantage of the hybrid MD-SCF scheme is that the
most computationally expensive part of the MD simulations, i.e.,
the evaluation of the nonbonded force between atoms of dif-
ferent molecules, is replaced by the evaluation of forces between
single molecules with an external potential. In order to connect
particle and field models, for the proposed hybrid MD-SCF
scheme, it is necessary to obtain a smooth coarse-grained density
function directly from the particle positions Γ. Let us denote this
procedure as

S̅fϕ̂ðr;ΓÞg ¼ ϕðrÞ ð10Þ
where S is a symbolic name of the mapping from the particle
positions to the coarse-grained density. In order to obtain a
smooth spatial density from particle positions, the simulation box
is divided into several cells. In particular, particles are sorted and,
according to their positions, assigned to ncell = nxnynz (where nx,
ny, and nz are the number of cells in the x, y, and z directions,
respectively). Furthermore, according to the position of each
particle inside a cell, a fraction of it will be assigned to each
vertex of the cell. In Chart 1, a simple two-dimensional case is
used to explain the procedure. In the same chart, the structure
of a phospholipid and the corresponding density field are
schematized.
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As shown in Chart 1B, the fraction of a particle assigned to a
given lattice point is proportional to the area of a rectangle
showed in the chart. For example, for a particle with coordinates
x and y, a fraction (l� x)(l� y)/l2 will be assigned tomesh point
1 and a fraction of xy/l2 at mesh point 4 in Chart 1B (for
simplicity, l is the length of the cell both in x and y directions).
Thus, the density at every mesh point is the sum of all fractions
assigned from all of the cells that share a given lattice point.
According to the procedure described above, the size of the cell l
is a parameter defining the density coarse-graining. The larger the
value of l is, the higher the number of particles included in every
cell and the coarser the calculated density will be. Once the
coarse-grained density has been calculated from particle posi-
tions, the spatial derivatives of the density field can be evaluated.
Spatial derivatives can be obtained by differentiation of the
density lattice. In this way, the lattice where the derivatives are
defined is staggered with respect to the lattice where the density
is defined. As schematized in Chart 1B, the squares indicate the
lattice points where the density is defined. Correspondingly, the
density gradients are defined on the center of each edge
(staggered lattice points indicated by crosses in Chart 1B) of
the square surrounding the density lattice points.
Once both density and derivatives have been computed on

their corresponding lattices, the potential energy and forces

acting on the particles can be calculated using values obtained
by interpolation of the density and its spatial derivatives in
eqs 8 and 9.
The iteration algorithm used in the MD-SCF approach is

explained in the following. According to the initial configurations
of the system (at time t0), a starting value of the coarse-grained
density is obtained. The coarse-grained density is defined on a
lattice, and the values of the density and density gradients at the
particles positions are calculated by linear interpolation. Then,
from the density gradients, forces acting on the particles at
position r due to the interaction with the density fields are
computed according to eq 9. The total force acting on the
particles will be the sum of the intramolecular forces (bonds,
angles, and intramolecular nonbonded forces calculated as in
classical MD simulations) and the forces due to the interactions
of particles with density fields. After the force calculation, a new
configuration will be then obtained by integration of the equation
of motion. In principle, for every new configuration, an update of
the CG density calculated from the new coordinates should be
performed. Test simulations have shown that, due to the
collective nature of the density fields, it is possible to define an
update frequency of the coarse-grained densities without a loss of
accuracy.41,42 In other words, the values of the coarse-grained
density at lattice points are not updated at every time step but
only at every prefixed density update time (Δtupdate). Then,
between two updates, the values of the densities on the lattice
used to interpolate both density and its derivatives will be con-
stant. When an update of density is performed, a new coarse-
grained density will be obtained, and the iteration algorithm
converges when the coarse-grained density and the particle-field
potential become self-consistent.
2.2. Simulations Details. Classical MD simulations used to

obtain reference PP simulations have been performed using the
program GROMACS (ver. 3.3).43 The time step used for the
integration of the equations of motion was 0.03 ps. The
temperature and pressure were kept constant using Berendsen’s
weak coupling method (τT = 0.1 ps and τP = 1 ps). Target
temperatures have been chosen according to the available
experimental data and are listed in Table 1. A cutoff of 1.5 nm
has been used to truncate nonbonded interactions. To equili-
brate the system with NPT simulations, the target pressure was
fixed to 1 bar, and semi-isotropic coupling has been employed. In
order to achieve a better comparison between the results of PP
and those of NVT PF simulations, NVT MD simulations have
been performed using the average box lengths (see Table 1)
obtained from the equilibrated NPT simulations. In particular,
NPT simulations were performed for all systems for at least
120 ns. In the case of the DPPC lipid, the equilibrium area/lipid
at 323 K for the PPmodel is 0.64 nm2. This value was reported by
Marrink et al.44 and is in agreement with the experimental value

Chart 1. (A) Construction of Coarse-Grained Density for a
Phospholipid and (B) Criterion for the Assignment of Particle
Fractions to Lattice Points

Table 1. Details about Simulated Systems

box lengtha (nm) composition

lipid type x y z no. of lipids no. of water weight % lipids T (K)

DPPC 8.17605 8.17605 6.94982 208 1600 60.9 325

DMPC 6.60390 6.60390 9.46884 208 1600 56.5 303

DOPC 7.21263 7.21263 9.62862 208 1600 64.5 303

DSPC 8.02782 8.02782 7.75874 208 1600 64.5 335
aValues of box length in x, y, and z directions have been fixed using averages obtained from NPT simulations of the reference PP models.
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reported by Nagle et al.45 and later by Ku�cerka et al.46 In order to
simulate systems having a correct value of area/lipid, NVT PF
simulations have been performed using average box lengths (see
Table 1) that are corresponding to those obtained in the
reference PP simulations.
The molecular dynamics program OCCAM47 was used

for hybrid particle-field MD simulations. PF simulations
have been performed using a time step of 0.03 ps. NVT simu-
lations have been conducted keeping the temperature con-
stant using an Andersen thermostat with a collision frequency
of 5 ps�1.

All density profiles, for both PP and PF simulations, have been
calculated from simulations equilibrated at least for 10 ns.
Density profiles have been averaged over further 2 ns after
equilibration. The composition of lipid water systems has been
set in the range of stability of the bilayer phase. Details about
systems sizes and compositions used in the simulations reported
in this paper are summarized in Table 1.

3. MODELS AND THEIR PARAMETRIZATION

As described in section 2, according to the formulation of
hybrid PF models, the intramolecular bonded interactions
(bond, angles) can be modeled using usual force fields suitable
for molecular simulations. Our choice is to develop a hybrid PF
model based on a description able to retain the chemical
specificity. The coarse-graining scheme proposed by Marrink
and co-workers is suitable for this purpose. The advantages of this
model are that the parametrization of the interaction potentials is
not tailored to a specific lipid and different phospholipids can be
modeled from a small set of bead types.

In Figure 1, the MARTINI coarse-graining mapping scheme
of the atomistic structures is exemplified for the phospholipid
dipalmitoylphosphatidylcholine (DPPC).

According to the formulation of the MD-SCF method, bond
and angle interaction potentials have the same functional form
and parameters as those in the original MARTINI force field.19

All types of nonbonded intramolecular interactions are assumed
to be repulsive, while the intermolecular interactions are calcu-
lated using the assumption that each coarse-grained bead inter-
acts with the density fields.

Figure 1. The adopted coarse-graining scheme for DPPC phospholipid
is depicted. One coarse-grain bead corresponds to four atoms.

Figure 2. Water and DPPC density profiles and snapshot for (A) reference PP simulation, (B) PF simulation using a χCW parameter 2.5 times larger
than the value calculated by eq 11, (C) PF simulation using the χCW parameter calculated by eq 11.
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According to eq 7, in order to calculate the PF potential,
several mean field parameters χKK0 between a particle of type K
with the density field due to particles of type K0 are needed. A
simple choice of these parameters can be obtained by following
the Flory�Huggins approach for the calculation of χ parameters
for lattice models:

χKK0 ¼ zCN
kBT

2uKK0 � ðuKK þ uK0K0 Þ
2

� �
ð11Þ

where uKK0 is the pairwise interaction energy between a pair of
adjacent lattice sites occupied by the beads of types K and K0.
These interaction energies have been set as uKK0 =�εKK0, where
εKK0 is the Lennard-Jones ε parameter for the corresponding PP
interactions. The parameter zCN in eq 11 is the coordination
number, which takes a value of 6 for a three-dimensional lattice.
Another way to obtain the coordination number is from integra-
tion of the radial distribution function between all possible pairs.
As the initial state for the MD simulations, we prepare a
randomly mixed state of 208 DPPC and 1600 water molecules.
Then, this mixture is subjected to an energy minimization
procedure in order to avoid particle overlapping. This procedure
gives an average number of neighbors per particle calculated at a

distance equal to 1.20σ close to 6.0. With the choices described
above, it is possible, given the particle�particle ε parameters and
the value of zCN, to obtain the corresponding PF parameters.
According to our choice, the χ parameters have been obtained
considering the interactions between the different particle types
classified according to the four types polar, nonpolar, apolar, and
charged interactions considered in the MARTINI force field.19

Using the models and the PF parameters described above, we
simulated a system of DPPC and water using small values of both
grid size (l = 0.587 nm, corresponding to 1.25σ) and update
frequency (0.3 ps, corresponding to 10 time steps).

In order to determine the value of the parameter k, which
regulates the strength of the incompressibility condition imposed
in eq 10, we analyzed the behavior of density fluctuations in the
reference PP simulation. The criterion is the reproduction of the
value of the average density fluctuations, calculated as mean
square deviation between the average total density and instanta-
neous value averaged over all lattice points using the same grid
size used in PF simulations. In particular, using values of 1/k of
about 8RT (where R is the gas constant and T temperature),
average density fluctuations, in agreement with the reference PP
simulation, are found to be smaller than 1%.

Figure 3. Comparison between reference PP and PF simulations using different values of the χCW parameter for electron density profiles of water (A),
DPPC (B), and the phosphate group (C). Total density profiles for DPPC water system calculated from PP (red circles) and PF (blue triangles)
simulations in comparison with experiments (black curves; D) are shown. The density profiles evaluated using the χCW parameter, which is scaled 2 to 3
times the value obtained from eq 11, are compared with those of the reference PP simulation.
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The system has been simulated for 60 ns; further details about
simulations have been reported in section 2. In Figure 2, snap-
shots of the simulations together with calculated electron density
profiles are reported. Here, the electron density profiles are
obtained by multiplying the particle number density by the
number of electrons contained in a given bead. As shown in
Figure 2C, similarly to the reference PP simulation, the hybrid PF
simulation leads to a successful formation of a lipid bilayer.
Further comparisons between the results of PP and PF MD
simulation have been used to refine the set of initial χ parameters
obtained using eq 11.

In Figure 2, electron density profiles calculated by PP and PF
MD simulations for the DPPC/water system (bottom panel of
Figure 2) have been compared.

From a comparison of the density profiles of Figures 2A and B,
it is clear that the PF model gives a weaker phase separation
between DPPC and water molecules with respect to the MD
simulation. Furthermore, the snapshot of Figure 2C shows that,
for the system simulated with the hybrid PF method, the
phospholipid plane lies along the diagonal of the simulation
box. This indicates the tendency of the lipid molecules to occupy
a larger area for the lipid. This tendency can be connected to a
different size of the lipid molecules in the PF simulations from
that of the PP simulations. To show this, the radius of gyration
and the angle between two tails obtained from PP and PF
simulations have been compared. In particular, histograms of
these two structural quantities are very similar for both models
(see the Supporting Information). As a result, both weak phase
separation between the lipid andwater and the tendency to occupy
a larger area per lipid can bemainly ascribed to an underestimation
of repulsion between theDPPCmolecules andwater in PFmodels
with respect PP ones. Following this idea, several simulations were
conducted to refine the interaction parameter between the
hydrophobic tails of lipids and water molecules (namely the
χCW parameter). Test simulations show that starting from values
of χCW parameter 2.5 times larger than the value calculated by
eq 11, the lipid bilayer does not occupy a larger area per lipid than
the PP simulations and lies parallel to the xy plane of the
simulation box. In Figure 3, density profiles of DPPC, water,
and the phosphate group (P) obtained from simulations in which
the repulsion between water and hydrophobic tail is further
increased to 3 times that obtained with eq 11 are reported.

From Figure 3, it is clear that using a value of the χCW
parameter that is 2.5 times larger than that evaluated by eq 11
gives electron density profiles very close to that in the reference
PP simulations. In Figure 3D, the total electron density profiles of
the DPPC/water system calculated from PP and PF simulations
are compared with those obtained by fitting X-ray diffraction

experiments of Ku�cerka and co-wokers.46 The behavior of the
calculated density profiles is smoother than the experimental
one. In particular, in both PP and PF density profiles, the height
of the peaks located at about 2 nm from the center of the bilayer is
slightly underestimated. This effect, similar in PP and PF
simulations, can be ascribed more to the coarse-grained nature
of the models (reduction of degrees of freedom into one effective
bead) than to the field description in the hybrid PF models; a
similar behavior is found comparing the behavior of the calcu-
lated and experimental density profiles for the phosphate group
(Figure 3C). The optimized set of χ parameters for all PF
interactions is reported in Table 2.

According to eq 11, the interaction matrix is symmetric, and
the χ parameter between the same type of particles is zero.

4. SIMULATIONS RESULTS

In Figure 4, self-assemblies of DPPC/water systems simulated
using PP and PF models are compared. For both simulations, the
initial configuration and the simulation conditions are the same

Table 2. Particle-Field Interaction Matrixa

N P G C D W

N 0.00 �1.50 6.30 9.00 7.20 �8.10

P �1.50 0.00 4.50 13.50 11.70 �3.60

G 6.30 4.50 0.00 6.30 6.30 4.50

C 9.00 13.50 6.30 0.00 0.00 33.75

D 7.20 11.70 6.30 0.00 0.00 23.25

W �8.10 �3.60 4.50 33.75 23.25 0.00
a χKK0� RT (kJ/mol) for particles of typeK interacting with density field
due to particle of typeK0 are reported. χ parameters have been calculated
using eq 11; the value of χCW is 2.5 times the one calculated by eq 11.

Figure 4. Comparison of the self-assembly process of DPPC and water
in a bilayer phase obtained from PF (A) and PP simulations (B). In the
figure, the time behavior of particle-field intermolecular potential in the
PF MD simulation is compared with the behavior of the nonbonded
Lennard-Jones potential in the PP MD simulation. Potential units are
kilojoules per mole.
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(see Table 1). The starting configuration for both simulations is
made up of randomly mixed DPPC and water molecules.

It is worth noting that in the PF simulations the formation of
the lipid bilayer as stable equilibrium state, as shown by the
snapshots reported in Figure 4A, is observed already after about 7
ns. From Figure 4B it can be noted that in the same time interval

the PP simulation shows only an initial stage of phase separation
and a stable lipid bilayer phase is formed only after 30 ns.
4.1. Influence of Density Coarse-Graining. 4.1.1. Structural

Properties.As described in section 2, coarse-grained density fields
ϕK(r), obtained from particle positions for every particle type K,
are used to calculate PF potentials and forces using eqs 8 and 9.

Figure 5. Partial density profiles for water and DPPC obtained from (A) PP simulations and PF simulations using l = (B) 1.25σ, (C) 1.50σ, (D) 1.60σ,
(E) 2.0σ, and (F) 2.5σ. In all PF simulations, the update frequency Δtupdate is 10 time steps.

Figure 6. Partial density profiles for water and DPPC obtained from (A) PP simulations and PF simulations usingΔtupdate = (B) 10, (C) 300, (D) 700,
(E) 900, and (F) 1300 time steps. In all PF simulations, the grid size l is 1.25σ.
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According to the scheme described above, two parameters, the
cell size l and the update frequency Δtupdate, regulate the degree
of coarse-graining of the density fields. Larger cell sizes lead to
more collective density fields. As for the value of the update
frequency, it has to be chosen in a way that the approximation of
slow variation of the field with respect to the particle displace-
ment is valid between two density updates. In this section,
simulation results using different density update frequencies
and cell sizes will be discussed and compared with the results
of reference PP simulations.
Several test simulations have been performed to understand

the effect of the cell size l on the quality of calculated electron
density profiles of the DPPC water bilayer. In Figure 5, partial
density profiles corresponding to water and to the four different
bead types (N, P, G, and C) present in DPPC obtained using l
ranging from 1.25 and 2.5σ (corresponding to 0.59 and 1.17 nm)
and using the same update frequency (Δtupdate = 10 timesteps)
are reported. From Figure 5 it is clear that PF simulations
reproduce the structure of the lipid bilayer phase obtained from
reference PP simulations well (Figure 5A). Values of l larger than
2.5σ give rise to stronger phase separation between water and
DPPC with a narrowing of the density profiles. The grid size is
larger, and this effect is more pronounced.
In Figure 6, electron partial density profiles for a mixture of

water and DPPC molecules obtained for different values of the
density update and using the same grid size (l = 1.25 σ) are
compared with those obtained from reference PP simulations. In
particular, the behaviors for Δtupdate ranging from 10 (0.3 ps) to
1300 (39 ps) time steps are compared.
As expected, the agreement between PP and PF density

profiles worsens as the Δtupdate grows. For an update frequency
between 10 and 700 time steps, water and DPPC density profiles
are quite similar (see Figure 6B�D) and reproduce the behavior
of the reference PP simulation well. Starting from update
frequencies of 900 time steps (see Figure 6E), artificial undula-
tions in the lipid bilayers are obtained. This causes a smoothing of
the calculated density profiles. In particular, when large updates
are used, the central depletion in the density profile of the
hydrophobic beads of type C is absent (Figures 6E,F). Further-
more, the density profiles of the DPPC head groups N and P and
of the bead types G are very shallow (Figure 6E,F).

The reproduction of the spatial organization of the head
groups and in particular the phosphate group (type P) is
important for the quality of the model. In fact, the bilayer
thickness (DHH), obtained by calculating the distance between
the two peaks of the density profile corresponding to the
phosphate group, can be compared with the values obtained
from X-ray and/or neutron diffraction measurements. In the case
of DPPC at 323 K (50 �C), a value of DHH of 3.7 nm is obtained
from PF simulations using update frequencies from 10 to 700
time steps. This value is equal to the one obtained from PP
simulations and close to the experimental value of 3.8 nm
measured at the same temperature.48 For larger values of density
update frequency, the electron density profile of P groups
becomes broader, and a correct evaluation of DHH becomes
unreliable.
In order to understand the behavior of the systems as a

function of the frequency of the density update, it is useful to
compare the mean square displacement (MSD) of the particles
as a function of time. In Figure 7, we present the behavior of the
square root of the mean square displacement for water and the
DPPC in units of cell length ((MSD)1/2/lwhere l is the cell length)
as function of time for different values of update frequencies.
This is a direct way to understand the validity of the approx-

imation of slow variation of the field with respect to the particle
displacement between two density updates. In fact, the plot of
Figure 7 quantifies how many cells a particle can cross in a given
amount of simulation time. From Figure 7, it is clear that for
update frequencies between 500 and 700 steps (corresponding
to 15 and 21 ps) both water and DPPC beads have a displace-
ment smaller than or equal to the cell size. For larger update time
intervals, the displacement is larger than the size of a cell. This
result agrees well with the good reproduction of density profiles
and a bilayer thickness for update frequencies smaller than
700 steps.
This kind of analysis of PF simulations can be useful in general

to set a suitable value for the update frequency also in the absence
of reference simulations data.
4.1.2. Dynamical Properties. From the comparison of the self-

assembly processes of a lipid bilayer obtained in the simulations
shown in Figure 4, it is clear that the dynamics of the system
simulated by the PF method are faster. This is due to smoother
potentials and forces characterizing the PF Hamiltonian. In
particular, PF models include the effect of excluded volume

Figure 7. Normalized displacement of water, DPPC, and P beads as a
function of time.

Figure 8. Ratio between PP and PF diffusion coefficients as a function
of the update frequency calculated for water (black curve) and DPPC
(red curve).
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interactions between particles using the incompressibility con-
dition described in eq 7. Forces acting on the particles then
depend on the derivatives of the density fields that change
smoothly over the length scale at larger than average distances
between particle pairs.
In order to compare more quantitatively the different dy-

namics in PP and PF simulations, diffusion coefficients have been
calculated from the MSD behaviors of water and DPPC particles
as functions of time.
In Figure 8, values of the ratio D* between the diffusion

coefficients calculated from the PF simulations using different
update frequencies and the one calculated from the reference PP
simulation are reported. In all of the cases and for both water and
DPPC, the diffusion coefficients calculated from the results of PF
simulations are larger than those obtained from the results of the
PP simulation. The diffusion of water is 3.5 to 4 times faster for
PF simulations. The increase of the diffusion coefficient of the
DPPC lipid ranges from about 3.5 to 7 times the value obtained
from the reference PP simulation. This behavior is in agreement
with the faster formation of a stable lipid bilayer as obtained from
the comparison between PF and PP simulations reported in
Figure 4.
In Table 3, the values of diffusion coefficients and their

components calculated from PP and PF simulations using
different density update frequencies are reported.
Results of the test simulations obtained using different grid

sizes l and the same update frequency (300 timesteps) are re-
ported in Figure 9. In particular, the values of the diffusion co-
efficients of water and DPPC increase according to the increase
in the grid size. This is reasonable because a coarser density will
give rise to smoother particle-field potentials and forces.
In the case of water, there is a small decrease in the diffusion

coefficient for the largest grid sizes (2.0σ). This effect is due to
the deviation from the reference density profile obtained when a
larger grid size is used. As described in the previous paragraph,
large grid sizes give rise to stronger phase separation between
water andDPPC. The x and y components of the diffusion tensor
of the water parallel to the bilayer plane show small variation as a
function of the grid size, and they are practically constant within
the error bar. In contrast, the z component of the diffusion tensor
of water going from a grid size of 1.5 to 2.0σ is reduced by a
factor of 2.
4.2. Particle�Particle and Particle�Field Correlations.The

formulation of the hybrid MD-SCF method employed here is
based on the interactions of single molecules with external
density fields. Interactions between different molecules do not
involve the evaluation of forces between particle pairs. This
implies that, although the density profiles calculated with PF and

PP simulations are in good agreement, pair correlations between
particles can be different.
In the case of PP simulations, the equilibrium structure and

then the density profiles are the result of excluded volume inter-
actions and of the different pair forces between hydrophilic and
hydrophobic beads. In the case of PF simulations, the structure
and the density profiles obtained from simulations are the result
of the different interactions between every single hydrophilic and
hydrophobic particle and the density external fields. To illustrate
this point intuitively, we compare the radial distribution func-
tions for several bead types between PP and PF simulations. Red
curves in Figures 10 and 11 correspond to the radial distribution
functions calculated in simulations where the short-range parti-
cle�particle repulsive interactions are explicitly included in the
PF model. These simulations, named particle�particle parti-
cle�field (PPPF), will be discussed later.
In Figure 10A, radial distribution functions (g(r)) between the

beads of water and hydrophobic tail beads (type C) calculated
from PP (black curve) and PF (blue curve) simulations are shown.
For these particle pairs, themain features of g(r) for the PP and

PF simulations are very similar, except that the behavior of the PF
is a bit smoother than that of the PP simulations.
This is due to smoother interactions between water particles

and the field generated by the hydrophobic tail particles. Still
similar is the behavior of the g(r) between water andG type beads
(Figure 10B). In this case, the radial distribution functions of
the PF simulations, due to the continuous nature of the field

Table 3. Diffusion Coefficients Calculated Using Different Update Frequenciesa

water [cm2/s � 105] DPPC [cm2/s � 105]

update frequency [timesteps] total x y z total x y z

particle�particle 1.27 1.63 1.63 0.43 0.08 0.13 0.12 0.01

10 4.40 6.5 6.6 0.04 0.28 0.45 0.43 0.03

100 4.67 7.1 6.8 0.04 0.27 0.43 0.44 0.03

300 4.82 7.3 7.1 0.04 0.26 0.38 0.38 0.04

500 5.13 7.6 7.6 0.05 0.35 0.52 0.50 0.03

700 5.53 8.4 8.4 0.05 0.55 0.079 0.078 0.09
aThe grid size l is equal to 1.25σ for all simulations.

Figure 9. Behavior diffusion coefficients of water and DPPC as a
function of the CG density grid size.
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representation, are characterized by the absence of peaks and a
smoother behavior. Furthermore, at zero distance, the PF g(r)
shows a small nonzero value. Differently from PP simulations,
where the overlapping between particles is strictly avoided, in the
PF simulations, the excluded volume effects between different
particles are taken into account in the field description by
imposing the incompressibility condition in eq 7.
Different is the behavior of particle correlations in lipid and

water pure phases. In particular, in Figure 11A, g(r) betweenDPPC
beads and, in Figure 11B, g(r) between the water beads, both of
which are obtained in PP and PF simulations, are compared.
In this case, at the PF level, the absence of correlations

between particles is clear from the behavior of g(r) between
both water and DPPC pairs. The absence of direct correlation
between particle pairs, as has been found in the radial distribution
functions of Figure 11, is what is expected according to the
formulation of the PF method. Differently from PP simulations,
the Hamiltonian employed in PF simulations does not involve
terms depending on the distance between particle pairs. The only
correlation expected is between the particle and fields. In fact, this
correlation has been found in the case of water and the field due
to the C hydrophobic beads and partially in the case of water and
the field due to G-type particles. Also in this case, due to the
formulation of the PF method, although a direct correlation
between the pair is still absent, the behavior of radial distribution

functions is only a consequence of the repulsive interactions
between water particles and density fields obtained from C or G
particle types that lead to a phase separated system.
On the contrary, as shown in Figure 11, a direct correlation

between particles belonging to the same hydrophilic or hydro-
phobic phase is absent. In the case of PP simulations, short-range
correlations are dominated by excluded volume interactions due
to the repulsive part of Lennard-Jones potentials between
particle pairs. In contrast, in PF simulations, excluded volume
interactions are modeled at the density field level by applying the
incompressibility condition included in the second addend of
eq 7. In this case, the density is kept homogeneous in all systems,
and it is allowed to fluctuate according to the value of compres-
sibility k (eq 7).
In Figures 10 and 11, the behaviors of the g(r) obtained from

PPPF simulations are also reported as red points.
In the simulations named PPPF, particle�field interaction

potential has the form of eq 7 but without inclusion of the
incompressibility condition. The excluded volume intermolecu-
lar interactions are then modeled by truncated short-range
Lennard-Jones potentials. In this case, intermolecular short-range
interactions are included at the particle�particle level as purely
repulsive Lennard-Jones potentials truncated at σmin = 21/6σ,

Figure 10. Radial distribution functions for (A) water�G tail and (B)
water�C tail pairs. Figure 11. Radial distribution functions obtained from PP (black

curve), PF (blue curve), and PPPF (red curve) simulations for (A)
DPPC�DPPC and (B) water�water pairs.
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while long-range interactions are still modeled with interactions
between the particle and fields. The PPPF simulations have
been run starting from equilibrium configurations obtained fromPF
simulations. The excluded volume pair interactions have been first
gradually introduced by scaling both ε and σ from 0.001 to their full
values in a few hundred steps and then running simulations with
full values of ε and σ and with electrostatic interactions for about
2000 steps. From Figure 11, it is clear that short-range correlations
between particles of PP simulations can be fully recovered at the
PPPF level with very similar radial distribution functions.
4.3. Reverse Mapping: From PF to PP Configurations.One

of the important uses of CG models is to obtain well-relaxed
structures useful for generating configurations at a higher level of
chemical detail. An example is the generation by local relaxation
of structures of dense polymermelts at the atomistic level starting
from mesoscale models.49�51

In the present case, the coarse-graining process operated from
PP to PFmodels does not involve the reduction of the number of
simulated particles, and shown above, the information that is
average out is the direct correlation between particle pairs.
The procedure of PP simulationsf derivation of a PF model;

PF simulations f reverse-mapping and local relaxation of PP
models can be an efficient way to obtain well-relaxed configura-
tions of large systems suitable for full MD simulations. From this
point of view, it is interesting to understand how easy it can be for
the systems under investigation to reach an equilibrium structure
that is indistinguishable from the one obtained by long PP

simulations starting from PF or PPPF configurations. This
information is useful for evaluating the feasibility of a possible
reverse mapping procedure able to give systems configurations
suitable for the production runs of PP simulations.

Figure 12. Comparison between PP and reverse mapped (A) DPPC and (C) water density profiles. DPPC�DPPC (B) and water�water (D) radial
distribution functions. Results obtained from full equilibration at the PP level (black curves) are compared with ones obtained from reverse-mapped
configurations at the PF (blue cross) and PPPF (red circles) levels.

Figure 13. Structure formulas of the four phospholipids considered in
the present study. The mapping scheme adopted for the CG models is
the one depicted in Figure 1. For the DOPC phospholipid, the mapping
for beads of type D including carbon atoms involved in double bonds
is shown.
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Tests using classical PP MD simulations aimed to relax
configurations equilibrated at the PF (only in this case, the
configurations have been previously optimized for about 300
steps) and at PPPF (no optimization has been employed in this
case) levels have been conducted. These test runs show that,
starting from configurations relaxed at the PF level, about 20 000
steps (corresponding to about 0.7 ns) are needed to obtain well
relaxed structures equivalent to the fully equilibrated state of the
PP simulations. In the case of configurations coming from PPPF,
shorter simulations of about 3000 steps (corresponding to 90 ps)
are required. In Figure 12, the radial distribution functions and
density profiles obtained from reverse mapping procedures and
the ones obtained by full equilibration at the PP level are com-
pared. From the figure, it is clear that the structures obtained are
indistinguishable, and both g(r) and density profiles are practi-
cally identical.
4.4. Extension to other Phospholipids. One of the advan-

tages of our reference PP coarse-grained model is that the
parametrization of the interaction potentials is not tailored to a
specific lipid, and different phospholipids can be modeled, taking

into account different chemical structures, using a small set of
bead types.
In this section, simulations aiming to test the transferability of the

model developed forDPPC and the relative PF χKK0 parameters are
reported. Electron density profiles and bilayer thickness are com-
pared between PF and PP models and with experiments.
In particular, further test simulations are conducted for three

biologically relevant lipids, i.e. dimyristoylphosphatidylcholine
(DMPC), distearoylphosphatidylcholine (DSPC), and dioleoyl-
phosphatidylcholine (DOPC). In Figure 13, the chemical struc-
tures of these three phospholipids are shown along with the
structure of DPPC.
The advantage of our reference PP coarse-grained models

lies in the straightforward way in which the corresponding
atomistic structure can be represented. The differences between
lipids depend on the molecular structure on the atomistic level.
For instance, the main difference between DMPC, DPPC, and
DSPC is in the numbers of carbon atoms present in the
hydrophobic tails. In this case, at the CG level, the PP models
differ only in the number of beads of type C (see Figures 1 and
13) that compose the tails, while the parameters for the
nonbonded bond and angle potentials are the same. Differently,
in the case of DOPC, the presence of a double bond in each
hydrophobic chain requires an extra particle type corresponding
to four atoms including a double bond (see Figure 13, particle
type D). For this reason, in the DOPC CG model, some of the
angles and nonbonded potentials are different. In particular, the
C�C�Charmonic angle potential has a minimum at 180�, while
the C�D�C harmonic angle potential has a minimum at 120�.
In the same way, nonbonded interactions of beads of types C and
D are different.
Correspondingly, the particle�fieldmodels of DMPC, DPPC,

and DSPC have the same bonded, intramolecular nonbonded,
and the χ (see Table 2) parameters, and they differ only in the

Table 4. Deviations Sk (el/nm
3) between Particle�Particle

and Particle�Field Density Profiles for All Considered Lipids

lipid SW
a SP

a SC
a average %

DPPC 8.5 (9.4%)b 4.3 (17%)b 16.5 (19.8%)b 15%

DMPC 18.3 (11%)b 7.4 (33%)b 12.6 (17%)b 20%

DSPC 7.2 (5.6%)b 10.9 (46%)b 11.4 (11%)b 21%

DOPC 16.9 (13%)b 8.9 (38%)b 17.3 (16%)b 22%
aDeviations have been calculated using particle�field density profiles
obtained using grid size l = 1.25σ and an update frequency of 10
time steps. bDeviation calculated as a percentage Sk/Faverk � 100 of the
average density of the species, where Fkaver is the average electron density
of the species k.

Figure 14. Electron density profiles calculated for DMPC, DOPC, and DSPC lipids with PF and PP simulations. Simulations for each lipid have been
performed at the temperatures listed in Table 5.
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number of beads. In the case of DOPC, having an extra bead type
D and particle�field interactions involving only this new bead
type introduces the use of different χ parameters. Of course, the
interactions involving beads of type C are treated in the same
manner as in DMPC, DPPC, and DSPC lipids. A complete list of
parameters for the intramolecular interactions is reported in the
Supporting Information.
Other details about simulated systems are reported in Table 1.

Simulation temperatures have been chosen according to the
available experimental data; temperatures of both experiments
and simulations are listed in Table 4.
From these simulations, partial electron density profiles and

bilayer thicknesses (DHH) have been calculated and compared
with those of the reference PP simulations and available experi-
mental data.45,48,52

Partial electron density profiles compared with the corre-
sponding ones obtained from particle�particle simulations are
shown in Figure 14.

From Figure 14, it is possible to see that in all cases there is a
good agreement between the density profiles of the reference PP
and PF models. In order to evaluate quantitatively the difference
between the reference density profile and the one calculated from
particle�field simulations for a given bead type k, the following
evaluation function can be defined:

Sk ¼ 1
2lz

Z þlz

�lz

jΔFkðzÞj dz ð12Þ

where ΔFk(z) is the difference between the values of the density
calculated with the particle field and the reference particle�parti-
cle models for a given particle type k. According to the definition
given above, in Table 4, the values of SW, SP, and SC (in el/nm

3 as
units) obtained by comparing PP and PF density profiles for all
considered lipids are reported. The average deviation is smaller
for DPPC (15%), and this is not surprising because the PP
density profile of this lipid has been used for the parametrization
of PF interactions. Interestingly, also the deviations between PP
and PF density profiles for the other lipids are similar (around
20%). Furthermore, the main differences between the density
profiles of different lipids calculated in the PP simulations can be
reproduced by the PF model. For example, a comparison
between DMPC and DOPC density profiles can be done using
the deviations Sk. In Table 5, the deviation between density
profiles of DMPC and DOPC are reported for both PP and PF
simulations. It is worth noting than in this case the deviations
(on the order of 50%) are much larger than the ones calculated
between PP and PF density profiles of the same lipids. Further-
more, the values obtained for the deviations for single species is

Table 5. Deviations Sk (el/nm
3) between DMPC and DOPC

Density Profiles

model SW SP SC average %

particle�particle 29.0 (22%)a 21.6 (99%)a 39.5 (44%)a 55%

particle�fieldb 30.0 (24%)a 16.0 (73%)a 30.0 (34%)a 49%
aDeviation calculated as a percentage Sk/Faverk � 100 of the average
density of the species, where Fkaver is the average electron density of the
species k. bDeviations for particle�field density profiles have been
calculated using using grid size l = 1.25σ and an update frequency of
10 time steps.

Table 6. Calculated Bilayer Thicknessa

phospholipid DHH particle�particle (nm) DHH particle�field (nm) DHH experimental (nm)

DMPC 3.7 (30 �C) 3.7 (30 �C) 3.8b�3.5e (30 �C)
DPPC 3.5 (50 �C) 3.5 (50 �C) 3.6b (50 �C)
DOPC 4.1 (30 �C) 4.0 (30 �C) 3.7b�3.6d(30 �C)
DSPC 4.1 (60 �C) 4.4 (60 �C) 4.0b�4.1c (60 �C)

a Simulations have been performed at temperatures corresponding to the available experimental data. b From ref 48. c From ref 52. d From ref 53. e From
ref 54.

Figure 15. Total electron density profiles for DOPC (A) and DMPC (B) lipids.
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very similar for PP and PF simulations. Similar conclusions can
be made by comparing density profiles of any pair of two other
lipids considered here, except for DOPC and DSPC. In this case,
both PP and PF density profiles are very similar.
The calculated values DHH are reported in Table 6 together

with the reference PP and experimental values. The values of
DHH calculated from PF simulations are in good agreement with
both PP simulations and experimental data. We want to stress
that experimental values of DHH lie in a very narrow range going
from the smallest value of 3.6 nm for DPPC to the largest one of
4.0 nm for DSPC, and good reproduction of these values can be
proof of the transferability of the chosen PFmodel. As previously
discussed, DSPC and DOPC give very similar density profiles
with both PP and PF models. This leads to the calculation of the
same values of DHH = 4.1 nm for these two lipids using PP
models. Using PF models, according to the experimental trend, a
larger value is obtained for the DHH of DSPC (4.4 nm) and a
smaller one for DOPC (4.0 nm).
In Figure 15, the total electron density profiles obtained by

Ku�cerka et al. from X-ray scattering data for DOPC53 and
DMPC,54 the ones obtained from PP and PF simulations, are
plotted. In particular, the behavior of electron density of DOPC
and DMPC is compared. As already found for DPPC (see
Figure 3), the behavior of the calculated density profiles is
smoother than the experimental ones. Furthermore, for DOPC,
the position of the maximum of electron density profile of both
PP and PF is shifted of about 0.5 nm. This is consistent with an
overestimation of the DHH (4.1 and 4.0 nm for PP and PF,
respectively) with respect to the experimental value of 3.6�3.7 nm.
For DMPC, the position of the maximum of the electron density
profile of both PP and PF simulations is similar to the experi-
mental one. In this case, the experimental value of DHH is well
reproduced (see Table 6).

’CONCLUSIONS

Specific CG models for phospholipids and water suitable for
hybrid particle field molecular dynamics simulations have been
developed. These models and the set of parameters needed to
evaluate interactions of particles with density fields are optimized
to reproduce structural properties of reference PP simulations of
DPPC. These parameters are transferable also to other phos-
pholipids. The correct reproduction of the structural properties
of the reference system depends on the density coarse-graining
parameters. As expected, due to the smoothness of the PF
interactions, the dynamics is faster in PF simulations. In parti-
cular, the ratio between diffusion coefficients calculated from PP
and PF simulations goes from 3 to 7 depending on the degree of
coarse-graining of the density field.

The computational efficiency of the PF approach allows one to
accelerate the serial simulations by a factor of up to 10 for the
considered systems. Furthermore, the peculiar formulation of the
hybrid PF approach allows us a very efficient parallelization. To
have an idea about the efficiency for the systems considered in this
paper, 1 million steps of a simulation of a lipid bilayer system
containingmore than 1million particles (a snapshot of this system
containing a total of 1,048,576 particles is depicted in Figure 16)
takes about 5 h on 96 processors (Intel E7330, 2.40 GHz).

In conclusion, the development of specific coarse-grained
models suitable for hybrid PF simulation opens the way toward
the simulation of large-scale systems employing models with
chemical specificity.
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ABSTRACT: Reverse kink-turn is a recurrent elbow-like RNA building block occurring in the ribosome and in the group I intron.
Its sequence signature almost matches that of the conventional kink-turn. However, the reverse and conventional kink-turns have
opposite directions of bending. The reverse kink-turn lacks basically any tertiary interaction between its stems. We report
unrestrained, explicit solvent molecular dynamics simulations of ribosomal and intron reverse kink-turns (54 simulations with 7.4 μs
of data in total) with different variants (ff94, ff99, ff99bsc0, ff99χOL, and ff99bsc0χOL) of the Cornell et al. force field. We test several
ion conditions and two water models. The simulations characterize the directional intrinsic flexibility of reverse kink-turns pertinent
to their folded functional geometries. The reverse kink-turns are the most flexible RNA motifs studied so far by explicit solvent
simulations which are capable at the present simulation time scale to spontaneously and reversibly sample a wide range of geometries
from tightly kinked ones through flexible intermediates up to extended, unkinked structures. A possible biochemical role of the
flexibility is discussed. Among the tested force fields, the latest χOL variant is essential to obtaining stable trajectories while all force
field versions lacking the χ correction are prone to a swift degradation toward senseless ladder-like structures of stems, characterized
by high-anti glycosidic torsions. The type of explicit water model affects the simulations considerably more than concentration and
the type of ions.

’ INTRODUCTION

Kink-turn (K-turn) is a recurrent RNA structural motif
occurring in the ribosome,1�3mRNA,4,5 riboswitches,6,7 snoRNAs,8

and the human U4 snRNA.9,10 K-turn plays an important role in
RNA structure; for instance, it is involved in ribosome inter-
subunit bridges11 and specific binding of ribosomal proteins.12

Some K-turns are also localized in flexible segments of the ribo-
some which play a prominent role in the elongation. The X-ray
data identified the K-turn motif as a well structured 3D RNA
building block mediating a sharp bend (∼120�) of phosphodie-
ster backbone between consecutive RNA helices. Solution
experiments conducted for isolated K-turns suggested that free
in solution K-turn possesses two (kinked and open) states which
are in a dynamic equilibrium. The ratio of kinked/open states
depends on the concentration of metal ions. At a high concen-
tration of divalent metal ions, K-turn prefers the kinked con-
formation, while at low concentrations, K-turn favors the open
geometry.13�15 Besides metal ions, proteins are also able to
stabilize the kinked structures.12,16 Molecular dynamics (MD)
simulations of free K-turns in their folded (kinked) topology
show that K-turns are anisotropic and nonharmonic flexible
structures displaying hinge-like dynamics around the folded
geometry on a fast nanosecond time scale.17�22

Considering structural features of K-turn, a single-stranded
internal bulge of K-turn forms a sharp kink between the helical

axes of two consecutive RNA helices. The bulge usually contains
three nucleotides, while the middle base is unstacked and flipped
out. The RNA helix at the 50 site of the bulge is a canonical stem
(C-stem) consisting of Watson�Crick (WC) CdG base pairs.
The second helix at the 30 site of the bulge is a noncanonical stem
(NC-stem) with two or three tandem trans-Hoogsteen/sugar-
edge (tHS) A/G base pairs flanking the bulge.23,24 Two of these
tHS A/G base pairs neighboring the bulge are highly conserved.
The structure of K-turn is stabilized by two tertiary interac-
tions involving these two conserved tHS A/G base pairs of the
NC-stem (see, e.g., Figure 1 in ref 16 for the annotation of
the K-turn structure). The first tertiary interaction is trans-sugar-
edge/sugar-edge (tSS) base pair comprising a hydrogen bond
(H-bond) between the 20-OH hydroxyl group of the 50-most
nucleotide of the bulge and N1 nitrogen of adenine of the tHS
A/G base pair of the NC-stem adjacent to the 30 site of the bulge.
This interaction is essential for the folding of K-turns.25,26 The
second tertiary interaction is the A-minor interaction27 between
adenine of the second tHS A/G base pair in the NC-stem and
the terminal base pair of the C-stem adjacent to the bulge. The
A-minor interaction significantly contributes to the topology of
K-turn and is essential for its internal structural dynamics.20
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These two tertiary interactions bring together minor-groove sites
of the two RNA stems.

The X-ray structure of the Azoarcus group I intron28 revealed
that the segment consisting of helices P9 and P9.0 (hereafter,
revKt-P9/9.0) with almost the consensus K-turn sequence also
adopts a bent conformation (the helices are mutually bent by
∼90� in this particular case). The bending, however, goes in the
opposite direction in comparison to the conventional K-turns
(Figure 1A and C). It means that the major grooves of P9 and
P9.0 stems are juxtaposed. Considering similarities to and dif-
ferences from conventional K-turn (discussed below), the revKt-
P9/9.0 motif is named as the reverse kink-turn (reverse K-turn).
Similarly to the conventional K-turns, the bulge region is single-
stranded and comprises three unpaired nucleotides: one helix is
canonical (P9) containing mainly GdC WC base pairs, and the
other is noncanonical (P9.0). In contrast to conventional K-turns
that have a strictly conserved tHS A/G base pair in NC-stem
adjacent to the bulge, revKt-P9/9.0 contains the trans-Hoogs-
teen/Hoogsteen (tHH) A201/A183 base pair at this position.29

The second base pair of NC-stem is similar to the conventional
K-turns tHS A202/G182 base pair (Figure 2A). The A201G
mutant, having the K-turn consensual sequence, still retains the
reverse K-turn fold in context of the intron structure.29 This
indicates that the fold is determined by external interactions (the
overall context) rather than by local interactions and the primary
sequence.Obviously, revKt-P9/9.0 lacks the A-minor interaction.30

There is no flipped out base in the bulge between the stems, while

all unpaired bases are stacked (Figure 2A). The base phosphate
interactions between A198 and G180 and between C199 and
G180 together with Mg2+ coordinated to G181 and G182 may
stabilize the kinked conformation of revKt-P9/9.0 (Figure 2A).31

There is a tertiary tetraloop�tetraloop receptor contact formed
between theGNRA tetraloop adjacent to the revKt-P9/9.0C-stem
and bases of the intron P5/5a segment. The tetraloop�tetraloop
receptor contact was suggested to be the leading factor in the
bending of revKt-P9/9.0 toward the major groove.29

Another reverse K-turn was identified in the 23S rRNA
of Haloarcula marismortui (H.m.).31�33 This motif (hereafter,
revKt-54) comprises helices 54 and 55 of 23S rRNA and bends
again toward the major groove. The internal bulge, which bridges
the helices, consists of five nucleotides, of which all are unpaired
and stacked, and none is flipped out (Figures 1B,D and 2B). Helix
55 (NC-stem) contains tHH A1527/A1664 and tHS A1528/
G1663 base pairs, being basically identical with the corresponding
base pairs of the revKt-P9/9.0 NC-stem (cf. Figure 2A,B). Very
recent automatic identification of RNA structural motifs using
secondary structural alignment found another reverse K-turnmotif
comprising helices 55 and 56 of H.m. 23S rRNA.34

This study explores the intrinsic flexibility of two reverse
K-turns (revKt-P9/9.0 and revKt-54) using an extensive set of
conventional MD simulations in explicit solvent. We carried out
altogether 54 simulations (typically on a 150 ns time scale) with a
total simulation time of 7.4 μs (see Table 1 and Table S3, Sup-
porting Information) under various conditions. Five variants of
the Cornell et al. AMBER force field, several ionic conditions,
and two explicit water models were considered. The basic pur-
pose of this paper is two-fold. Besides characterizing the struc-
tural dynamics of reverse K-turns, we also investigate the perfor-
mance and limitations of the simulation methods.

Figure 1. (A and B) The three-dimensional structures of the studied
revKt-P9/9.0 (in blue) and revKt-54 (in red), respectively. Bulge regions
are in gray. (C and D) The depiction of the opposite direction of revKt-
P9/9.0 (blue) and revKt-54 (red) bends, respectively, in comparison to
the nearly consensus ribosomal K-turn Kt-7 structure (green) fromH.m.
23S rRNA. All systems are superimposed over their C-stems.

Figure 2. Secondary structures of revKt-P9/9.0 (A) and revKt-54
(B) annotated by standard classification23,81 according to the X-ray
structures (revKt-54, PDB 1S72; revKt-P9/9.0, PDB 1U6B). The dotted
lines with stars in their centers highlight stacking interaction between the
respective bases. Note that the coordination sphere of the Mg2+ is not
complete in the X-ray structure due to resolution. Gray letters in panel A
depict the GNRA tetraloop attached to the revKt-P9/9.0 C-stem
(nucleotides 189�192; not included in MD simulations) and bases of
the P5/5a intron segment (residues 61, 62, 83, and 84, not included in
the simulations). In the pink squares of panel A are bases of the revKt-
P9/9.0 C-stem and the GNRA tetraloop, which interact with bases of the
P5/5a segment (highlighted in violet squares). Pink squares in panel B
mark bases of revKt-54 NC-stem (four adenines), which interact with
Helix 52 residues 1455�1457, 1485, and 1489�1490 (marked with
violet rectangle). All bases colored in gray in panel B are not included in
the simulations.



2965 dx.doi.org/10.1021/ct200204t |J. Chem. Theory Comput. 2011, 7, 2963–2980

Journal of Chemical Theory and Computation ARTICLE

Table 1. List of MD Simulationsa

simulated system

(simulation label)b water model + force field ions simulation length (ns)

time of “ladder like”

transition (ns)c RMSD (Å)d

revKt-P9/9.0 (INT-1) TIP3P+ff99 19 Na+, 1 Mg2+ 150 no transition 2.0( 0.6

revKt-P9/9.0 (INT-2) TIP3P+ff99 19 Na+, 1 Mg2+ 150 31 2.4( 0.6

revKt-P9/9.0 (INT-3) SPC/E+ff99bsc0 40 K+, 21 Cl�, 1 Mg2+ 150 20 1.8( 0.3

revKt-P9/9.0 (INT-4) SPC/E+ff99bsc0 40 K+, 21 Cl�, 1 Mg2+ 150 35 1.9( 0.3

revKt-P9/9.0 (INT-5) TIP3P+ff99 21 Na+ 150 no transition 5.5( 1.0

revKt-P9/9.0 (INT-6) TIP3P+ff99 21 Na+ 150 no transition 7.1( 1.5

revKt-P9/9.0 (INT-7) TIP3P+ff99 21 Na+ 150 no transition 5.5( 2.3

revKt-P9/9.0 (INT-8) TIP3P+ff99 21 Na+ 150 20 6.9( 1.5

revKt-P9/9.0 (INT-9) TIP3P+ff99 21 Na+ 150 30 4.3( 1.5

revKt-P9/9.0 (INT-10) TIP3P+ff99 21 Na+ 150 no transition 7.6( 1.5

revKt-P9/9.0 (INT-11) SPC/E+ff99bsc0 42 K+, 21 Cl� 150 25 2.3( 0.8

revKt-P9/9.0 (INT-12) SPC/E+ff99bsc0 42 K+, 21 Cl� 150 53 2.0( 0.6

revKt-P9/9.0 (INT-13) SPC/E+ff99bsc0 42 K+, 21 Cl� 150 1.5 1.3( 0.3

revKt-P9/9.0 (INT-14) SPC/E+ff99bsc0 42 K+, 21 Cl� 150 133 2.1( 0.7

revKt-P9/9.0 (INT-15) SPC/E+ff99bsc0 42 K+, 21 Cl� 150 no transition 3.0( 1.1

revKt-P9/9.0 (INT-16) SPC/E+ff99bsc0 42 K+, 21 Cl� 150 no transition 3.3 ( 1.2

revKt-P9/9.0 (INT-17) TIP3P+ff94 21 Na+ 150 no transition 6.0( 1.9

revKt-P9/9.0 (INT-18) TIP3P+ff94 19 Na+, 1 Mg2+ 150 138 2.0( 0.6

revKt-P9/9.0 (INT-19) TIP3P+ff99χOL 19 Na+, 1 Mg2+ 150 no transition 4.8( 3.0

revKt-P9/9.0 (INT-20) SPC/E+ff99bsc0χOL 40 K+, 21 Cl�, 1 Mg2+ 150 no transition 1.6( 0.3

revKt-P9/9.0 (INT-21) TIP3P+ff99χOL 21 Na+ 150 no transition 7.7 ( 1.3

revKt-P9/9.0 (INT-22) TIP3P+ff99χOL 21 Na+ 150 no transition 5.3( 2.4

revKt-P9/9.0 (INT-23) TIP3P+ff99bsc0χOL 21 Na+ 150 no transition 5.7( 2.8

revKt-P9/9.0 (INT-24) TIP3P+ff99bsc0χOL 21 Na+ 150 no transition 2.1( 0.8

revKt-P9/9.0 (INT-25) SPC/E+ff99χOL 42 K+, 21 Cl� 150 no transition 2.3 ( 1.3

revKt-P9/9.0 (INT-26) SPC/E+ff99bsc0χOL 42 K+, 21 Cl� 150 no transition 1.8( 0.5

revKt-54 (RIB-1) TIP3P+ff94 25 Na+ 69 no transition 2.5( 0.9

revKt-54 (RIB-2) TIP3P+ff94 12 Mg2+, 1 Na+ 57 no transition 3.8( 0.7

revKt-54 (RIB-3) TIP3P+ff99 25 Na+ 200 no transition 2.4( 0.7

revKt-54 (RIB-4) TIP3P+ff99 25 Na+ 74 39 3.1( 0.8

revKt-54 (RIB-5) TIP3P+ff99 12 Mg2+, 1 Na+ 150 no transition 2.5 ( 0.7

revKt-54 (RIB-6) TIP3P+ff99 12 Mg2+, 1 Na+ 98 48 2.6( 0.7

revKt-54 (RIB-7) TIP3P+ff99 23 Na+ 67 12 3.3( 0.9

revKt-54 (RIB-8) TIP3P+ff99 23 Na+ 150 no transition 4.4( 0.8

revKt-54 (RIB-9) SPC/E+ff99 46 K+, 23 Cl� 147 45 2.5( 0.7

revKt-54 (RIB-10) SPC/E+ff99 46 K+, 23 Cl� 150 no transition 2.4( 0.5

revKt-54 (RIB-11) TIP3P+ff99bsc0 23 Na+ 150 80 3.5( 1.0

revKt-54 (RIB-12) TIP3P+ff99bsc0 23 Na+ 40 2 2.0( 0.5

revKt-54 (RIB-13) SPC/E+ff99bsc0 46 K+, 23 Cl� 150 no transition 2.0( 0.7

revKt-54 (RIB-14) SPC/E+ff99bsc0 46 K+, 23 Cl� 65 55 3.2( 1.4

revKt-54 (RIB-15)e TIP3P+ff99 1 Mg2+, 21 Na+ 150 20 2.5( 0.5

revKt-54 (RIB-16) TIP3P+ff99bsc0χOL 23 Na+ 150 no transition 2.2( 0.7

revKt-54 (RIB-17) TIP3P+ff99bsc0χOL 23 Na+ 150 no transition 1.9( 0.4

revKt-54 (RIB-18) SPC/E+ff99bsc0χOL 46 K+, 23 Cl� 150 no transition 1.8( 0.4

revKt-54 (RIB-19) SPC/E+ff99bsc0χOL 46 K+, 23 Cl� 150 no transition 2.8( 1.4
a Some additional MD simulations are listed in Table S3 in the Supporting Information. bThe initial revKt-P9/9.0 structure in the simulations INT-9,
INT-10, INT-15, and INT-16 was taken from the tenth nanosecond of the INT-18 simulation. The initial revKt-54 structure in the simulations RIB-1 to
RIB-6 was taken from theH.m. 23S rRNA deposited under the code 1S72 while the simulations RIB-7 to RIB-19 were started from the structure taken
from the H.m. 23S rRNA available under the code 3CC2. cTime at which a distorted “ladder-like” conformation of reverse K-turn occurs. dThe mean
RMSD of coordinates with respect to the X-ray structure (see the Methods section for more details concerning the RMSD calculation). The 3CC2
structure is used for revKt-54. The RMSD is strictly calculated over the trajectory portion not affected by the “ladder-like” conformations. eOneMg2+ ion
was included. Its initial position was modeled via replacing the crystal water under ID 7209 in the original 3CC2 23S rRNA withMg2+. See theMethods
section for discussion of the limitations of modeling Mg2+ by simple force fields.
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Reverse K-turn substantially differs from RNA molecules
studied so far by all-atom MD simulations.35�43 Most RNA
MD simulations reported to date studied molecules whose
starting structures corresponded to 3D arrangements that are
stable per se.44 Representative examples are established autono-
mous RNA motifs that adopt their structures irrespective of the
structural context45�47 as well as medium-sized noncoding
RNAs such as ribozymes,35,48�51 riboswitches,39,52 and many
other RNAs.53,54 These molecules stay locked in the starting
structures in simulations. They show just local dynamics some-
times accompanied with modest rearrangements of molecular
interactions. In some cases, the initial structures are trivially
deformed by the surrounding elements that are not included in
simulations (for example, bending of helix 44 of the small
ribosomal subunit or the GTP-ase associated center RNA of
the large subunit).18,55,56 In such cases, the molecules undergo
initial relaxation in simulations, which, however, does not change
base pairing and tertiary interactions. Much less frequent are
simulations of RNA molecules that should be intrinsically un-
stable since their functional 3D shapes are induced by their
context. One example is the recurrent ribosomal UAA/GAN
internal loop, whose 3D structure is completely remodeled by the
ribosomal context.57 This molecule is visibly locally destabilized
in simulations but does not spontaneously rearrange anywhere
close to the solution structure on a submicrosecond time scale.58

Similarly, the conventional K-turns are also intrinsically unstable
and unfold (unkink) in experiments with an absence of proteins
or divalent ions. Nevertheless, the K-turn functional geometry is
still locally stable enough so that plain simulations on a 100+ ns
time scale so far did not result in any extensive K-turn perturba-
tions or unfolding.17�22 Considering the sequence, structure,
and context of the reverse K-turns, it is obvious that functional
(native) reverse K-turn structures also do not correspond to
global minima of the respective isolated RNA segments. How-
ever, since reverse K-turns are less structured than the conven-
tional K-turns, wemight expect visible signs of reversible unfolding
and refolding already on the presently affordable simulation time
scale. This allows an analysis of force field performance during
large-scale RNA rearrangements. Still, the simulations are able to
characterize the flexibility of reverse K-turns pertinent to the
folded structure, similarly to conventional K-turns. The simula-
tions nevertheless also sample unfolded (or unkinked) and inter-
mediate structures.

’METHODS

Studied Systems. Two reverse K-turns were investigated.
The initial geometry of revKt-P9/9.0 was taken from the X-ray
structure of the Azoarcus group I intron with a resolution of
3.1 Å (PDB ID: 1U6B).28 RevKt-P9/9.0 contains nucleotides
179�188 and 193�205 (23 bases in total; numbering according to
the intron X-ray structure). The starting structure of revKt-54 was
taken from the 50S ribosomal subunit crystal structures of Haloar-
cula marismortui (H.m.) deposited under the PDB codes 1S72 and
3CC2 (both determined at a resolution of 2.4 Å).32,33 RevKt-54
from 1S72 comprises nucleotides 1516�1531 and 1660�1670 (27
bases), while that of the 3CC2 contains residues 1517�1531 and
1660�1669 (25 bases). The more recent (presumably corrected)
3CC2 structure containsG1669dC1517 andA1670�U1516while
1S72 contains A1669�U1517 andG1670dC1516 base pairs in the
C-stem.Wedecided to terminate theC-stemwithCdGbase pair to
avoid terminal A�Ubase-pair fraying,59 so the terminalC-stembase

pair is G1669dC1517 in the case of the 3CC2 system and
G1670dC1516 in the case of 1S72. We did not observe any
differences between revKt-54 simulations starting from the 1S72
and 3CC2 X-ray structures, and thus we will further discuss all of
these simulations as a one-simulation set of revKt-54.
The eubacterial ribosomes reveal that at positions equivalent

to revKt-54 of H.m., there are situated segments that bend
similarly to the reverse K-turn but with a completely different
sequence (hereafter, abbreviated as revKt-54-analogs; Figure S4,
Supporting Information). We have carried out one 100-ns MD
simulation with the revKt-54-analog from Escherichia coli (E.c.).
The revKt-54-analog starting structure was taken from the X-ray
structure (resolution of 3.46 Å) of the E.c. 50S large ribosome
subunit deposited under the PDB 2AW4, while nucleotides
1405�1424 and 1574�1597 (44 bases in total) were included
in the simulation (Figure S5, Supporting Information).2

Simulation Setup and Force Field Choice. All MD simula-
tions were carried out using the AMBER60 suite of programs with
several force fields. The ff94 and ff99 (also known as parm94
and parm99, respectively)61,62 can be considered as the original
parametrizations which slightly differ in sugar pucker and χ tor-
sion parameters. The ff99bsc0 (parmbsc0) force field is based on
ff99 but contains a critical reparameterization of the R/γ torsion
parameters, which is essential for stable simulations of DNA
molecules63 and which was recently shown to also modestly
improve RNA simulations.59,64 Until recently, all three force
fields were assumed to perform equivalently for RNA systems
and provide enough stable simulations on a subhundreds nano-
second time scale.44,59 However, it has been shown that these
force fields do not provide a stable minimum for A-RNA due to
imbalanced description of the glycosidic torsion, which tends to
adopt a high-anti conformation with the subsequent entire degra-
dation of A-RNA systems on a long time scale.50,64 In fact, some
earlier simulation studies including those attempting folding of
small RNAs such as stem-loop hairpins are affected by this force
field artifact. Thus, complete reparameterization of the glycosidic
torsion profile χOL

64 (parameters are available online at http://
fch.upol.cz/en/rna_chi_ol/ (accessed Jan 25, 2010) and have
also been included in the most recent ff10 AMBER force field as
the recommended force field for RNA simulations and released
in AmberTools 1.5, the parameterization procedure is in detail
described in ref 103) was recently prepared and carefully tested.
It prevents the ladder degradation of A-RNA by modifying the
anti to high-anti balance and also improves the syn region descrip-
tion.64 Therefore, in later stages of this reverse K-turn project, we
applied the χOLmodification in combination with ff99 (labeled as
ff99χOL) and ff99bsc0 (labeled as ff99bsc0χOL) force fields. In
fact, the inclusion of the χOL correction was entirely critical to
adopting the stable trajectories of the present system. Note that
although the bsc0 (R/γ) and χOL parametrizations are indepen-
dent variants of the force field, our study of RNA tetraloops and
short A-RNA stems strongly indicates that χOL should be com-
bined with ff99bsc0 to get the optimal force field behavior.64

IonandSolventConditions.Twodifferent ionic (and solvent)
conditions were used: the combination of Na+ counterions (with
radius 1.868 Å and well depth 0.0028 kcal/mol)65 with the TIP3P
watermodel,66modelingminimal salt conditions (c(Na+) of∼0.25M)
and a higher ionic strength of potassium (c(K+) of∼0.5 M, radius
1.870 Å and well depth 0.100 kcal/mol)67 and chloride ions
(c(Cl�)∼0.25M, radius 2.470Å andwell depth 0.100 kcal/mol)68

in combination with the SPC/E water model69 to simulate KCl
salt excess (Table 1). The monovalent counterions were placed
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using the tLEaP program according to the solute electrostatic
potential. In addition, some simulations (Table 1 and Table S3,
Supporting Information) comprise also divalent magnesium ion/
ions coordinated to the reverse K-turn, and the following para-
meters for Mg2+ (radius 0.7926 Å and well depth 0.8947
kcal/mol)65 were utilized. The rectangular box of explicit water
solvent was set, so that a minimum distance between the box wall
and the solute was 10 Å. It is to be noted that we did not have any
specific reason to systematically combine TIP3P with Na+ and
SPC/E with KCl. We wanted to investigate as broad a set of
conditions as possible. Obviously, the limited computer power
does not allow us to investigate all possible combinations of
parameters while having a statistically significant set of multiple
simulations and enough robust sampling. See the Supporting
Information for analyses of four simulations (600 ns in total)
combining minimal salt conditions of K+ ions with the SPC/E
water model decomposing effects of the water model and salt
conditions. Further studies of RNA systems with other ion and
water parameters70,71 are under way. It should, however, be noted
that in general the ion/water parameters and conditions do not
have a decisive effect on nucleic acids simulations, as their outcome
is primarily determined by the solute force field. The present
system, due to its flexibility, is assumed to be potentially more
sensitive to ion/water conditions than other nucleic acids systems.
Prior to the production phase of the MD simulation, each

system was minimized and subsequently warmed up to 298 K as
follows. The RNA molecule was constrained, and the solvent
molecules with counterions were allowed tomove during a 1000-
step minimization followed by 10-ps-longMD runs under [NpT]
conditions (p = 1 atm, T = 298.15 K). The solute was then
relaxed through several minimization steps, with decreasing force
constants applied to the backbone atoms. After the relaxation,
each system was heated to 298.15 K within 100 ps. The particle-
mesh Ewald (PME) method72,73 was used for treating electro-
static interactions, and all simulations were performed under
periodic boundary conditions in the [NpT] ensemble at 298.15 K
and 1 atm using a 2 fs integration step. The SHAKE algorithm
with a tolerance of 10�5 Å was used to fix positions of all
hydrogen atoms. A 10.0 Å cutoff was applied to nonbonding
interactions, and coordinates were stored every picosecond.
Together, 30 independent simulations (Table 1 and Table S3,
Supporting Information), each 150-ns-long, were carried out
with revKt-P9/9.0, and 19 simulations (Table 1) on the 40+ ns
time scale were carried out with revKt-54. In addition, four
independent 150 nsMD simulations were carried out with revKt-
P9/9.0-A201G (revKt-P9/9.0 with A201G mutation), and one
100 ns simulation was conducted with the 23S rRNA E.c. revKt-
54-analog (Table S3, Supporting Information). The cumulative
production time amounts to ∼7.4 μs.
Data Analysis and Description of Topology. MD trajec-

tories were analyzed with the Ptraj module of the AMBER
package. PyMOL74 and VMD75 programs were used for visua-
lization and preparation of figures.
The RMSD vs Rg density plots were calculated using an

in-house script. An array of 150 � 150 bins was used. The scale
on the right-hand side of the density plots indicates the relative
occurrence of structures in the corresponding bin. The RMSD
was mass-weighted and computed over all atoms of nucleotides
180�188 and 193�204 in the case of revKt-P9/9.0 and nucleo-
tides 1518�1530 and 1661�1668 in the case of revKt-54. The
X-ray structure of revKt-P9/9.0 was used as a reference structure
for the RMSD calculations. However, the simulations of revKt-54

revealed a more compact conformational substate in comparison
with its X-ray structure, whichmay be a consequence of removing
the motif from its structural context. Thus, the average structure
of this more compact substate (labeled as B0 in the text, see the
Results section) was used for the RMSD analysis in the case of
revKt-54 (see Supporting Information, Figure S1B for the den-
sity plot in which the RMSD is calculated with respect to the
X-ray structure).
The compactness of the reverse K-turns structure was de-

scribed using the end-to-end distance. The end-to-end distance
equals the distance between the centers of mass of selected C-
stem and NC-stem terminal nucleotides of the respective reverse
K-turn (Figure S2, Supporting Information). The center of mass
of the revKt-P9/9.0 C-stem terminus included nucleotides G186,
G187, C194, and C195, while that of the NC-stem included
G180, G181, C203, and C204. The revKt-54 C-stem terminus
center of mass included A1518, U1519, A1667, andU1668, while
the NC-stem terminus involved G1529, U1530, A1661, and
C1662. For each reverse K-turn, the lowest end-to-end distance
corresponds to a highly kinked structure, while the largest value
denotes an unkinked (extended) structure.
In addition, we attempted to describe the global molecule

topology using two additional structural parameters: the inter-
helical angle and the interhelical dihedral calculated using a
recently proposed algorithm.76 The mathematical definition of
both structural parameters is given in the Supporting Informa-
tion (see Supporting Information, Figure S2 and Table S2).
However, the opening of reverse K-turns is a rather complex
structural rearrangement that cannot be fully described by these
two parameters modeling the system as two (almost) rigid stems
connected by a hinge. Instead, all six degrees of freedom des-
cribingmutual orientation of stems in space seem to be crucial for
the description of global structural dynamics of reverse K-turns
(see Supporting Information).
Qualitative analysis of energy differences among reverse K-

turns substates was carried out using the MM-PBSA (Molecular-
Mechanics, Poisson�Boltzmann Surface Area) module of AM-
BER 11.60,77 The Gibbs energy of solvation was calculated by
both Poisson�Boltzmann78 and generalized Born79 implicit sol-
vent models, while the entropy contribution was estimated from
normal-mode analysis. MM-PBSA allows one to estimate free
energies by postprocessing explicit-solvent simulation trajectories.
The energy differences should be interpreted with care, because
the validity of the MM-PBSA method for RNA is compromised
by the inaccuracy of implicit solvent models for the polyanionic
chain of RNA, as was, e.g., demonstrated by rapid degradation
of the glmS riboswitch in implicit solvent MD simulations.51

The essential dynamic analysis (EDA) was carried out using
the GROMACS program.80 All atoms of revKt-P9/9.0 residues
180�188 and 193�204 and revKt-54 residues 1518�1530 and
1661�1668 were included in the EDA calculations. The projec-
tions onto the first five essential modes were computed and
subsequently visualized in the PyMOL program.

’RESULTS

Starting Structures. The reverse K-turns consist of an inter-
nal bulge of unpaired bases (kink region, nucleotides 198�200
for revKt-P9/9.0 and 1522�1526 for revKt-54) flanked by ca-
nonical C-stem and noncanonical NC-stem (Figures 1 and 2).
The overall fold of both studied reverse K-turns is bent resem-
bling an “L”- or “V”-shaped structural motif of K-turns.1
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However, reverse K-turns are bent in the opposite direction of
K-turns, i.e., toward major grooves (Figure 1). Furthermore,
while the topology of conventional K-turns is roughly uni-
form, the X-ray structures of reverse K-turns substantially differ
(Figure 1). The structure of revKt-P9/9.0 is more compact,
showing a smaller end-to-end distance (Table 2) and base-
phosphate (BPh)81 interactions between the bulge and NC-
stem (Figure 2) in comparison to the more extended revKt-54
structure.
There is one magnesium ion resolved in the revKt-P9/9.0

X-ray structure coordinated to G181 (by inner-shell contact) and
G182 (an outer-shell interaction) bases, additionally forming an
inner-shell contact with one water molecule (Figure 2A). Al-
though a Mg2+ ion is not present directly in the kink region, it is
close enough to potentially provide some electrostatic stabiliza-
tion, which could compensate for the repulsion between C- and
NC-stems’ phosphates. In contrast, no divalent cation was re-
solved in the revKt-54 crystal structure, although it still does not
rule out the presence of a cation in this region, since cations can
be disordered and elude detection.49,82,83

The revKt-P9/9.0 contains four 6BPh interactions (6BPh
interaction is a hydrogen bond between the amino group of
either adenine (N6) or cytosine (N4) and the phosphate oxygen81).
Two 6BPh contacts are formed by revKt-P9/9.0 internal bulge
bases A198 and C199 with the G180 phosphate of the NC-stem
(henceforth, named the bulge-helix BPh contacts), while the next
two 6BPh interactions are literally cementing the tHH A201/
A183 base pair of the NC-stem (Figure 2A). In contrast, only
one 6BPh interaction occurs in the revKt-54 system, being
formed between the bases A1527 and A1664 of the NC-stem
(Figure 2B), i.e., again stabilizing the tHH base pair flanking the
internal bulge.
RNA�RNA Tertiary Interactions and Structural Context of

Reverse K-Turns. Neither of the studied reverse K-turns binds
any proteins,31 but both of them are affected by RNA�RNA
interactions. The revKt-P9/9.0 is accompanied by the forma-
tion of a tetraloop�tetraloop receptor (TL-TLR) interaction
between atoms of the GNRA tetraloop (nucleobases 189�192)
flanking the revKt-P9/9.0 C-stem and the P5/5a segment of the
group I intron (Figure 2A). This contact is assumed to be
responsible for the bending of this reverse K-turn.29 The 23SH.
m. revKt-54 is not associated with any TL-TLR contact but
is stabilized by the interaction between four adenines A1656�
A1659 of the revKt-54 NC-stem and the minor groove of the
A-RNA duplex (part of helix 52 between the UAA/GAA
internal loop and adjacent four-way junction; residues 1455�
1457, 1485, and 1489�1490; Figure 3). Interestingly, equiva-
lent regions of eubacterial revKt-54-analogs show the same
RNA�RNA interaction (Figure S6, Supporting Information)
despite the reverse K-turn not being conserved. The sequence
and the 3D structure of this tertiary interaction are strictly
evolutionarily conserved in the ribosome (Figures 4A�D).
This tertiary contact can play an important role in revKt-54

Table 2. End-to-End Distance of Reverse K-Turn Crystal
Structures and Average Structures of the Relevant Substates
Obtained from MD Simulations (See Figure 5)

end-to-end distance (Å)

structure type revKt-P9/9.0 revKt-54

crystal structure 20.2 26.9

substate A/A0 19.4 19.8

substate B/B0 22.9 23.0

substate C/C0 28.6 26.6

substate D/D0 31.2 29.8

Figure 3. The tertiary RNA�RNA contact formed between the four adenines (A1656�A1659) of the revKt-54 NC-stem and part of helix 52 (base
pairs tHW A1485/U1457, cWW G1489dC1456, and cWW G1490dC1455).
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bending similarly to the TL-TLR interaction in revKt-P9/9.0
bending.
Transition of Reverse K-Turns’ Helices into Senseless

“Ladder-Like” Conformation with ff94, ff99, and ff99bsc0
Force Fields. MD simulations carried out with the common
AMBER family force fields ff94, ff99, and ff99bsc0 show that both
helices of each reverse K-turn undergo irreversible rearrange-
ment to a “ladder-like” conformation (Figure S7, Supporting
Information). The “ladder-like” structure was first identified as a
force field artifact in extensive MD simulations of the hairpin
ribozyme.50 It was subsequently detected in simulations of short
A-RNA stems and stem-loop systems.64 The degraded “ladder-
like” stem has in comparison with the A-RNA duplex a reduced
twist from ∼33� to ∼10�, a base pair slide shifted from ∼�2 to
∼4 Å, and glycosidic torsions χ fluctuating around or even
outside the high-anti region (i.e., ∼�90� while typical A-RNA
χ value is∼�165�). The shift of glycosidic torsion to a high-anti
region is the most evident feature of the “ladder-like” structure.
Considering these data and our previous simulations,50,64 we can
conclude that this artifact may be rather widespread in long ff94,
ff99, and ff99bsc0 simulations of RNA molecules with exposed

terminal stems. In fact, our unpublished simulations indicate that
even folded RNAmolecules sooner or later degrade toward high-
anti structures if the simulations are long enough. The formation
of “ladder-like” structures occurred stochastically, generally on
a time scale of tens of nanoseconds (Table 1), and was entirely
irreversible.
We did not observe any effect of ionic condition (net-

neutralizing Na+, K+, and KCl salt excess) or the used water
model (TIP3P and SPC/E) on the formation of the “ladder-like”
structure, so this artifact seems to be solely a consequence of
solute force field parameters. As noted above, although water/
ion/salt parameters and conditions may sometimes influenceNA
simulations, the outcome of the simulations is overwhelmingly
determined by the solute force field.
In contrast, no formation of “ladder-like” structure was ob-

served with the new χOL parametrization of glycosidic torsion
parameters, i.e., when applying the ff99χOL and ff99bsc0χOL
force fields.64 The density plot RMSD vs Rg calculated from all
ff99χOL and ff99bsc0χOL productions (cumulative time of 1.1 μs
for revKt-P9/9.0 and 0.6 μs for revKt-54) almost perfectly
matches the RMSD vs Rg plot computed over ff94, ff99, and
ff99bsc0 trajectory portions before the “ladder-like” degradation
occurs (1.4 μs for revKt-P9/9.0 and 1.2 μs for revKt-54; Figure
S8, Supporting Information). Thus, when using MD simulations
carried out with ff94, ff99, and ff99bsc0 force fields, only trajec-
tory portions before the “ladder-like” formation events were
considered relevant for analysis of the conformational properties
of reverse K-turns. Fortunately, we have accumulated enough
data without this major artifact to characterize flexibility of the
studied system. The “ladder-like” stem distortions are easily detec-
table as artificial substates in the RMSD vs Rg plots (Figure 5).
In summary, reverse K-turn simulations with corrected glyco-

sidic torsion parameters agree with ff94, ff99, and ff99bsc0 simu-
lations before the later simulations degrade, while the new para-
meters entirely prevent the “ladder-like” structure degradation.
Thus, the reverse K-turn structures could finally be analyzed
using 4.3 μs of “healthy” data.
Structures of revKt-P9/9.0 and Their Evolution over MD

Simulations. The RMSD vs Rg density plot (Figure 5A) calcu-
lated from all of the 150 ns revKt-P9/9.0 simulations (2.7 μs in
total) shows seven significantly populated structural substates.
Yellow boxes highlight those revKt-P9/9.0 substates that are free
of the “ladder-like” conformations (A�D) and which are there-
fore relevant for further analyses. The gray boxes mark the revKt-
P9/9.0 substates with the NC-stem (substates E and G) or the
C-stem (substate F) in the distorted “ladder-like” conformation.
Figure 6A illustrates the overall shape (“topology”) of the ave-

rage structures for the relevant substates A�D. The topology of
the most compact substate A is nearly identical to that of the
X-ray structure (Figure 6A and Figure S9, Supporting Infor-
mation). On the other hand, substate D corresponds to a fully
unfolded (unkinked) revKt-P9/9.0 (cf. Figure 6A and Table 2).
The other substates B and C represent intermediate states
between the native-like kinked and fully unkinked conformations
(Table 2). In particular, substates B and C exhibit high flexibility
corresponding to a bending movement, which is responsible for
the elongated ellipsoidal shape of the corresponding regions in
the density plot (see Figure 5A). Two BPh interactions support-
ing the tHH A/A base pairs remain stable during the whole
simulations in all substates. In contrast, the other two bulge�
helix BPh interactions observed in the X-ray structure and in
substate A are much less populated in substate B and disappear in

Figure 4. Three-dimensional (left) and secondary structures (right) of
the new unclassified RNA interaction motif from 23S rRNAs of
Haloarcula marismortui (PDB 3CC2) (A), Deinoccocus radiodurans
(PDB 1NKW) (B), Escherichia coli (PDB 2AW4) (C), and Thermus
thermophilus (PDB 2J01) (D). (E) Depicts the motif isosteric to the
rRNA motifs located in the glmS riboswitch (PDB 2HO7).
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the more unkinked structures of substates C and D (Table 3).
Besides that, the X-ray stacking pattern of bases C199 and A200
is reasonably well preserved in substates A and B, while in the
substates C and D, the respective bases favor various non-native
geometries (not shown).
The fully unfolded substate D almost vanishes in the MD

simulations carried out with the excess KCl salt and SPC/E water
model except for one MD run, INT-25, in which a reversible
transition to substate D occurs, with substate D persisting for
several nanoseconds (cf. Figure 7A for the time evolution of sub-
states in all MD simulations). On the other hand, almost all MD
simulations conducted with the net-neutralizing Na+ ions and
TIP3P water model sample all conformational substates A�D.
This is most likely the consequence of the different viscosities
of the TIP3P and SPC/E water model rather than being caused
by the different ion parameters and concentrations (see the discus-
sion about the effect of water models below). The transitions

from the fully kinked substate A to the fully unkinked substate D
(and vice versa) usually pass through substates B and C. The
transitions between substates usually occur on the time scale of
several nanoseconds. Notably, revKt-P9/9.0 fully unfolds also in
the presence of Mg2+.
Structures of revKt-54 and Their Evolution over MD Simu-

lations. Seven densely populated regions were identified in
the revKt-54 density plot (Figure 5B). Three of them contain
“ladder-like” artificial conformations (substates E0�G0) and are
not further discussed. The remaining four substates (A0�D0)
exhibit relevant structures without the “ladder-like” distortion.
Substates A0 and D0 represent the most compact (kinked) and

the most extended (unfolded/unkinked) revKt-54 structures,
respectively (Table 2; Figures 5B and 6B). Just as for substates B
and C of revKt-P9/9.0, substates B0 and C0 correspond to inter-
mediates between the kinked and unkinked states (Figure 6B).
Similarly to intermediate substates B and C of revKt-P9/9.0,

Figure 5. The upper parts of panels A and B show RMSD vs Rg density plots calculated over the entire trajectories of all revKt-P9/9.0 and revKt-54
simulations listed in Table 1, respectively. The yellow frames show densely occupied “healthy” regions of the RMSD vs Rg plots and the corresponding
structure representatives (substates A�D and A0�D0). Gray boxes show substates and their representative structures bearing the degraded “ladder-like”
conformation (substates E�G and E0�G0, nucleotides within the “ladder-like” conformation are colored in gray). The C-stems of each structure
representative are superimposed over the C-stem of the starting structure of revKt-P9/9.0 in blue and revKt-54 in red, respectively (except of substates F
and E0�G0). The vertical dashed red line highlights the radius of gyration of the crystal revKt-P9/9.0 and revKt-54 structures. In the lower part of panels
A and B are the same density plots for revKt-P9/9.0 and revKt-54, respectively, but visualized without the trajectory portions affected by the “ladder-like”
reverse K-turn conformations.
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substate C0 of revKt-54 reveals intrinsic bending movement
represented by an ellipsoidal, elongated population in the den-
sity plot (Figure 5B). The average structure of substate C0

resembles the X-ray revKt-54 topology (Figure 6B and Figure
S10, Supporting Information). Similar to revKt-P9/9.0, the 6BPh
interaction supporting the tHH A/A base pair is present in all
structural substates (26%, 63%, 47%, and 73% population of
direct H-bonding in substates A0, B0, C0, and D0, respectively).
Substate C0 maintained well the native stacking pattern of the
kink region bases, with only U1524 occasionally flipping out
(data not shown), while the native conformation of kink region
bases is distorted in other substates, A0, B0, and D0.
Substate C0, resembling the X-ray topology, is significantly

populated over the entire time scale of most revKt-54 MD simu-
lations (Figure 7B). In contrast, the fully kinked substate A0 is
only negligibly populated in our simulations; namely, it is propa-
gated for only several nanoseconds in theMD runRIB-19 (excess
KCl salt and SPC/E water). The only substantial occupancy of
substate B0 was observed in the simulation with 12Mg2+ ions and
TIP3P water (RIB-2). Unfolding of revKt-54 to substate D0 was
detected in two simulations with Na+ ions and the TIP3P water

Figure 6. Average structures of revKt-P9/9.0 substates A�D (left) and revKt-54 substates A0�D0 (right) visualized using the surface representation.
Blue mesh representation on the right represents revKt-P9/9.0 substates superimposed over the C-stem and NC-stem backbone atoms with
corresponding revKt-54 substates. In addition, gray mesh structures superimposed over substates A and C0 of revKt-P9/9.0 and revKt-54, respectively,
correspond to their X-ray structures.

Table 3. Stability of revKt-P9/9.0 BPh81 Interactions in
Substates Calculated As a Relative Population of H Bonds
Involved in the BPh Interaction with a 4.0 Å for Cutoff
Distance between Heavy Atoms (in %)a

substate

A198(N6)�
G180(O1P)

C199(N4)�
G180(O2P)

A201(O2P)�
A183(N6)

A183(O1P)�
A201(N6)

A 34.5 35.1 97.9 60.5

B 10.0 9.7 89.5 68.7

C 0.0 0.0 31.2 72.2

D 0.0 0.0 67.2 71.1

X-ray (Å) 3.3 2.9 2.7 3.2
aThe X-ray H-bond distances are in the last line.
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model (RIB-8 and RIB-11; see Figure 7B). The refolding of
revKt-54 from substate D0 through C0 toward B0 was observed in
the RIB-8 simulation. Thus, similar to revKt-P9/9.0 simulations,
the transition of revKt-54 toward more extended structures
represents a fully reversible process on our simulation time scale.
Topological Similarity among the revKt-P9/9.0 and revKt-

54 Substates. Although the sequence and topology in the X-ray
structure of both studied reverse K-turns differ substantially, the
simulations reveal profound similarity in large-scale dynamics of
these motifs when they are removed from their structural con-
text. This can be considered as a flexibility signature of the reverse
K-turn. We found that both reverse K-turns share very similar
structural substates (A�D and A0�D0 for revKt-P9/9.0 and
revKt-54, respectively) sampled in MD simulations (Figure 6).
Although the simulations of each system started from a different
conformational substate due to differences between their X-ray
structures (the X-ray structures of revKt-P9/9.0 and revKt-54
correspond to substates A and C0, respectively), both systems
finally sample all four substates (Figure 7). Figure 6 summarizes
structural similarities between conformational substates of both
reverse K-turns. The most compact substates (A and A0) have
small values of the end-to-end distance, while unfolded (unkinked)
substates (D and D0) are characterized by the largest end-to-end
distance (Table 2). The intermediate substates (substate B and C
of revKt-P9/9.0 and substate C0 of revKt-54) correspond to a

rather broad range of geometries with high hinge-like flexibility
(see Figures 5 and 8 and the next paragraph), while the most
compact or the most extended substates reveal only minor dyn-
amics corresponding to local fluctuations around energy minimal
conformation.
Both Reverse K-Turns Have Overall Hinge-Like Flexibility

Similar to K-Turns. The essential dynamics analysis (EDA)
reveals that the first essential motions of substates B and C of
revKt-P9/9.0 and substate C0 of revKt-54 resemble the hinge-
like dynamics observed in MD simulations of conventional
K-turns17�20 (Figure 8). The first essential motions dominate
over the other modes, and they contribute 25.0, 34.4, and 28.5%
of essential dynamics of revKt-P9/9.0 substates B and C and
revKt-54 substate C0, respectively. The contributions of the
subsequent essential motions progressively decrease (Table S4,
Supporting Information). The hinge-likemotion can be qualitatively
described as a motion of two rather rigid helical arms caused by
the flexible kink region. The observed motion of reverse K-turns
substates B, C, and C0 exhibits anisotropic dynamics. The hinge-
like dynamics of these substates is also coupled with the local
dynamics of kink region bases (bases C199 and A200 in sub-
state B, A198 in substate C, and U1524 in substate C0, see
Figure 8). Substate C hinge-like dynamics is additionally coupled
with cWW G184dC197 base pair propeller twist fluctuation.
The ellipsoidal, elongated population region of these substates

Figure 7. Time evolution of revKt-P9/9.0 (A) and revKt-54 (B) substates in individual MD simulations. The ends of individual simulations are marked
by the simulation labels that correspond to Table 1.
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(Figure 5) is likely caused by this hinge-like dynamics identified
by EDA. In other words, in this particular case, we were capable
of identifying the movement revealed by the EDA also in the full
simulation, which is not always possible due to approximations
inherent to EDA.56 A very similar hinge-like dynamics was also
observed in the simulation of the E.c. revKt-54-analog (nucleo-
tides 1407�1422 and 1576�1595 of 2AW4 PDB). This suggests
that although the reverse K-turn is not conserved in eubacteria,
the equivalentRNA segments in eubacteria still show conservation

of basic RNA topological and dynamical features (Figure S11,
Supporting Information).
Substates B and C of revKt-P9/9.0 and C0 of revKt-54 are

similar from the flexibility point of view. However, while substate
C0

fluctuates around the X-ray geometry of revKt-54, neither sub-
state B nor substateC is the native state of revKt-P9/9.0 (Figure 8).
The X-ray conformation of revKt-P9/9.0 corresponds rather to
the structurally more compact substate A, which does not show
much bending flexibility. Instead, there are some “side-to-side”
fluctuations of revKt-P9/9.0 substate A coupled to the forma-
tion/loss of the bulge�helix BPh interactions (Figure 8A). Simi-
larly to substate A of revKt-P9/9.0, a low flexibility was identified
for structurally compact substates A0 and B0 of revKt-54, albeit
they are only marginally sampled in our study (see Figure 7B).
This may reflect the difference in compactness of the starting
structures of both reverse K-turns, which obviously still affects
sampling on the present simulation time scale. Consistent with
the analogy between substates A and A0 of both reverse K-turns,
we noticed a 4BPh interaction in poorly populated substate A0 of
revKt-54, which is formed between the G1523 (situated in the
kink region) and A1661 phosphate of the NC-stem. Thus,
substate A0 reveals an internal revKt tertiary contact which seems
to be analogous to the native bulge�helix BPh contacts visible in
revKt-P9/9.0.
In summary, the results show that the conformational space of

reverse K-turns consists of four substates ranging from compact
closed to open unkinked geometries. Interestingly, while the
intron molecule captures or utilizes the reverse K-turn in its most
closed geometry, the ribosome utilizes the semiclosed structure,
which is intrinsically the most flexible one. The archaeal riboso-
mal revKt-54 is replaced in eubacteria by seemingly unrelated
sequences, which nevertheless adopt a similar shape and share
the anisotropic flexibility.
Water Model Affects revKt-P9/9.0 Conformational Beha-

vior. RevKt-P9/9.0 generally fully unfolds (occupies more fre-
quently the substate D topology) in simulations carried out with
TIP3P water model and net-neutralizing Na+ ions (c(Na+)
∼0.25 M; Figure 7A and Figure S12, Supporting Information).
In contrast, all MD simulations carried out with the SPC/E water
model and the KCl excess salt (c(K+)∼0.5 M; c(Cl�)∼0.25 M)
conditions maintain the kinked conformation of revKt-P9/9.0.
Thus, we performed an additional set of MD simulations carried
out in net-neutralizing K+ ions (c(K+) ∼0.25 M and SPC/E
water model, listed in Table S3 in the Supporting Information).
We observe the same behavior in these simulations as for SPC/E
KCl salt excess simulations (Figure S12, Supporting Information),
explicitly suggesting that the differences in behavior are not due
to different ionic conditions (K+ net neutralizing and KCl salt
excess). Further, although we have taken the Na+ and K+ para-
meters from different sets of cation parameters (see Methods),
we observed that the Na+ and K+ ions occur at identical
binding sites and with the same occupancy in the net-neutralizing
(∼0.25 M) Na+ and K+ simulations (Figure S13, Supporting
Information). This suggests that differences in behavior among
revKt-P9/9.0 simulations most likely do not originate in the type
of ions (Na+ vs K+ ions) but are driven by water models (TIP3P
vs SPC/E). We can hypothesize that the effect of solvent model
on the reverse K-turn flexibility can have two reasons, kinetic and
thermodynamic. The TIP3Pmodel has an approximately 2 times
larger self-diffusion constant than SPC/E,84 so the unfolding
of revKt-P9/9.0 can be accelerated in TIP3P in comparison with
SPC/E simulations.

Figure 8. Essential dynamics analysis. The first essential modes of
revKt-P9/9.0 substates A, B, andC (panels A, B, andC, respectively) and
revKt-54 substate C0 (panel D). Figures on the left illustrate magnitudes
of the hinge-like oscillations for the respective substate. The panels show
superposition (over the C-stem) of the two extremes of essential mode
(in orange and light-orange) with the average (surface representation)
and initial reverse K-turn structure (cartoon representation). The initial
and average revKt-P9/9.0 structures are colored in blue, while the initial
and average structures of revKt-54 are in red. Figures on the right
illustrate the coupling between the hinge-like fluctuations and local
motions of bulge bases (as highlighted by the black arrows).
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Qualitative analysis of free energy differences among the sub-
states carried out using the standard implicit solvent MM-PBSA
free energy method shows that the compact states (A, B, A0, and
B0) differ from the open states (C, D, C0, and D0) in Gibbs energy
of solvation and the electrostatic term (Table S5, Supporting
Information). The compact states are destabilized by the elec-
trostatic term, due to repulsion of the phosphates, which is
compensated by amore favorable Gibbs energy of solvation. This
might indirectly support the idea that the observed differences in
populations of reverse K-turn substates in explicit solvent simu-
lations could also be caused by a different Gibbs energy of solva-
tion between the TIP3P and SPC/E explicit water models. None-
theless, larger time scale simulations with the SPC/E water
model would be required to verify this hypothesis. Work is in
progress to provide further insights into this issue. Nevertheless,
it is so far apparent that selection of the water model has a much
larger impact on these simulations than selection of the type and
concentration of ions.
Divalent Mg2+ Ions Do Not Stabilize Reverse K-Turns’

Kinked Topology. We carried out a set of simulations of both
reverse K-turns with Mg2+ ions to test the influence of divalents
on the flexibility of reverse K-turns. Six simulations of revKt-P9/
9.0 were carried out with the TIP3P model and one Mg2+ ion
settled near the kink region. In three out of these six simulations
(INT-18, INT-19, and INT-S8), we observed unfolding of the
system to substate D, i.e., similar behavior as observed in simu-
lations with monovalent ions. The unfolding occurred on a 10 ns
time scale and was entirely irreversible. Similarly, only one of four
MD simulations of revKt-54 carried out with divalents revealed a
stabilizing effect in the B0 substate (Figure 7B). Taken together,
we did not observed any statistically relevant effect of divalent
ions on the dynamic behavior of reverse K-turns. Nonetheless, it
should be noted that these conclusions are limited, as classical
empirical nonpolarizable force fields describe divalents inaccu-
rately and divalents sample poorly in simulations. Thus, we
generally do not recommend to include divalents in nucleic
acids simulations, unless absolutely critical due to structural
reasons.44,49,55,85 The total amount of polarization and charge-
transfer nonadditivities in the first ligand shell of a divalent cation
(contributions entirely lacking appropriate terms in common
biomolecular force fields) is about 70 kcal/mol. These effects
obviously further propagate far beyond the first ligand shell,
dramatically affecting the neighborhood of the divalent cation. In
other words, for divalent cations such as Mg2+, the force field
approximation essentially breaks down completely.86�91

’DISCUSSION AND CONCLUSIONS

Reverse K-turns are RNA motifs that possess significant
sequence similarity to the conventional K-turns but have a very
different mutual arrangement of the A-RNA duplexes (stems).
The stems of conventional K-turns are aligned in such a way that
their minor grooves are juxtaposed. The reverse K-turns display
an opposite stem bending with juxtaposition of the major grooves
(Figure 1). There is no significant H-bonding between stems of
reverse K-turns, in contrast to K-turns that are stabilized by
signature interactions.1 To date, three unique reverse K-turns
have been found in the available RNA structural data.31,34 We
studied the reverse K-turn occurring in the Azoarcus group I
intron (revKt-P9/9.0)28 and the reverse K-turn of helix 54 in the
23S rRNA of H.m. (revKt-54).31

We present an extensive set (7.4 μs) of explicit solvent
MD simulations carried out for isolated reverse K-turns.

Such simulations capture the internal flexibility of the studied
RNA motifs pertinent to their starting structures, which corre-
spond to the native folded arrangement.44 The simulations were
conducted with the traditional AMBER Cornell et al. force fields
ff94, ff99, and ff99bsc0. Additional simulations were conducted
with the recently reparameterized nucleotide N-glycosidic tor-
sion profiles (χOL), which became available in the course of the
project.64 These simulations are labeled as either ff99χOL or
ff99bsc0χOL, depending on whether the bsc0 correction is used
or not (Table 1 and Table S3, Supporting Information). The
simulations also compare different ion conditions (minimal
concentration of Na+ or K+, Na+ ions combined with Mg2+

divalents, and, finally, KCl excess salt). Two different explicit
water models (TIP3P and SPC/E) are utilized in this study.
Thus, besides the initial aim to examine the intrinsic stability and
flexibility of reverse K-turns, our study also provides valuable
insights into the force field dependence of RNA simulations. Due
to the unique propensity of reverse K-turns to show structural
transitions on the short time scale of simulations, these RNA
systems are useful in such force field studies.
The Effect of the Solute Force Field on Stability of Trajec-

tories.Without using the χOL parametrization, the stems of both
reverse K-turns structurally degrade by adopting a distorted
“ladder-like” conformation (Figure 5 and Figure S7, Supporting
Information). The “ladder-like” conformation was recently iden-
tified as a major force field artifact which is associated with
transition of the glycosidic torsion from anti to high-anti
region.50,64 The “ladder-like” transition is an irreversible process,
which occurs for reverse K-turns on 10 ns time scales in ff94, ff99,
and ff99bsc0 force fields (see Figure 7). The “toxicity” of artificial
“ladder-like” rearrangement is similar to R/γ flips that were
found to systematically degrade DNA simulations in ff94 and ff99
force fields.63 However, the formation of “ladder-like” structures
in RNA simulations is apparent on longer time scales, which
might be the reason why the A-RNA “ladder-like” artifact has
been identified almost three years after the “γ-trans” flips degra-
dation of B-DNA.63 Similar to R/γ flips in DNA, the “ladder-
like” structure is ultimately more stable than the native A-RNA
form. The transition is a textbook example of structures where
the force field (without the appropriate χ reparameterization)
does not provide the correct global minimum of the simulated
molecule (or its part), which then sooner or later (depending on
the barrier) degrades.44,63,92,93 This degradation is entirely elimi-
nated in simulations applying the modified χ profiles, i.e., in
ff99χOL and ff99bsc0χOL force fields.

64

It is possible (and not unlikely) that a simple force field with
simple analytic function and a limited set of parameters provides
a less complex (less flexible) description of structure/energy
relations compared to real molecules. Then, refining the force
field to reproduce the native conformations may somewhat bias
sampling of less populated but still relevant regions of the
conformational space. However, at the same time, any force field
which has amajor pathology is likely not better in sampling of less
populated relevant regions. It is because it shares the same
function and most parameters with the refined force field but is
biased to sample completely unrealistic states as global minima.
Therefore, removal of a substantial pathology as done by χOL
should not be accompanied with any systematic bias of less
populated nonpathological regions. In addition, the force field
has not been primarily fitted to come closer to the native geo-
metry but to reproduce reference QM data. The improvement
of the simulation behavior has been achieved indirectly as a
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byproduct of the genuine QM fit. The issue of biasing dynamics
of less populated relevant states may be, however, a substantial
concern when attempting further more subtle changes, i.e., when
trying to achieve a perfect reproduction of target structures that
would go beyond the principal accuracy limits of a given force
field form.
Only trajectories and trajectory portions lacking any sign of

the “ladder-like” structure (4.3 μs) are used to assess the dyn-
amics of the reverse K-turns presented here. For these trajectory
portions, all solute force fields provide very similar results.
The Effect of Ion and Water Treatment. Compared to the

large effect of the RNA force field, the results are considerably
less affected by the treatment of the ions and water. However,
unkinking of the reverse K-turns is more pronounced in TIP3P in
comparison with SPC/E simulations. In contrast, the type and
concentration of ions do not appear to substantially affect the
reverse K-turn simulations. Consistently with the present results,
our earlier reference simulations of A-RNA duplexes comparing
the net-neutralizing Na+ ion (c(Na+) ∼ 0.2 M) conditions with
the TIP3P water model and KCl excess-salt (c(K+) ∼ 0.4 M))
with the SPC/E water model revealed that in SPC/E salt excess
the A-RNA structures were more compact, especially for some
sequences.59 Considering the present results, we suggest that the
earlier reported differences in A-RNA simulations59 were caused
primarily by the water models rather than by the ionic strength or
choice of counterions. Our preliminary data from additional
extended MD simulations of A-RNA duplexes under various
ionic strengths (data not shown) and solvent models confirm
that and will be published elsewhere once completed. Thus,
when the simulation conditions are ordered according to their
impact on the simulated RNA structures, it appears that the most
pronounced effect has the RNA force field. Considerably smaller
differences are caused by the used explicit water model (the same
applies also for proteins, see refs 84 and 94). Finally, the type and
concentration of ions appear to be, so far, less important. This
supports the view that most RNA simulations under net-neu-
tralizing conditions are valid, of course provided that the periodic
water box size is not too large to dilute the net-neutralizing ions.
Further investigations of these issues are under way. It is to be
noted that the above considerations are relevant for simulations
executed at the presently affordable simulation time scales and
with the usual box sizes used in contemporary simulations.
Reverse K-Turns Belong to theMost Flexible Nucleic Acids

Molecules Simulated So Far.The X-ray structures of revKt-P9/
9.0 and revKt-54 significantly differ (Figures 1 and 6); however,
when removed from their structural contexts, both reverse K-turns
sample similar structural substates, albeit the sampling at the
present simulation time scale is still inevitably affected by the
starting structures. Both reverse K-turns sample a wide variety of
conformations ranging from fully kinked to fully unkinked states.
We observe three types of conformational clusters (substates):
(i) the compact fully kinked conformation, (ii) the fully unkinked
state, and (iii) the highly flexible intermediate states that reveal
hinge-like flexibility correlated with bulge region local dynamics
(Figures 6 and 8). While the ribosome utilizes the revKt-54
within its structural context in a geometry corresponding to the
flexible intermediate substate, the intron reverse K-turn is locked
in the compact fully kinked state.
The fact that reverse K-turns are able to rearrange from fully

kinked to fully unkinked substates and vice versa within a
relatively short time scale of hundreds of nanoseconds indicates
that these motifs are intrinsically metastable in their native

conformations and that the barriers between their substates are
relatively low (lower than ∼7 kcal/mol, which represents the
critical free energy barrier for an observable event on the 100 ns
time scale). The reverse K-turn is the most flexible recurrent
RNA motif studied by MD simulations until now.
Comparison of Simulation Dynamics of K-Turns and

Reverse K-Turns. To date, no spontaneous unfolding of con-
ventional K-turns has been observed on tens of nanoseconds
time scales ofMD simulations.18,19When starting from the native
folded (tightly kinked) K-turn structures, the simulations reveal
hinge-like fluctuations around the native structure similar to what
was observed for the intermediate substates of the reverse
K-turns. On the other hand, the experimental studies show that
the conventional K-turns unfold (unkink) in the absence of
proteins or stabilizing divalent cations.13 Also, the recent NMR
structure reveals an extended shape of an isolated K-turn.95 In
contrast to MD simulations, these experimental techniques ob-
serve conventional K-turns on much longer time scales and in
thermodynamic equilibrium. Unfortunately, experimental data
assessing the stability of free reverse K-turns in solution are not
currently available. However, taking into account the reverse
K-turn simulation data together with the current experimental as
well as theoretical knowledge about the stability of conventional
K-turns, we can expect that both conventional K-turns and
reverse K-turns are most likely able to sample kinked and un-
kinked substates. The substates of conventional K-turns, how-
ever, are separated by higher free energy barriers in comparison
to the reverse K-turns. In fact, taking into account the sequence
similarity between K-turns and reverse K-turns, we assume that
they could both prefer similar unkinked geometries in solution.
We expect that both systems could in principle spontaneously
attempt transitions between conventional and reverse K-turn
bending, albeit this would require unstacking, flipping over, and
restacking of terminal NC-stem adenine belonging to the shorter
strand (see below), which is most likely a much slower process
than the local dynamics of reverse and conventional K-turns.
What Might Be the Role of Reverse K-Turns? We have

suggested in earlier studies that, besides their role in protein�
RNA interactions, some K-turns can act as flexible molecular
elbows involved in functional RNA dynamics during the elonga-
tion cycle.17,19,20 A sufficiently long lifetime of the kinked and
unkinked states (originating in the relatively high free energy
barrier between both conformational states) can be important for
the molecular elbow function of the K-turns, which would utilize
the conformational spaces of the kinked state. In contrast, the
present simulations show that the reverse K-turns are even more
flexible than the conventional K-turns, with a negligible barrier
between kinked and unkinked states. Their exact structure is
considerably less strictly defined due to the lack of tertiary
interstem interactions. Owing to this, the reverse K-turn is also
much more versatile in its folded structure (disregarding its con-
text, i.e., intrinsically). We do not have any evidence to suggest
that the pronounced elbow-like flexibility of reverse K-turns
contributes to large-scale RNA dynamics. Rather, the large flexi-
bility of the reverse K-turns is utilized in RNA folding to build
up static RNA 3D topologies based on RNA�RNA interactions.
In contrast to conventional K-turns, reverse K-turns do not seem
to interact with proteins. This again may be related to the fact
that when kinked into reverse K-turn topology, the RNA
molecule is still too versatile (less structured) compared to the
conventional K-turn topology, due to the lack of tertiary inter-
stem interactions.
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Is There a Salient Tertiary Interaction in the Ribosome
Responsible for the Reverse K-Turn Bending? The biochem-
ical experiments for the intron revKt-P9/9.0 revealed that a
remote tertiary contact is responsible for revKt-P9/9.0 bending.29

The tertiary contact is formed between the GNRA tetraloop
attached to the revKt-P9/9.0 C-stem and receptor atoms situated
in the P5/5a intron part (TL-TLR contact). A part of the revKt-
54 NC-stem also forms a tertiary interaction, specifically with the
minor groove of helix 52. The RNA�RNA interaction does not
resemble the intron TL-TLR interface and seems to be a new,
as yet unclassified RNA motif or interaction pattern, since the
nucleotides as well as the overall 3D topology of this motif
are evolutionarily conserved in the ribosome (Figures 4A�D).
Furthermore, we have identified an isosteric arrangement in
the glmS riboswitch.51,96,97 This motif (see Figure 4E) is the
oblique stack interaction between stacked purines (four adenines
in the ribosome or the AAGA stack in the glmS riboswitch) and
the minor groove of the A-RNA stem. In glmS riboswitch, this
motif includes the P2.1 stem and purine stacking module
between P4 and P4.1 stems. It represents a very rigid motif in
MD simulations and stabilizes conformation of the pseudoknot
carrying the ligand binding site.51

We suggest that such an RNA motif stabilizes the kinked
conformation of revKt-54 similarly to the intron TL-TLR inter-
face. These interactions, which are localized in outer parts of the
reverse K-turns, are most likely responsible for the bending of
reverse K-turns, because without this tertiary RNA�RNA inter-
action both reverse K-turns easily relax to more extended
structures. As the bending is imposed by external interactions
with respect to the reverse K-turns, there is no direct evolutionary
pressure for reverse K-turns’ primary sequence conservation
around the bulge. Other RNA sequences with appropriate
bending capability could replace the reverse K-turn. This actually
happens in the course of evolution since our simulations show
that the revKt-54 structural analog from E.c., which has a very
different sequence in comparison to revKt-54, exhibits the same
flexibility (see the Supporting Information). This strikingly
resembles the evolutionary variability of the elbow segment at
the base of the dynamical A-site finger of the large ribosomal
subunit.17 Also, in that case, a structured RNAmotif inH.m. is, in
bacteria, replaced by at first sight unrelated RNA segments which
nevertheless adopt an identical global topology and have strik-
ingly similar simulation behavior. Thus, evolution is capable of
replacing one RNA element with another one, which looks un-
related at the level of sequence, 2D structure, as well as molecular
interactions but still conserves key physical-chemistry properties
(such as topology and directional flexibility) required for proper
function.17,98 These observations illustrate the modular nature of
large RNA molecules, where distinct medium-sized recurrent
RNAmolecular building blocks are used to create large functional
RNA structures. Computations can in such cases provide useful
insights complementing the structural and bioinformatics data.
Why Is the First tHSG/ABase Pair of theNC-Stemof K-Turn

Replaced by the tHH A/A Base Pair in Reverse K-Turn? The
only significant sequence difference between K-turn and reverse
K-turn structures is the (first, terminal) base pair of the NC-stem
adjacent to the bulge. This base pair is critical for the bending
direction, which is driven by the bend of the shorter strand,
while the longer “bulge” strand passively follows (Figure 9 and
Figure S14, Supporting Information). In conventional K-turns,
the terminal base pair of the NC-stem must have adenine in
the short strand and must be a tHS base pair.30 It is due to its

adenine-specific N1 acceptor signature interaction with the bulge
50-most nucleotide which firmly stacks on the C-stem.1,30 Once
this interaction is formed, only the Hoogsteen-edge of the short-
strand adenine remains available (Figure S15A, Supporting
Information). The first NC-stem base pair is then completed
by a nucleotide from the longer strand to adopt the tHS arrange-
ment (see Supporting Information for further details). The tHS
arrangement is needed to insert the immediately following
longer-strand adenine (belonging to the second base pair in
the NC-stem) through its sugar edge to the minor groove of the
C-stem to form the A-minor interaction between the NC- and
C-stems (Figure S15B, Supporting Information). This finally
fixes the overall K-turn topology (Figure S15C, Supporting Infor-
mation). Among the tHS base pairs, the A/G base pair is
energetically the most stable99 and the most frequently realized
in the naturally occurring RNAs.100 The isosteric tHS A/A base
pair would also be geometrically entirely compatible with the
topology of conventional the K-turn but is energetically less
stable99 and also less frequent in RNAs.100 Sequence alignments
reveal that the A/A combination indeed is sometimes realized in
K-turns.14,30

In contrast, the tHS base pair is incompatible with the
topology of reverse K-turns. Similarly to conventional K-turns,
the first nucleotide of the shorter strand in NC-stem is adenine
and offers only its Hoogsteen-edge for pairing (Figure S14,
Supporting Information). However, this adenine is flipped over
and stacked to the NC-stem by the opposite stacking face in
comparison with K-turn (and stacking in A-form RNA). Then,
the shorter strand is bent in the opposite direction to that in
K-turn motif (Figure 9). This rearrangement of shorter strand
flips its terminal adenine of NC-stem toward the Hoogsteen-
edge of the second nucleotide in the corresponding base pair, and
thus the terminal base pair of NC-stem is paired in a tHHmanner

Figure 9. Scheme of the role of the flipped-over adenine (red) in
reverse K-turn and the corresponding opposite bending of the K-turn
(blue) and reverse K-turn (red). Both systems are superimposed over
their NC-stems (the shared parts are in violet). The thick and thin lines
highlight the short and long strands, respectively. The terminal base pair
of NC-stem adjacent to the bulge is represented in a triangle abstrac-
tion.102 Note that the red and blue triangles are flipped-over with respect
to each other, so that they stack on the NC-stem by different nucleobase
faces. The green dashed line shows the signature interactions of K-turn.
The Supporting Information presents an analogical superposition of
reverse K-turn revKt-54 and consensual K-turn Kt-7 structures over their
NC-stem backbone atoms (Figure S14, Supporting Information).
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in reverse K-turn (Figure 9). Such flip reverting strand direction
was also observed in the S-turn motif of the sarcin�ricin loop,
where two consequent flips form the S-shaped appearance of this
motif.101 Similarly to the sarcin�ricin loop, the flipped over
adenine offers its 20-hydroxyl group to the major groove of NC-
stem forming a sugar�phosphate interaction with the pro-RP

nonbridging oxygen of its upstream nucleotide, in contrast to
A-RNA where 20-hydroxyl groups are exposed to the minor
groove. The A/A is the most frequent tHH base pair in known
RNAs,100 since it is supported by the adenine-specific base�pho-
sphate interaction. The tHH A/G base pair is basically absent in
natural RNAs, as it does not offer a favorable combination of
donors and acceptors. Thus, the difference in topology between
reverse and conventional K-turns together with energetics of
molecular interactions dictate the replacement of the tHS A/G
K-turn combination with the tHH A/A reverse K-turn combina-
tion. While the tHS A/G base pair can covary with A/A, the
covariation of the tHH A/A base pair with A/G is less likely.
Despite this, the X-ray structure of the A201Gmutant shows that
the tHH A/G can be stable within the structural context of
reverse K-turn within the group I intron.29 Such covariation,
however, is not expected in naturally occurring sequences.100

Overall, the conservation of the tHH A/A base pair terminating
theNC-stemwith flipped over adenine is rather a consequence of
evolutionarily conserved outlaying tertiary RNA�RNA interac-
tions determining the direction of the reverse K-turn bend. More
detailed explanation can be found in the Supporting Information.
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ABSTRACT:Defects in lipid bilayers are important in a range of biological processes, including interactions between antimicrobial
peptides andmembranes, transport of polarmolecules (including drugs) across membranes, and lipid flip�flop from onemonolayer
to the other. Passive lipid flip�flop and the translocation of polar molecules across lipid membranes occur on a slow time scale
because of high-energy intermediates involving water defects and pores in themembrane. Such defects are an interesting test case for
coarse-grained models because of their relatively small characteristic size at the level of water molecules and the complex
environment of water and polar head groups in a low-dielectric membrane interior. Here we compare coarse-grained simulations
with the MARTINI model with the standard MARTINI water and two recently developed coarse-grained polarizable water models
to atomistic simulations. Although in several cases the MARTINI model reproduces the correct free energies, there are structural
differences between the atomistic and coarse-grained models. The polarizable water model improves the free energies but only
moderately improves the structures. Atomistic test simulations in which water molecules are artificially tethered to each other in
groups of four, the resolution of MARTINI, suggest that the limiting factor is not the size of the coarse-grained particles but rather
the simple interaction potential and/or the entropy lost in coarse graining the system. By increasing the attractive interaction
between the lipids’ headgroup and water, we did observe pore formation but at the expense of the correct equilibrium properties of
the bilayers.

’ INTRODUCTION

Biological membranes form the boundaries of cells and
organelles. They regulate what can enter and leave a cell, com-
municate signals across the membrane, provide structural sup-
port, localize distinct chemical environments, and allow electro-
chemical gradients, which are necessary for energy transduction
and nerve propagation. The core structure of membranes, the
lipid bilayer, consists of a thin (3 nm) hydrophobic slab that
forms a semipermeable membrane, preventing ions, polar and
charged molecules, from crossing. Several biologically important
processes involve the interactions of polar or charged molecules
and lipid bilayers. A few examples are electroporation, where an
applied electric field induces hydrophilic pores in membranes;
antimicrobial peptides, which have been shown to cause pore
formation;1 lipid translocation; and drug delivery. The interac-
tion between a membrane and polar molecules depends on its
lipid composition, which varies significantly between cell types
and organelles.2

Lipid translocation, or flip�flop, between monolayers is an
important process in cells. It involves a high free energy barrier
for polar and charged lipid head groups crossing the hydrophobic
bilayer interior. Flip�flop is important for the growth of
membranes as well as cellular signaling.3 The rate of passive
flip�flop for PC and other phospholipids is very slow, on the
time scale of hours to days.4�6 The mechanism of PC flip�flop
has been shown to involve pore formation,4,7,8 with water and
other lipid head groups entering the hydrophobic bilayer interior
to prevent the dehydration of the flipping lipids headgroup.
Other polar and charged molecules have been shown to disrupt

the lamellar structure of the bilayer causing water defects,9,10

where water and head groups enter the bilayer interior from only
one side of the bilayer.

We are investigating the mechanism, thermodynamics, and
kinetics of the process of lipid flip�flop and pore formation using
computer simulations.9,10 The standard approach uses a force
field that describes interactions at the level of individual atoms
(AA for all-atom). Typical trajectories on systems with ca. 20 000
atoms can reach a time scale on the order of a microsecond.More
recently, a number of coarse-grained (CG) models have been
developed that retain some chemical specificity but operate at a
lower level of resolution. We use the MARTINI model,11 in
which typically four nonhydrogen atoms are grouped together
into a single interaction site. This allows simulations on a scale
that is 2�3 orders of magnitude larger than AA simulations with
a comparable computational cost, but achieving a balance between
detail and computational efficiency is a substantial challenge.
There is a strong motivation to have a CG model that can
reproduce both the energetics and the mechanism of membrane
pores and defects.

MARTINI maps four water molecules to a single water bead,
without a dipole or partial charge. One limitation of such a model
is its inability to reproduce small-scale defects, for instance during
lipid flip�flop.11 A recently developedMARTINI water model12

(CG-pol) combines four water molecules into three beads
that represent a dipole. CG-pol simulations show pores in

Received: April 27, 2011
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membranes during electroporation, in agreement with AA
simulations.12 This suggests CG-pol might be better suited to
study lipid translocation. The recently developed BMW water
model for MARTINI uses a modified Born�Mayer�Huggins
potential, which is softer than the standard Lennard-Jones
potential.13 This model was shown to reproduce the lipid inter-
face dipole potential, which suggests it could be a useful model
for heterogeneous interfacial systems.

In previous studies we have calculated atomistic potentials
of mean force (PMFs) for lipid flip�flop in a number of bilayers
with primarily PC lipids, including varying chain length,8

cholesterol concentration,14 chain unsaturation8 and the effect
of a the presence of a simple transmembrane helix on lipid
flip�flop.15 Here we describe simulations of phospholipid flip�-
flop using five different models (AA, AA-bundled, CG, CG-pol,
and CG-BMW) in three different membranes: dilauroylpho-
sphatidylcholine and dipalmitoylphosphatidylcholine (DLPC
and DPPC, respectively), which in MARTINI differ by one bead
in each acyl chain, and the charged lipid dioleoylphosphatidyl-
glycerol (DOPG) in a dioleoylphosphatidylcholine (DOPC)
bilayer. CG-pol improves the results most for DOPG, although
the structure of the defects is different between atomistic and CG
models in all cases. CG simulations of flip�flop in DLPC give a
much higher barrier than in atomistic simulations. To understand
the possible effect of the larger size of MARTINI particles, in
particular the water particles that group four water molecules into
one, we simulated AA dimyristoylphosphatidylcholine (DMPC)
with normal water and with water tethered in groups of four,16

with no discernible effect on either structure or free energies.
Finally, we tested different parameters for the MARTINI model
to see if pore formation was possible with a CG model. By
increasing the interaction between water and lipid head groups in
the CG-pol model, we did observe pore formation in the DLPC
bilayer. These results provide insight for future progress in
refining CG lipid models.

’METHODS

AA Simulations.We used the GROMACS software package.17

For lipid parameters we used the united-atom Berger force field.18

We use a relatively small bilayer patches of 64 lipids for DLPC,
DPPC, and DOPC bilayers. We include between ca. 4000 and
5000 simple point charge (SPC)19 water molecules for good
hydration of the lipid head groups. Small bilayers are necessary
for free energy calculations, which require 40�50 replicates for
10�100 ns to determine a single PMF (see Umbrella Sampling
Section). To test the effect of using small bilayers for simulating
large-scale changes in the bilayer structure during flip�flop, we
determined a PMF for DMPC with 256 lipids and compared it to
the PMF with 64 lipids (Figure S1, Supporting Information). The
PMFs for the large and small bilayer were quite similar, indicating
our small bilayer patches are sufficiently large for this process. All
simulations were run at 323 K for comparison with DPPC, which
has a high melting temperature (314 K).20 A time step of 2 fs was
used for the equations ofmotion. SETTLE21 was used to constrain
water bonds and angles, while LINCS22 was used for the lipid
bonds. We used periodic boundary conditions with a semi-
isotropic pressure coupling algorithm with a reference pressure
of 1 bar and a 4.5� 10�5 bar�1 compressibility.23 Temperature is
maintained with a weak-coupling scheme and a coupling constant
of 0.1 ps.23 We use the particle mesh Ewald (PME) method for

long-range electrostatic interactions with a fourth-order spline
and a 0.12 nm grid spacing.24,25

The bundled water topology was from,16 where four SPC
waters are tethered together using harmonic distance restraints
into a roughly tetrahedral geometry. A force constant of 1000 kJ
mol�1 nm�2 and a distance of 0.3 nm were used. The Lennard-
Jones C12 parameter was also increased for the interaction
between all the water oxygens.

CG Simulations. For CG simulations, we use the MARTINI
model11 and the recently developed polarizable MARTINI water
model (CG-pol).12 We used a 20 fs time step and updated the
neighbor list every 10 steps. Lennard-Jones interactions were
shifted from 0.9 to 1.2 nm. A Coloumbic function was used for
electrostatic interactions with a dielectric constant of 15 for
explicit screening. For the CG-pol model, we have used mostly
the same run parameters as standard MARTINI, with the excep-
tion of the dielectric coefficient, which is 2.5 instead of 15.12 We
have used the same types of lipids as the AA simulations. Small
bilayer patches were used with 72 DLPCs, 72 DPPCs, and 70
DOPCs with 2 DOPGs. In the CG-pol model electrostatic
interactions play a more important role, so we also tested the
simulations with PME instead of the standard shifted Coulomb
cutoff.
We tested the recently developed BMW water model with

DLPC and DPPC MARTINI bilayers.13 Of note, the angle
potential is modified for the lipid tails for use with the
BMW water model, with the force constant reduced from 25
to 10 kJ mol�1 rad�2. BMW simulations were run with PME for
long-range electrostatics with a 0.2 nm grid spacing and sixth-
order spline interpolation.24,25

In the CG-pol model, the Lennard-Jones interaction between
water beads and the choline and phosphate was reduced com-
pared to standard MARTINI, to compensate for the increased
Coulombic interactions. To try and induce pore formation, we
increased the Lennard-Jones interaction between water beads
and the choline and phosphate beads. For CG-pol, we increased
the interaction back to the level in standard MARTINI (with ε =
5.6 kJ/mol for both interactions, compared to 5 and 4.5 kJ/mol
for phosphate�water and choline�water in CG-pol). We refer
to this model as CG-pol-lj*. We also increased the Lennard-Jones
interaction between water and the head groups in standard
MARTINI (CG-lj*) to levels beyond the range of the MARTINI
force field (with ε = 6.2 kJ/mol). We then determined PMFs for
DLPC and DPPC flip�flop using the CG-pol-lj* model and for
DLPC using the CG-lj* model.
Umbrella Sampling.With current computers, we are able to

simulate up to 1 μs for the AAmodel and to the 100 μs and nearly
millisecond time scale for the CG model. The time scale of
phospholipid flip�flop is hours to days. To simulate these slow
processes, we use umbrella sampling. We run a series of ca. 50
simulations in parallel with a harmonic restraint placed on the
headgroup of the translocating lipid with respect to the distance
from the center of the bilayer, spaced by 0.1 nm increments. The
harmonic restraint is placed on the polar or charged headgroup to
ensure that the molecule samples the center of the bilayer, which
is likely to be energetically unfavorable. We determine the PMF
using weighted histogram analysis.26 In each system, we pull two
separate lipids, staggered by at least 4 nm, to increase computa-
tional efficiency by getting two PMFs at a time. We have
determined the PMF for a single DPPC lipid, and it was within
the error of the PMF calculated by pulling two DPPC lipids
(Figure S2, Supporting Information). We plot the mean from the
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two independent PMFs and the standard error, after aligning the
PMFs to zero at their free energy trough. In all the figures, we
have shown the PMF and its mirror image that corresponds to
the opposite leaflet. As the bilayers are all symmetric, the PMFs
should be the same in both monolayers.

’RESULTS

Phospholipid Flip�flop.Figure 1A and B shows snapshots of
AA and CG DPPC lipid bilayers. Figure 1C and D shows the
partial density profiles for the two bilayers. Water penetrates into

the headgroup region and a small amount into the carbon tail
density. This is followed by an increase in the tail density until a
maximum, after which the density decreases near the center of
the bilayer. The CGmodel reproduces the general features of the
density profile, although the CGmodel does not have as large of a
decrease near the bilayer center compared to the AA model.
DPPC. Figure 2A shows the PMF for AADPPC flip�flop.4 We

used umbrella sampling (see Methods Section) to determine the
free energy profile for transferring a single DPPC from equilib-
rium to the center of the bilayer, with umbrellas centered on the
phosphate group. There is a large free energy trough correspond-
ing to the equilibrium position of the phosphate in the bilayer
(Figure 2). Moving the lipid into the bilayer has a large free
energy cost.
As we move the phosphate of DPPC into the hydrophobic

bilayer core, a water defect forms. Water and other PC lipid head
groups move into the bilayer to prevent the DPPC from
becoming desolvated. Restraining the zwitterionic headgroup
of DPPC inside the bilayer significantly perturbs the lamellar
structure. Similar structures and free energy slopes have been
observed for other charged and polar molecules entering the
interior of lipid bilayers.7,27,28 When the phosphate is restrained

Figure 1. Snapshot and partial density profile for an AA (A and C) and
CG (B and D) DPPC bilayer at equilibrium. Water is shown as small
balls, head groups as thick balls, and lipid tails as thin lines. Head group
includes the choline and phosphate groups, and tails include all the
carbons after the carboxyl group.

Figure 2. PMFs for phospholipid flip�flop. (A) DPPC flip�flop in a
DPPC bilayer. (B) DLPC flip�flop in a DLPC bilayer. Error bars re-
present the standard error between two independent lipids PMFs. The
PMF is mirrored at the center of the bilayer for clarity. The CG, CG-pol,
andCG-pol (PME) PMFs are nearly the same, so only one curve is visible.

Figure 3. Snapshots for a phospholipid restrained at the center of
bilayers. Water is shown as red licorice, lipid tails as gray lines, restrained
lipid as thick gray lines, and headgroup phosphate (phosphorus) and
choline (nitrogen) as balls. (A) and (E) are atomistic, (B) and (F) are
CG-pol, (C) and (G) are CG, and (D) and (H) are CG-pol-lj*
simulations. (A�D) DLPC in a DLPC bilayer and (E�H) DPPC in a
DPPC bilayer.
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at the center of the bilayer, a pore spanning the bilayer is observed
(Figure 3E). We assume this is the transition state for lipid
flip�flop. Estimates for the lifetime of pores are on the order of
10�100 ns.29 From the free energy barrier for pore formation
(80 kJ/mol) and the flux of lipids across a preformed pore, a rate
for DPPC flip�flop was estimated to be 4�30 h, in good
agreement with experimental estimates of 1�90 h.5,6

The PMF for CGDPPC flip�flop shows a similar shape as the
AA model (Figure 2A) and has a similar barrier for flip�flop. As
the DPPC is moved into the bilayer, a small water defect does
form, corresponding to a steep free energy slope. No water pore
is observed when the phosphate bead is restrained at the bilayer
center, although a small, unstable water defect does occasionally
form (Figure 3G).
We have also determined a PMF for DPPC flip�flop using the

CG-pol model (Figure 2A). Compared to the nonpolarizable
model, the shape of the PMF and the free energy barrier are quite
similar. Figure 3F shows that a small water defect is formed when
the phosphate is at the bilayer center, although a pore is still not
observed. The defects formed for CG-pol occur more often and
appear slightly more stable than for CG. We determined the
number of contacts (distance of less than 1 nm) formed between
water beads and the phosphate bead restrained at the center of
the bilayer. For CG, 98% of the time there were no contacts, 1.2%
with one contact, and a maximum of 4 contacts. There were no
contacts for the CG-pol model 92% of the time, 6% with one
contact, 2%with two contacts, and amaximum of 7 contacts. The
use of PME makes almost no difference.
To try and induce pore formation, we increased the Lennard-

Jones interaction between the water bead and the choline and
phosphate beads (CG-pol-lj*). Coincidentally, the PMF for CG-
pol-lj* is nearly the same as the AA model, although the bilayers
bulk properties were perturbed significantly. The area per lipid
for the DPPC CG-pol model was 0.64 and 0.71 nm2 for the CG-
pol-lj* model. For CG-pol-lj*, the water defect was more stable,
although we did not observe pore formation. When the phos-
phate of DPPC was restrained at the bilayer center, there were
2�5 contacts between the phosphate and the water for 80% of
the simulation.
The BMW water model has a steeper slope in the PMF and a

significantly higher barrier for flip�flop (150 kJ/mol), although
the position of the free energy minima is the same as the other
two CG models. At the center of the bilayer there was 1 contact
with water and the phosphate for 49% of the time, 2 contacts for
48%, and amaximum of 5 contacts. No pores are observed for the
BMW DPPC simulations.
DLPC. From the AA model, shorter lipids, such as DLPC, had

lower free energy barriers for pore formation compared to
DPPC. Figure 2B shows the PMF for DLPC. Similar to DPPC,
there is a free energy trough at DLPC’s equilibrium position and
a steep slope as the PC headgroup moves into the bilayer center,
corresponding to water defect formation. When the lipid was ca.
0.6 nm from the bilayer center, the water defect became a pore,
causing the PMF to plateau. Once a pore forms, the lipid is able to
diffuse across it at no free energy cost. This indicates that pore
formation is the primary free energy barrier for flip�flop.
Figure 3A shows the water pore formed at the center of the
DLPC bilayer, which has many lipid head groups and water
molecules in the bilayer interior. From the AA model, we
calculate a free energy barrier for DLPC flip�flop of 16 kJ/mol.
This low free energy barrier translates into a rate of flip�flop on
the μs time scale.8

Using the CG and CG-pol model, we calculated the PMF for
DLPC flip�flop in a DLPC bilayer (Figure 2B). The PMFs for
DLPC flip�flop are the same for the CG, CG-pol, and CG-pol
with PME. There is a deep free energy minimum and a large,
smooth increase in free energy to the center of the bilayer. The
free energy barrier for DLPC flip�flop is 73 kJ/mol. Similar to
the DPPC PMF, the BMWDLPC PMF has both a steeper slope
and a higher barrier for flip�flop (122 kJ/mol). The steep slope
of the PMF at the bilayer center and the snapshots (Figure 3B
and C) indicate that even when the phosphate is at the center of
bilayer, the lipid is still interacting with one bilayer leaflet.
The large difference between the CG models and the AA

model is due to pore formation in the AA model. In contrast to
the AAmodel, we did not observe pore formation in the CG, CG-
pol, or BMW bilayers (Figure 3). At the bilayer center a small
water defect forms, to keep the DLPC headgroup solvated. We
did observe pore formation in the CG-pol-lj* model (Figure 3D).
The structure of the pore appears similar to the AAmodel, with a
disordered torroidal shape and multiple water and head groups
within the bilayer interior. As with the AA model, once a pore
formed the PMF plateaus (ca. 0.15 nm from the bilayer center),
the barrier for flip�flop was reduced to 53 kJ/mol. The bulk
properties of the DLPC bilayer are modified by the use of the
increased interaction between water and lipid head groups, with
the area per lipid increasing from 0.62 to 0.71 nm2. We tested the
CG-lj* model but did not observe pore formation, and the PMF
was similar to the CG model (Figure 2B). Pores were not
observed when we only increased the phosphate�water inter-
action, not the choline-water interaction (data not shown). Pores
were not observed by increasing the charge on the phosphate and
choline in DLPC to �2 and +2 (data not shown). In a subtler
attempt, we increased the repulsion between the lipid tails and the
lipid head groups, but pores were not observed (data not shown).
DOPG. To see the effect of a charged headgroup, we calculated

PMFs for DOPG flip�flop across a DOPC bilayer (Figure 4).
For the AA model, the free energy barrier for DOPG (105 kJ/
mol) flip�flop in a DOPC bilayer increased compared to DOPC
(87 kJ/mol) in a DOPC bilayer.15 At the center of the bilayer,
DOPG formed a water defect, and a pore was not observed
(Figure 5A); this is similar to DOPC flip�flop, where we did not
observe pore formation, but a water defect was present. The PMF
for CG-pol DOPG flip�flop in a DOPC bilayer is shown in
Figure 4. The shape of the PMF closely matches the AA PMF

Figure 4. PMFs for DOPG flip�flop in a pure DOPC bilayer. Error
bars are shown and represent the standard error between two indepen-
dent lipids PMFs. The PMF is mirrored at the center of the bilayer for
clarity.
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until ca. 0.6 nm, where the PMF suddenly flattens. A water defect
was observed before this position, but near the center of the
bilayer, a defect does not form (Figure 5B). In contrast to DLPC,
where the PMF plateau was caused by pore formation, the
plateau for DOPG is due to the lipid losing contact with either
leaflet and with no net force in either direction, and the lipid
almost completely desolvated. Occasionally a single water bead
enters the bilayer to interact with the charged PG headgroup.
The PMF for DOPG flip�flop across a DOPC bilayer using the
CG model is shown in Figure 4. The PMF matches the shape of
the CG-pol PMF, until ca. 0.75 nm from the center where it
plateaus. Again, the plateau region corresponds to water defects
breaking, exposing the DOPG to the bilayer interior along
with an occasional single water bead (Figure 5C). The free
energy barrier for DOPG flip�flop was closer to the AA model
(104 kJ/mol) for the CG-pol model (77 kJ/mol) than for the CG
model (59 kJ/mol). When PME was used with the CG-pol
model, the resulting barrier is almost the same as for the AA
model, although no stable water defect at the center of the bilayer
is observed.
Effect of Bundling Water in AA Simulations. In all cases

tested, the CG models show significantly less complex defects
and in particular do not easily form pores, although the PMFs for
lipid flip�flop are quite similar between CG and AA for DPPC
lipids. We hypothesized that a limiting factor may be the
relatively small scale of the defects: they typically involve only

a small number of head groups with associated water molecules,
so that the standardMARTINI water particles may be too coarse
to reproduce their structure. To test this, we artificially tethered
four water molecules together in atomistic simulations16 in a
tetrahedral geometry that approximates a spherical shape. With
this unusual water model we calculated again the PMF for
DMPC flip�flop and compared it to the result for normal
atomistic water. We chose DMPC for this because it has a
well-defined transition state for flip�flop with a large two-sided
defect or pore.8 The results are surprising: the tethered waters
give essentially the same thermodynamics and structure as
normal water. Figure 6 shows the PMFs for the normal atomistic
DMPC case and the DMPC bilayer with tethered water, while
Figure 7 shows two snapshots.

’DISCUSSION

We have studied the process of lipid flip�flop using molecular
dynamics simulations with several different models. The AA
model predicts that water defects or pores form as the headgroup
of a phospholipid is transferred into the hydrophobic interior of a
membrane. These membrane defects are hydrophilic; lined with
other lipid head groups and water molecules. The free energy for

Figure 6. PMFs for DMPC flip�flop in a DMPC bilayer using normal
SPC water and bundled water. Error bars for the normal water represent
the standard error between two independent lipids PMFs. The bundled
water PMF was only calculated once, so no error bars are shown. The
PMF is mirrored at the center of the bilayer for clarity. Figure 7. Snapshots of a pore formed in AA DMPC bilayer with

(A) SPC water and (B) bundled water. The representation for (A) is
the same as in Figure 3. For panel (B), bundled water is shown as blue
and white licorice, with a red sphere around the four water molecules
that comprise one bundled water.

Figure 5. Snapshots for DOPG restrained at the center of a DOPC
bilayer. Water is shown as red licorice, lipid tails as gray lines, restrained
lipid as thick gray lines, and headgroup phosphate (phosphorus) and
glycerol (oxygen) as balls. (A) AA, (B) CG, and (C) CG-pol simulations.
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desolvating the charged or zwitterionic headgroup is higher than
the cost of forming a water defect or a bilayer-spanning pore. We
have observed similar behavior in the partitioning of charged and
polar amino acid side chains in a DOPC bilayer.28 The polar side
chains formed water defects as they were moved into the
hydrophobic interior, until the energy cost for desolvation was
less than defect formation, causing the defect to break and the
PMF to plateau. The charged side chains retained a water defect
even at the center of the bilayer. Many other groups have
observed similar behavior in the partitioning of polar and charged
molecules using different force fields and methods.27,30�32 For
DPPC, the free energy barrier for lipid flip�flop was 80 (AA), 83
(CG), and 89 kJ/mol (CG-pol).

There is good agreement between the AA and CG models on
the shape of the PMFs and the free energy barriers for DPPC.
Both CG models observe water defects as the DPPC is moved
into the bilayer core, but near the center of the bilayer, a pore
does not form and the defects become unstable. The CG-pol
model is more hydrated at the bilayer center, indicating an
improvement over the standard MARTINI model. It is not
obvious that the two models would give such similar results,
and the physical properties are actually different. CG water has
no dipole or polarizability, so simulations are run with a dielectric
constant of 15 for implicit screening of electrostatic interactions.
This means that the interaction of polar molecules is under-
estimated in hydrophobic environments, e.g., when a lipid
headgroup is placed in the interior of a bilayer. In the AA model,
with explicit water and dielectric screening, charge interactions
are much stronger in an apolar medium, causing water pores to
formwhen aDPPC is placed at the center of the bilayer. The CG-
pol water model has explicit polarizability, and a dielectric of 2.5
is used, which means that the interaction between water and
charged molecules is physically more realistic. Surprisingly, this
has little effect on the structure of the defects, although CG-pol
reproduces electroporation in a DPPC bilayer.12 It is likely that
the CG-pol will be useful for modeling phenomena where much
larger pores are observed, such as the electroporation of mem-
branes and antimicrobial peptides.12 By increasing the Lennard-
Jones interaction between the water and headgroup beads, we
observed more stable water defects but still no pores in DPPC.
We speculate that further increasing the interaction would cause
pores to form, but changing these interactions perturbs the
bilayer lamellar properties significantly.

Our results shows that water pores are still not observed
during DPPC flip�flop, in contrast to AA simulations. The large
size of CG-pol water beads (4 to 1 mapping) might prevent the
formation of the small water pores seen in AA DPPC flip�flop,
where on the order of tens of waters are involved. However, tests
of tethered water in a DMPC bilayer show that the main reason is
unlikely to be size related. It was suggested (in ref 12 ) that using
a different Lennard-Jones potential (currently a 12�6 potential),
particularly a less repulsive form, might improve the model. As
the CG beads become more repulsive, a larger volume would be
needed to from a defect or pore, which could affect the energetics
of pore formation. A less repulsive model would allow beads to
get closer together, possibly making defects form more easily.
To this end, we tested the BMWwater model, which uses a softer
potential, but found that the free energy barriers for DPPC
and DLPC flip�flop are significantly overestimated. There was
slightly more water pulled into the center of the DPPC bilayer
using the BMW model, but again no pore formation or stable
water defect was observed. The high barrier for the BMWmodel

is likely due to a high line tension, which would prevent pore
formation.33 Similarly the lack of pore formation in the CG and
CG-pol model could be related to the models high bending
modulus, which was shown to be nearly double atomistic and
experimental values.34 Although there is no immediate link
between the bending modulus and the water/lipid line tension
on the one hand and individual atomistic or MARTINI interac-
tions on the other, it is likely that both properties are linked to the
cost of defect formation. If future versions of MARTINI or other
CG models improve these mechanical properties in a more
integrated approach, then it will be interesting to see if this also
results in an improved representation of membrane defects.

The CG and CG-pol models give similar results for DLPC
flip�flop, and the use of PME had no effect on the energetics of
flip�flop. There is a large discrepancy between the AA barrier for
DLPC flip�flop (16 kJ/mol) and both CG models (73 kJ/mol).
Intuitively, we expect defects and pores should formmore readily
in the thinner DLPC bilayer, compared to the DPPC. Experi-
mental evidence has shown that pore formation in thin DLPC
bilayer occurs spontaneously35 and suggests our low free energy
barrier from the AA model is realistic. Experiments on the
permeation of protons and potassium ions through liposomes
of monounsaturated PC lipids showed that lipids with 14 carbon
tails had 2 orders of magnitude faster permeation than 18 carbon
tails, which fit a pore-meditated model.36 Increasing the interac-
tion between the headgroup and water beads caused pore
formation in the CG-pol-lj* DLPC bilayer. This suggests that
neither the size of the large CG water nor the ‘hard’ potential for
the MARTINI model prevents pore formation. As expected,
increasing the water�headgroup interaction caused the area per
lipid to increase, which illustrates the difficulty in parametrizing a
CG force field.

We observed the largest difference between CG and CG-pol
lipid PMFs for DOPG flip�flop in a DOPC bilayer. This is likely
due to DOPG having a negative charge, while PC lipids are
zwitterionic. The CG-pol model forms water defects to the
DOPG until it is ca. 0.5 nm from the bilayer center, compared
to ca. 0.75 nm for the CG model. This results in an 18 kJ/mol
difference in the free energy barriers for flip�flop. Near the
center of the bilayer neither model shows a water defect,
although an occasional water bead does enter the bilayer to
interact with the headgroup, in contrast to the AAmodel where a
defect is present at the center. With PME, the resulting energies
are very similar for both AA and MARTINI CG-pol. The use of
PME with standard MARTINI has been shown to improve
accurately modeling dendrimer37 and antimicrobial peptide38

interaction with membranes.
Given the coarseness of the MARTINI model and the com-

plex process at length scales of a few atoms of lipid flip�flop and
pore formation, the similarity in the PMFs is encouraging,
although our results do suggest further refinement is necessary.
These results suggest caution in using and interpreting results on
polar and charged interactions with bilayer interiors, such as
studies on drug partitioning, electroporation, and antimicrobial
peptides, with CGmodels. Due to the computational demands of
AA simulations and umbrella sampling calculations, it is useful to
have a CG model that can used to study membrane defects and
pores. It was shown that the CG-pol water model was able to
form pores across bilayers and hydrophobic slabs by applying an
electric field, in agreement with AA simulations.12 We have
compared standard MARTINI water, polarizable MARTINI
water, and the BMW water model in their ability to model the
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process of lipid flip�flop. We found good agreement in the free
energy profiles for DPPC and DOPG flip�flop between the AA
and CG models. This work suggests that during phospholipid
flip�flop, the CG-pol model forms defects only slightly more
readily than standard MARTINI, in closer agreement with AA
simulations. The source of this mechanistic discrepancy is not
clear, although we have ruled out two possible explanations: the
size of the water beads and the use of a softer repulsive
nonbonded potential. We did observe pore formation in a DLPC
bilayer using the CG-pol-lj* model, which shows that pore
formation is possible with CG lipids. Parameterizing a lipid force
field requires a delicate balance of forces, so we do not suggest
that the CG-pol-lj* is an improvement to MARTINI but rather a
proof of principle. Future work into describing the molecular
driving forces for AA pore formation may be necessary to fully
explain the CG result. These results and similar calculations and
comparisons to atomistic results could aid the parametrization of
the MARTINI model and other CG lipid models.
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ABSTRACT: In this report, the conformations of a series of mono- and oligoarabinofuranosides were probed through the use of
umbrella sampling simulations with the AMBER force field and the GLYCAM carbohydrate parameter set. The rotamer population
distribution about the exocyclic C4�C5 bonds and the puckering distributions of the rings obtained from these umbrella sampling
simulations were found to be in excellent agreement with those obtained from conventional long MD simulations for small
monosaccharide fragments. For larger systems, the conventional MD approach becomes impractical, and we propose the use of
umbrella sampling to circumvent poor sampling of certain conformations. The same umbrella sampling simulations were used to
calculate the distributions about the vicinal protons and ensemble-averaged vicinal proton�proton coupling constants (3JH,H). The
distributions about the vicinal protons of a monomer, methyl-R-L-arabinofuranoside (1), were found to be very similar to those
obtained from direct umbrella sampling simulations about the vicinal protons.We calculated 3JH,H based onDFT-based Karplus-like
relationships for L-arabinofuranosides. The 3JH,H values were found to be very similar to those obtained with the conventional MD
simulations. For 1, the 3JH,H values obtained with the DFT-based Karplus equations agree very well with experimental results; the
agreement is, however, not as good for the larger oligomers. An approach to determine the experimental rotamer populations from
the simulations is also discussed.

’ INTRODUCTION

In nature, the monosaccharide arabinose is found in both
possible cyclized ring forms (pyranose and furanose) and
absolute stereochemistries (D and L).1 The furanose forms are
more prevalent than the pyranose forms, and the distribution of
D- vs L-arabinofuranose is species-specific. D-Arabinofuranose is
found predominantly in cell wall polysaccharides inmycobacteria
(including the human pathogenMycobacterium tuberculosis) and
other members of the actinomycetes family of bacteria.2 On the
other hand, L-arabinofuranose is abundant in plant cell walls.3,4

Regardless of their source, arabinofuranose-containing glycans
play important roles in the organisms that produce them and in
interactions with their environment. For example, the D-arabi-
nofuranose-containing polysaccharides present in mycobacteria
are essential for viability.2,4 In addition, plant glycoproteins
containing L-arabinofuranose moieties are believed to be essen-
tial in diverse functions such as cell division and plant�microbe
interactions,5 and these glycoconjugates have also been impli-
cated in the response to some plant allergens.6

In previous studies, we have reported conformational investiga-
tions on molecules containing D-arabinofuranose rings using a
combination of NMR spectroscopy and ab initio/density functional
theory (DFT) or molecular dynamics calculations.7�17 These
studies were carried out with the expectation that a better under-
standing of the conformational preferences of D-arabinofuranose-
containing polysaccharides (D-arabinans) would facilitate the design
of molecules that would interfere with their binding to proteins. For
example, such molecules targeted to enzymes involved in the

biosynthesis of D-arabinans would be anticipated to be lead com-
pounds for the treatment of mycobacterial diseases including
tuberculosis and leprosy.

Having developed an understanding of the conformational
preferences of D-arabinans in solution, we endeavored to study
their interactions with proteins using computational methods.
Access to X-ray crystal structures of proteins in complex with
molecules containing D-arabinofuranose rings would greatly facil-
itate such investigations. Structural information of this type was,
however, unavailable at the time this study was initiated.18 We
therefore turned our attention to L-arabinans, for which a larger
amount of crystal structure data is available,19�22 and focused on the
structure of a mutant arabinofuranosidase, which was obtained in
complex with an L-arabinofuranose trisaccharide.23

The present study has been carried out to better understand the
conformational preferences of larger oligoarabinofuranosides
(Figure 1) and relies on techniques that provide enhanced sampling
of conformational space. Furanosides are highly flexible compared
to their pyranoside counterparts,24 and the rings can occupy several
envelope (E) and twist (T) forms with low energy barriers.11

According to the Altona�Sundaralingam notation,25,26 each ring
conformation can be described by a phase angle of pseudorotation
(P) and a puckering amplitude (ϕm). Figure 2 shows the pseudo-
rotational itinerary for the L-arabinofuranose ring.

Received: May 17, 2011
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The angle P of a given conformer can be calculated from the
five endocyclic torsion angles ϕ0�ϕ4 as defined below

tan P ¼ ðϕ2 þ ϕ4Þ � ðϕ1 þ ϕ3Þ
3:077ϕ0

ð1Þ

The puckering amplitude, ϕm, which measures the maximum
displacement from the planar ring form, is related to P and ϕ0 via
the relation

ϕm ¼ ϕ0
cos P

ð2Þ

Other important features that should be considered during the
conformational analysis of furanosides are rotamer populations
about the exocyclic C�C andC�Obonds. In the present study, we
investigated rotamer populations about the C4�C5 bond, which
are influenced by a combination of steric and stereoelectronic

(gauche) effects.27�31 Figure 3 shows the three staggered rotamers
about the C4�C5 bond in L-arabinofuranose rings.

Because both experimental rotamer and puckering distribu-
tions can be obtained from the analysis of NMR 1H�1H vicinal
coupling constants, 3JH,H, a comparison with theoretically de-
rived vicinal coupling constants allows one to assess the reliability
of the simulation results. A common approach for assessing
rotamer populations is to assume that a set of three discrete
values of ϕ angles contains all conformational possibilities. In this
case, the average coupling constant ÆJæ is

ÆJæ ¼ ∑
3

i¼ 1
XiJðϕiÞ, with ∑

3

i¼ 1
Xi ¼ 1 ð3Þ

where Xi (i = 1, 2, 3) are the unknown populations of the discrete
rotamers and J(ϕi) are the vicinal coupling constants betweenH4
and H5R or H5S for the three values of ϕi. The values of J(ϕi) are
calculated on the basis of ϕi, the dihedral angle between the two
coupled protons. The ϕi values can either represent ideally
staggered rotamers (60�, 180�, and 300�) or dihedral angles
having high probability obtained from MD simulations. In a

Figure 1. L-Arabinofuranosyl oligosaccharides studied in this paper.

Figure 2. Pseudorotational itinerary for the L-arabinofuranose ring.

Figure 3. Definitions of the three staggered rotamers about the C4�C5
bond in L-arabinofuranosides, as shown looking down the bond from
C4. The angleω is defined as the O4�C4�C5�O5 torsion angle; see 1
in Figure 1 for the atom numbering scheme.
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previous study,16 we showed that the discrete approach as
described above does not provide good average coupling con-
stants when compared to experimentally obtained coupling
constants or to those from a continuous approach. According
to the continuous approach, ÆJæ is measured as an average over
the entire conformational space of the molecules using32

ÆJæ ¼
Z 360

0
JðϕÞ FðϕÞ dϕ ð4Þ

where J(ϕ) is a Karplus relation that correlates the vicinal nuclear
spin�spin coupling constants to the dihedral angle ϕ between
the coupled spins, and F(ϕ) is the probability distribution of the
dihedral angles about a particular bond. This approach provides
coupling constants in good agreement with experimental results,
suggesting the necessity of using a method that considers all
angles across the range of 0 to 360�. An improved approach is the
continuous probability distribution (CUPID) method,32 where
F(ϕ) is represented as a Fourier series. In one study,33 the
CUPIDmethod has been modified for five-member ring systems
(CUPID-5). The Fourier series must be truncated, and the
coefficients of the Karplus relationships must be accurate. This
limits the use of this method for conformationally flexible
molecules such as furanosides.

Various Karplus relationships are available in the literature to
describe the dependence of the coupling constant on the dihedral
angles between the coupled spins in arabinofuranosides.7,16,17,34

Recently developed DFT-derived relationships have been found
to provide the best 3JH,H values when compared to experimental
results:16

3J 1, 2 ¼ 4:62 þ 3:16cosðϕÞ þ 4:57cosð2ϕÞ ð5Þ

3J 2, 3 ¼ 8:04 þ 8:07cosðϕÞ þ 7:24cosð2ϕÞ ð6Þ

3J 3, 4 ¼ 4:44 þ 0:50cosðϕÞ þ 4:25cosð2ϕÞ ð7Þ

3J 4, 5S ¼ 4:95� 0:42cosðϕÞ þ 4:03cosð2ϕÞ ð8Þ

3J 4, 5R ¼ 5:23 þ 0:02cosðϕ þ 15:1�Þ

þ 4:67cosð2ϕ þ 30:2�Þ ð9Þ
We present here studies directed ultimately at understanding the
conformation of L-arabinofuranose-containing oligosaccharides
and their interaction with proteins. In particular, we explore the
use of umbrella sampling in carrying out conformational searches
of these molecules, and we compare our results with experiment-
ally obtained 3JH,H values and conventional MD approaches,
where applicable. The umbrella sampling approach was chosen
because it allows one to overcome high free energy barriers along
specified reaction coordinates. The advantages of the approach
are expected to become increasingly important as the size of the
oligofuranoside increases. In addition, we make an effort to
develop a new approach to predict experimental rotamer popula-
tions that properly takes into account thermal fluctuations and is
independent of the need to experimentally measure 3JH,H values.
Such an approach could prove valuable in large molecules where
spectral overlap prohibits the measurement of these parameters.

’METHODS

All molecular dynamics simulations were carried out with the
AMBER 1035 suite of programs. The AMBER ff99SB force
field36 with the GLYCAM (version 04f) parameter set for
carbohydrates37,38 was employed for the description of 1�6. The
additivity principle16,39,40 was used to build the topology of the
oligosaccharides.We chose this particular version of theGLYCAM
parameter set for consistencywith our previous simulations on these
ring systems.14�16 Note that similar C4�C5 rotamer populations
and ring puckering distribution were obtained from a recently
developed GLYCAM06 parameter set41 for the monomer, methyl
R-L-arabinofuranoside 1 (data not shown). For the solution simula-
tions, 1 was solvated by 288 TIP3P42 water molecules with a total
box size of 25.816� 24.997� 24.007 Å. The box sizes and number
of waters were then gradually increased for oligosaccharides up to
35 � 35 � 35 Å and 1325 TIP3P waters for hexasaccharide (6).
Long MD Simulations. Prior to long MD simulations and

umbrella sampling simulations, the systems were minimized and
equilibrated. First, the water molecules were minimized, keeping
the geometries of the saccharides constrained. The entire system
was then minimized. In both minimization steps, a steepest
descent energy minimization was carried out for 50 cycles. The
conjugate gradient algorithmwas then used for 950 cycles. A total
of 100 ps of annealing was then carried out with 50 ps each for
temperature heating (5 to 300 K) and cooling (300 to 5 K). This
was then followed by a short equilibration run of 250 ps. During
this run, the temperature of the systems was gradually increased
from 5 K to 300 K (150 ps) and then kept constant (100 ps). The
production solution simulations of all compounds were per-
formed under NPT conditions where the temperature was kept
at 300 K and the pressure at 1 atm to remain consistent with
experimental conditions. To assess any effect the thermostat may
have on the dynamics of our systems, separate MD simulations
were performed using the Langevin43 or Berendsen44 thermostat
to control the temperature of the simulation box. A collision
frequency γ of 2.0 ps�1 was used for the Langevin thermostat.
MD simulations of 200 ns in length were carried out for
compounds 1�3. In all of the simulations, a 1 fs integration
time step was used. Periodic boundary conditions were used, and
a cutoff of 8 Åwas set for nonbonded interactions. The SHAKE45

algorithm was used to fix all hydrogen-containing bonds to their
equilibrium values. Long-range electrostatic behavior was con-
trolled with the particle mesh Ewald (PME) method.46,47 Gas
phase simulations were also performed to observe the effect of
solvation. A cutoff of 18 Å was set for nonbonded interactions in
the gas phase. Periodic boundary conditions and the PME
method were not used in the gas phase simulations. Other
parameters remained unchanged from those employed in the
solution simulations.
Umbrella Sampling Simulations. The average distribution

function, F(χ) (eq 10), along some reaction coordinate χ is
defined as the Boltzmann weighted average:48

ÆFðχÞæ ¼

Z
dq δðχ0ðqÞ � χÞ e�VðqÞ=kBTZ

dq e�VðqÞ=kBT
ð10Þ

where V(q) is the total energy of the system as a function of the
conformation q and χ0(q) is the functional dependence of the
reaction coordinate on the conformation. The potential of mean
force (PMF) W(χ), or the change in free energy along the
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coordinate χ, can be defined as49�51

WðχÞ ¼ � kBT lnÆFðχÞæ ð11Þ
The accurate sampling of conformational space can, however,

be hindered by the presence of large energy barriers along χ.
Therefore, the calculation of F(χ) and the PMF by conventional
MD simulations is unrealistic for large systems, especially if they
require long equilibration periods for convergence. Umbrella
sampling, originally proposed by Valleau and Torrie,52,53 is a
useful tool to obtain information on processes that require
extremely long simulation times. In umbrella sampling, several
simulations along the chosen coordinate are carried out. A
biasing potential, Vb(χ), is added to the total energy to enhance
the sampling of certain regions of conformational space. A
harmonic form is often chosen for the biasing potential and is
defined as49,50

VbðχÞi ¼
1
2
kðχ� χiÞ2 ð12Þ

where k is the force constant and χi is the target position. The
separate simulations are then combined to obtain the unbiased
F(χ) and its associated PMF. Among the various approaches to
combine the simulation results,52�56 the weighted histogram
analysis method (WHAM) proposed by Kumar et al.57 uses all of
the information present in the umbrella sampling without
discarding the overlapping regions. The WHAM method is a
practical approach to obtaining average F(χ) and the PMF.
In this study, the dihedral angle about one of the exocyclic

C4�C5 bonds (i.e., O4�C4�C5�O5) was taken as the reac-
tion coordinate χ. All of the umbrella sampling simulations were
performed using the final structure obtained from a short
equilibration run (150 ps) of the systems. A total of 72 windows
with a window width of 5� were used to cover the entire dihedral
angle range from 0� to 360�. We also increased the width to 10�
(with 36 windows in total) to study convergence. For mono-
saccharide 1, 200 ps simulations for each window were carried
out to yield a total simulation time of 14.4 ns. The simulation
time for each windowwas increased to 1 ns for oligosaccharides 2
and 3 and 2 ns for the larger oligosaccharides 4�6, with a total
simulation time of 72 and 144 ns, respectively. For oligosaccha-
rides, only one torsional sampling over 5� increments has been
performed in a given window. Therefore, 72 simulations were
performed for a singe torsional angle, and a total of 432 (72� 6)
simulations have been performed for 6. A harmonic biasing
potential was chosen as the biasing potential energy function,
and the force constant k was set to 30 kJ mol�1 rad�2. The
Langevin43 thermostat was used to regulate the temperature of the
umbrella sampling simulations. Umbrella sampling simulations
were also performed with a Berendsen thermostat for monomers
to compare the behavior of the two thermostats. All of the other
simulation parameters used in the umbrella sampling simulations
were identical to the long MD simulations discussed above. Once
the simulations were complete, the PMF and F(χ) were calculated
as a function of dihedral coordinates about the C4�C5 bond,
using theWHAM software package byGrossfield.58 The bootstrap
error analysis method59 was utilized to obtain relative errors of the
distribution of rotamer populations. During a bootstrapping
procedure, some data points were randomly removed from the
total ensemble; however, the total number of data points was kept
constant by adding data points that were already in the ensemble.
A number of such bootstrapping cycles were performed by
randomly removing and duplicating the data points from the

ensemble. The distributions obtained from this bootstrapping
procedure were then compared to the original rotamer population
distribution obtained from the umbrella sampling simulation to
calculate the relative error in the original distribution. Vicinal
proton�proton coupling constants (3JH,H) and ring puckering of
the compounds were also studied using the conformational
ensembles obtained from the umbrella sampling simulations.
Errors in 3JH4,H5R and 3JH4,H5S were calculated from the errors
in distribution obtained from the bootstrap error analysis. Errors in
Æ3JH1,H2æ, Æ3JH1,H2æ, and Æ3JH1,H2æ were calculated from the stan-
dard deviations of the simulation data points along the ring
proton�proton dihedrals.
Hydrogen Bonding Analysis. An intramolecular hydrogen

bonding analysis of arabinofuranosides was performed using the
ptraj module of the AMBER suite. All hydroxyl hydrogen atoms
were assigned as potential hydrogen bond acceptors, and all oxygen
atoms were assigned as potential hydrogen bond donors. Hydrogen
bonding was evaluated with a heavy atom cutoff distance of 4 Å and
an angle cutoff of 120�. Percent occupancies of the hydrogen bonds
throughout the simulations were also calculated.

’RESULTS AND DISCUSSION

NMR Spectroscopy.The spectra for 1, 3, and 6were acquired
in D2O at 300 K on a 600 MHz spectrometer. The 3JH,H values
for 1 were determined from a 1D 1H NMR spectrum and are
listed in Table 2. To overcome the spectral overlap present in 3
and 6, the variable time version of the 1D gradient-enhanced
chemical shift selective filtering (ge-CSSF) TOCSY spectra60,61

was used to provide the 3JH,H values (Table 3). The spectra for 3
and 6 were simulated using the program WinDNMR62 in order
to confirm the coupling constants. The spectra, as well as a table
of the chemical shifts, can be found in the Supporting Informa-
tion. As would be expected, the coupling constant data for all of
the compounds are within (0.1 Hz.7 The synthesis of 3 and 6
was carried out as described previously,7,63,64 and the details are
provided in the Supporting Information
Simulations. The length of the long MD and umbrella

sampling simulations required that convergence of the rotamer
populations of 1 and 3 first be estimated. For monosaccaharide 1,
it was found that a 200 ns MD simulation was required to obtain
converged populations of all of the rotamers with uncertainties of
less than a few percentage units, while only 200 ps simulations
per window were required in the case of umbrella sampling.
Simulations of less than 50 ns for long MD and 120 ps for
umbrella sampling produced significantly different rotamer pop-
ulations with larger variances from those obtained after 200 ns
and 200 ps simulations, respectively. Because a total of 72
windows were used in the umbrella sampling, the total simulation
time for umbrella sampling is 14.4 ns, which is significantly lower
than the 200 ns value required in the long MD simulation. We
also performed umbrella sampling simulations with 36 windows
with 10� intervals. These simulations required a total simulation
time of 7.2 ns. The rotamer populations were found to be very
similar to those obtained with the 14.4 ns simulation. Conver-
gence studies of the rotamer populations of 3 show that a 200 ns
MD simulation still provides converged rotamer populations
with errors of a few percent in all three rotamers. However,
simulations of less than 150 ns produce very different rotamer
populations. In the case of umbrella sampling, only 1 ns for each
window, which equals a total of 72 ns of simulation, was required
to obtain the converged result for all rotamers. Results obtained
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from the umbrella sampling simulation are also expected to be
superior because of the enhanced nature of the sampling. For
larger oligomers 4�6, only umbrella sampling simulations were
performed with 2 ns simulations per window.
The rotamer population distribution about the C4�C5 bond

of 1 obtained from both 200 ns MD simulations and 200 ps
umbrella sampling simulations per window are shown in Figure 4.
It is clear that both conventional MD and umbrella sampling
simulations show similar distributions of rotamer populations
with gg > gt > tg. The PMF obtained from the umbrella sampling
simulations showed a 0.7 kcal mol�1 difference in free energy
between the gg and gt rotamers. This result underscores the
importance of having accurate force field torsional parameters for
these systems.
The umbrella sampling-derived rotamer distribution about the

C4�C5bonds involved in theR-(1f5) linkages for the rings of the
largest oligomer 6 are shown in Figure 5. Similar rotamer population
distributionswere also observed for oligomers 2�5. The histograms
show that the (1f5)-linked rotamer populations all follow the same

trend (Xgg > Xgt ≈ Xtg), while the terminal rotamer populations
follow the trend Xgg > Xgt > Xtg.
The inset of Figure 5 contains the PMFs of the rotation about

the torsion angle ω. It is interesting to note that the two lowest
free energy barriers alongω are actually highest in the case of the
terminal ring (ring F). This suggests that the internal rings more
readily explore their different rotameric states (i.e., are more
flexible) than the unsubstituted ring. Quantifying the simulation
rotamer populations was done by integrating the distributions of
Figure 5 (Table 1).
From Table 1, it is clear that the C4�C5 rotamer population

(%) decreases in the order Xgg > Xgt > Xtg for methyl-R-L-
arabinofuranoside (1) and all of the terminal rings of 2�6, while
the trend for internal rings is Xgg > Xgt≈ Xtg. Similar results were
also observed for 1 and 3 with conventional MD simulations.
With the umbrella sampling simulations, the conformation of
larger R-L-arabinofuranosides and their interactions with large
biological systems can be studied. Note that we also found that
the rotamer distribution about the C4�C5 bond in 1 obtained
with the Langevin thermostat agrees well with that obtained
using the Berendsen thermostat.
Spin�Spin Coupling Constants. Having determined the

rotamer distributions from simulation, we next compared our
results to experimental results. The experimental rotamer dis-
tributions can be determined from eq 3. This approach, however,
assumes discrete rotamers and, as mentioned above, can lead to
errors. A more appropriate approach to check the reliability of
our simulation is to compare the Æ3JH,Hæ obtained from eq 4
directly with the experimental coupling constants. The DFT-
derived Karplus relationship for R-D-arabinofuranosides,
eqs 5�9, can be used for R-L-arabinofuranosides.65 However, it
should be noted that for the R-L-arabinofuranoside enantiomers,
the 3JH4,H5R and 3JH4,H5S functions are exchanged. Moreover,
eq 9 has a phase factor, which should be adjusted accordingly for

Figure 4. Comparison of the histograms obtained from the conven-
tional MD (shown as a solid line) and umbrella sampling simulations
(shown as a bar graph) of 1. The left inset shows the PMF along the
dihedral angle (ω) obtained from umbrella sampling, and the right inset
shows the time dependence of ω during the long MD simulation.

Figure 5. Comparison of the histograms of the dihedral angles (ω)
obtained from the MD simulations of 6. The inset shows the PMF along
the dihedral angles (ω) obtained from umbrella sampling simulation.

Table 1. Rotamer Population (%) of 1�6 in Solution
(TIP3P Water) Using US Simulationsa

structure population ring A ring B ring C ring D ring E ring F

1 Xgt 34(2)

Xtg 9(1)

Xgg 55(2)

2 Xgt 14(1) 24(1)

Xtg 15(1) 8(1)

Xgg 72(3) 67(2)

3 Xgt 15(2) 11(1) 23(2)

Xtg 13(1) 15(1) 8(1)

Xgg 72(3) 74(3) 69(3)

4 Xgt 11(1) 14(1) 16(1) 22(1)

Xtg 12(1) 15(1) 16(1) 7(1)

Xgg 77(3) 72(2) 68(2) 71(2)

5 Xgt 10(1) 13(1) 14(1) 12(1) 23(1)

Xtg 12(1) 14(1) 14(1) 11(1) 9(1)

Xgg 78(2) 73(2) 72(2) 77(2) 69(2)

6 Xgt 14(1) 20(1) 11(1) 15(1) 13(1) 22(1)

Xtg 14(1) 15(1) 14(1) 12(1) 12(1) 8(1)

Xgg 72(2) 66(2) 75(2) 73(2) 76(2) 70(2)
aValues in parentheses are relative errors obtained from the bootstrap
error analysis of the distributions obtained from the umbrella sampling
simulation along the O4�C4�C5�O5 dihedral angle.
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3JH4,H5S in R-L-arabinofuranosides. From our analysis (see
Supporting Information), we found that the DFT-based Karplus
relationships for 3JH4,H5R and

3JH4,H5S in R-L-arabinofuranosides
are

3JH4,H5R ¼ 4:95� 0:42cosðϕÞ þ 4:03cosð2ϕÞ ð13Þ

3JH4,H5S ¼ 5:23 þ 0:02cosðϕ� 15:1�Þ

þ 4:67cosð2ϕ� 30:2�Þ ð14Þ
Rotamer distributions along the C4�C5 bond ω were calcu-

lated using the conformational ensembles obtained from the
umbrella sampling simulations. The calculation of spin�spin
coupling constants requires the knowledge of rotamer distribu-
tions along the proton�proton dihedrals, i.e., the H4�C4�
C5�H5R andH4�C4�C5�H5S angles, which can be obtained
either from a long MD simulation or from an umbrella sampling
simulation. Long MD simulations are undesirable for larger
systems, and umbrella sampling simulations along each proton�
proton dihedral would require additional calculations. As men-
tioned earlier, during the umbrella sampling simulations along
the C4�C5 bond, a biasing window potential was applied
at the reaction coordinate ω (i.e the O4�C4�C5�O5 angle)
and later unbiased using the WHAM approach. Because the
simulations were done under biased conditions and the proton�
proton dihedrals are on the same C4�C5 bond, a direct
calculation of the proton�proton distributions from the com-
bined umbrella sampling simulation trajectories does not provide
a reliable rotamer distribution along the proton�proton dihe-
dral. (See the Supporting Information for the proton�proton
distributions obtained from combined umbrella sampling simu-
lation trajectories.)
A theoretically better approach is to calculate these distributions

from the unbiased rotamer distributions along the C4�C5 bond
obtained from the umbrella sampling simulation. This approach is
feasible if significant correlations exist between the O4�C4�C5�
O5, H4�C4�C5�H5R, and H4�C4�C5�H5S dihedral angles.
As can be seen in Figure 3, the rotamer populations along H4�
C4�C5�H5R and H4�C4�C5�H5S are related to the rotamer

distribution of O4�C4�C5�O5 such that F(ϕH4,H5R) = F(ϕO4,O5)
for all three rotamers and F(ϕH4,H5S) = F(ϕO4,O5 � 120),
except in the case of the gg rotamer where F(ϕH4,H5S) = F(ϕO4,O5�
120 + 360) for periodicity. We term the use of this assumption
the “indirect approach”. Such relations are expected to hold
because of the relative stiffness of the bond angles involving the
various protons. To support this assumption, the H4�C4�O4
bond angle distribution obtained from the umbrella sampling
simulations is shown in Figure 6. It is clear that the use of a
biasing potential along the dihedral angle has little effect on the
H4�C4�O4 bond angle. A long molecular dynamics simulation
of 1 also provides a similar population distribution along the
H4�C4�O4 bond angle. We also found that the bond angles in
the oligomers were rigid as expected. In fact, the three similar
bond angles in 3 are found to have the same average value
(∼110�). (See the Supporting Information for the distributions
of bond angles in 3.) Of course, this finding is apparent as the C4
atom forms a covalent bond with four other atoms through sp3

hybridization. Nevertheless, our study confirms that the bond
angles are more rigid than the dihedral angles along the C4�C5
bonds, and our indirect approach is feasible.
To further assess the reliability of the above assumptions,

umbrella sampling simulations along the H4�C4�C5�H5R
and H4�C4�C5�H5S dihedrals were also carried out for 1
(termed “direct approach”). The distributions about the

Figure 6. The distribution of theH4�C4�O4 angle (θ) obtained from
the umbrella sampling simulations of 1. The upper and lower insets show
the time dependence and the PMF along the angle of θ, respectively.

Figure 7. Comparison of the histograms obtained from indirect and
direct umbrella sampling simulations about the proton�proton dihedral
angles (ϕH4,H5R and ϕH4,H5S) of 1.
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H4�C4�C5�H5R and H4�C4�C5�H5S dihedrals obtained
from the indirect and direct umbrella sampling approaches are
shown in Figure 7. As can be seen in Figure 7, the overall
distributions are quite similar. Using these distributions, 3JH4,H5R
and 3JH4,H5S values were calculated and compared to the
corresponding experimental values (Table 2). The 3JH4,H5R
obtained with the indirect approach are in excellent agreement
with those obtained by the direct approach and experimentation.
Similarly, the 3JH4,H5S obtained with the indirect approach are
also in good agreement with those obtained with the direct
approach; although themagnitudes of 3JH4,H5S calculated by both

approaches are lower than experimental results. It is possible that
the DFT-based Karplus equation for 3JH4,H5S in R-L-arabinofur-
anosides, eq 14, provides underestimated 3JH4,H5S values. A more
likely rationale for this discrepancy stems from undersampling of
the gt rotamer, the largest contributor to 3JH4,H5S in 1, in the MD
simulations. A similar effect was observed on 3JH4,H5R in D-
arabinofuranosides where MD simulations also underestimated
the population of the gt rotamer and subsequently predicted a
lower overall 3JH4,H5R value.

16,17

Ring proton coupling constants were also calculated from the
same umbrella sampling simulations. In this case, the dihedral
angles between the coupled spins were calculated from the
combined umbrella sampling trajectories. The distributions
obtained from the dihedral angles were then used to calculate
the average ring proton�proton coupling constants. We found
that the distributions are in excellent agreement with those
obtained from conventional MD, although an additional popula-
tion in the distribution is found to be more pronounced in the
umbrella sampling simulations (see Figure 8). Table 2 shows the
comparison of experimental and theoretical (umbrella sampling)
3JH1,H2,

3JH2,H3, and
3JH3,H4 for 1. All three theoretically obtained

coupling constants are found to be in good agreement with
experimental results. The 3JH1,H2,

3JH2,H3, and
3JH3,H4 obtained

from the MD simulations of 1 (2.3, 3.8, and 5.7 Hz, respectively)
are also very similar to that obtained from the umbrella
sampling simulation. This suggests that, although this second
populated region in the ring proton�proton population dis-
tributions is more pronounced in the umbrella sampling
simulations, it has a minimal effect on the magnitude of the
coupling constants.
The above analysis was also carried out for larger oligomers.

The same Karplus-type equations were used for 3 and 6 as for 1,
even though glycosidic linkages are present. Karplus-like rela-
tionships derived for the internal and external C4�C5 bond of
the R-(1f5)-linked disaccharide of D-arabinofuranose showed
little difference in earlier studies (see the Supporting Information

Figure 8. Comparison of the histograms obtained from umbrella
sampling simulations about the proton�proton dihedral angles of rings
A (upper panel), B (middle panel), and C (lower panel) of 3 (shown in
black colored lines) and the ring proton�proton dihedral angles of 1
(shown in red colored lines). Due to the differences in H1�H2 dihedral
angles, a ∼1 Hz difference in coupling constants compared to experi-
mental results can be observed.

Table 2. Comparison of Experimental and Theoretical
Æ3JH,Hæ Values (in Hz) for Monomer 1 Obtained from
Umbrella Sampling Simulations

coupling umbrella sampling experimental

Æ3JH1,H2æ 2.1 (0.02) 1.7

Æ3JH2,H3æ 3.6 (0.02) 3.4

Æ3JH3,H4æ 5.4 (0.04) 5.8

Æ3JH4,H5Ræ 3.2 (0.01) 3.3

3.2 (0.01)a

Æ3JH4,H5Sæ 4.5 (0.02) 5.8

4.1 (0.02)a

aValues obtained from the umbrella sampling along the dihedrals
H4�C4�C5�H5R and H4�C4�C5�H5S.

Table 3. Comparison of Experimental and Theoretical
Æ3JH,Hæ Values (in Hz) for Each Ring in Oligomers 3 and 6
Obtained from Umbrella Sampling Simulationsa

coupling US exptl US exptl US exptl US exptl US exptl US exptl

ring A ring B ringC

3 Æ3JH1,H2æ 3.0 1.7 2.7 1.5 2.9 1.6

Æ3JH2,H3æ 3.9 3.3 3.8 3.2 3.9 3.3

Æ3JH3,H4æ 5.4 5.8 5.4 5.9 5.5 6.0

Æ3JH4,H5Ræ 2.9 3.2 3.0 3.2 3.1 3.3

Æ3JH4,H5Sæ 3.4 5.8 3.4 5.8 3.7 5.9

ring A ring B ringC ringD ring E ring F

6 Æ3JH1,H2æ 3.0 1.7 3.1 1.6b 2.6 1.6b 2.9 1.6b 2.9 1.6b 2.8 1.5

Æ3JH2,H3æ 4.0 3.2 3.9 3.2b 3.7 3.2b 4.0 3.2b 3.8 3.2b 3.8 3.3

Æ3JH3,H4æ 5.5 5.8 5.4 6.0b 5.3 6.0b 5.3 6.0b 5.3 6.0b 5.3 6.0

Æ3JH4,H5Ræ 2.9 3.2 2.9 3.3b 2.8 3.3b 2.8 3.3b 2.8 3.3b 3.1 3.4

Æ3JH4,H5Sæ 3.4 5.8 3.8 5.8b 3.4 5.8b 3.4 5.8b 3.3 5.8b 3.8 5.9
a exptl = experimental, US = umbrella sampling simulation. Errors in
theoretical coupling constants are very small within the range of
0.02�0.05 Hz. (See the Supporting Information for errors in 3JH,H
values.) bThe experimental 3JH,H values for residues B�E could not be
measured individually due to spectral overlap. The average values for all
four residues are shown.
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for details). The simulation-derived 3JH,H values for each ring in 3
and 6 are shown in Table 3 and compared to experimental
results.66 The results demonstrate that the 3JH4,H5R and

3JH3,H4
values are still in very good agreement with experimental results;
on the contrary, 3JH4,H5S,

3JH1,H2, and
3JH2,H3 deviate slightly

when compared to those observed in the monomer (Table 2).
The distributions along the H1�H2 dihedrals of 3, as shown in
Figure 8, are found to be slightly different than the corresponding
H1�H2 distribution of 1, which might be the reason for the
∼1 Hz difference in simulation 3JH1,H2 compared to experimen-
tal results. On the other hand, we suspect that a better Karplus-
like relationship is necessary to obtain better values of 3JH4,H5S
and 3JH2,H3 for oligosaccharides. It should be noted that the
above approach is only applicable if the system explores its ring
conformers relatively quickly compared to the time scale of the
exocyclic torsions and if there is little correlation between the
rotamers and the ring conformers. Such a correlation analysis is
presented in a forthcoming section.
Distribution of Ring Conformers. The same umbrella sam-

pling simulations were also used for the analysis of ring puckering
of 1�6. For each umbrella sampling trajectory, the ring pucker-
ing, P, has been calculated. The distribution of P in 1 is found to
be very similar for each window (see the Supporting In-
formation). This indicates that changes in ring puckering occur
on a much faster time scale than rotation about exocyclic
torsions; earlier ab initio and DFT calculations on methyl R-D-
arabinofuranoside provided results consistent with this.8 All of
the umbrella sampling simulations corresponding to a ring were
combined, and the distributions of puckering angle P and
amplitude ϕm were then calculated. The variation of P for 1
obtained by umbrella sampling simulations is shown in Figure 9.
Conventional MD also provides similar distribution of P for 1.
The umbrella sampling simulations of 1 predict that 77�84% of
the conformations exist in the southern hemisphere of the pseudo-
rotational itinerary with the area of the conformational space
centered around 210�215� (3T4), although a small fraction of
the conformer is also present in the northern hemisphere (Figure 9).
The agreement between experimental and theoretical ring coupling
constants (Table 2) suggests that the ring conformations obtained

from the simulation are accurate. The maximum free energy barrier
along the P angle is about 2.2 kcal mol�1, which justifies the relative
ease of exploring the P compared to the ω conformational space.
The distribution in ϕm is centered at about 36�, which agrees very
well with those obtained from the crystal structure67 and from the ab
initio and DFT calculations.8�12,14

Having successfully determined the distribution of ring con-
formations of 1 using umbrella sampling simulations, we focused
our attention on the oligomers. Figure 10 represents the dis-
tribution of puckering for rings A and F of 6 in solution obtained
from the umbrella sampling simulations. It is clear that the
puckering distribution in ring A has a predominantly southern
conformer at PS = 190�200� (81�86%). Rings B, C, D, and E
also have similar values for P and ϕm. On the contrary, ring F,
which contains the terminal rotamer, has a slightly different
distribution of P; a second region of conformational space in the
northern hemisphere, centered at PN = 30�, of the pseudorota-
tional wheel is populated. The ring conformations of oligomers
2�5 are found to be very similar to those observed in the rings of
6. The puckering amplitude (ϕm) remains the same for all of the
rings in 1�6 with ϕm in the range of 35�40�.
Correlation Study of Rotamers and Ring Puckering. Having

successfully determined the rotamer populations about the C4�C5
bond and ring puckering from umbrella sampling simulations, we

Figure 9. The distribution of the pseudorotational phase angle (P) for 1
in solution obtained from the umbrella sampling simulation. The left
inset represents the time dependence of the P angle, and the right inset
shows the PMF along the P of 1.

Figure 10. The distribution of the pseudorotational phase angle (P) for
ring A (upper panel) and ring F (lower panel) of 6 in solution obtained
from the umbrella sampling simulations. The insets represent the time
dependence of the respective P angles of 6. A minor secondary peak is
also observed for the terminal ring of other oligomers with both umbrella
sampling and long MD simulations.
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studied the correlation between them. The joint probability dis-
tribution (Fω,P2D ) of theC4�C5 torsion (ω) and puckering angle (P)
for 1 and 3 calculated from umbrella sampling simulations are
shown in Figures 11 and 12. Very little correlation betweenω and P
for 1 and 3 is observed; this is consistent with previous studies onR-
D-arabinofuranoside using conventional MD simulations.8,14 Fig-
ures 11 and 12 provide a qualitative indication of the uncorrelated
behavior of ω and P for compounds 1 and 3, respectively, but the
extent of their correlation is absent. Therefore, we next endeavored
to obtain a quantitative measure of this correlation.
We first define the square root or amplitude of the true 2D

distribution, Fω,P2D , as

f ¼
ffiffiffiffiffiffiffiffiffi
F2Dω, P

q
ð15Þ

and its uncorrelated counterpart as the product of the 1D
distributions for each degree of freedom:

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1Dω F1DP

q
ð16Þ

To study the overlap between the correlated and uncorrelated
distributions, we define the inner product:Z

dP dω f ðP,ωÞ gðP,ωÞ ¼ Æf jgæ ð17Þ

Because both distributions are normalized, the above inner
product would equal unity in the case of the absence of
correlation in the Fω,P2D distribution. If there is a correlation
between ω and P, the following quantity, χ, represents the
magnitude of that correlationZ

dτðf � gÞ2 ¼ χ2 ð18Þ

where χ2 ranges from 0 to 2. It can be readily shown that Æf|gæ =
1 � χ2/2. Note that if Æf|gæ = 1, χ2 equals 0 and there is no
correlation between ω and P, while if Æf|gæ = 0, χ2 equals 2 and
there will be high correlation between ω and P. Intermediate
values of Æf|gæ and χ2 will indicate some correlation between ω
and P. In this study, the Æf|gæ and χ2 are found to be 0.99 and 0.02,
respectively, for 1, suggesting almost no correlation between ω

and P. Correlation studies on oligomers also reveal that there is
very little correlation between the rotamers and the respective
ring conformations. The rotamer distributions show similar
trends for all P values with gg > gt > tg for 1�6.
Determination of Experimental Rotamer Populations.We

have seen that the average coupling constants for 1 obtained by
using umbrella sampling simulations agree very well with experi-
mental results (Table 2). This average coupling constant was
obtained from all of the J(ϕ) and F(ϕ) values in the range of 0 to
360� and accounts for thermal fluctuations. When using eq 3 to
determine rotamer populations from experimental results, only
three discrete values of J(ϕi) and ϕi are used, and one, therefore,
neglects these effects and assumes that each rotamer is “frozen” at
some value of the dihedral angle. We propose here a simple
approach to properly account for thermal fluctuations of the
dihedral anglewhendetermining experimental rotamer populations.
According to our approach, the average coupling constant ÆJæ

is given by the following sum of integrals:

ÆJæ ¼
Z

JðϕÞ FggðϕÞ dϕ þ
Z

JðϕÞ FgtðϕÞ dϕ

þ
Z

JðϕÞ FtgðϕÞ dϕ ð19Þ

where Fi(ϕ) is the local distribution function corresponding to
rotamer i. Umbrella sampling simulations along the H4�C4�
C5�H5R and H4�C4�C5�H5S dihedrals reveal three distinct
Gaussian type distributions in the range of 0 to 360�. Each of
these Gaussian distributions corresponds to a particular rotamer.
In our approach, the mean and standard deviations were calculated
from the three populations of the O4�C4�C5�O5 dihedral
angle obtained from the umbrella sampling simulation. As shown
above, the H4�C4�C5�H5R andH4�C4�C5�H5S dihedral
angle distributions can be obtained by analysis of the O4�C4�
C5�O5 dihedral angle. Therefore, the mean and standard devia-
tions can be used to construct thermal Gaussian distributions
of H4�C4�C5�H5R and H4�C4�C5�H5S of the form

giðϕÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e�ðϕ � ϕiÞ2=2σ2 ð20Þ

for each rotamer i, where σ is the standard deviation and ϕi is the
mean of the distribution. The experimental rotamer population

Figure 11. Joint probability distribution of the dihedral angle (ω) and
the puckering angle (P) of 1 in the solution phase obtained from
umbrella sampling simulation. The units of the angles ω and P are in
degrees.

Figure 12. Joint probability distribution of the puckering angle (P)
and the torsion angle (ω) for 3 in solution. All three rings have similar
joint probability distributions. The units of the angles ω and P are
degrees.
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(Xi=gg,gt,tg) is obtained by using expressions for
3JH4,H5R and

3JH4,
H5S of the form below

ÆJæ ¼ Xgt

Z 120

0
JðϕÞ ggtðϕÞ dϕ þ Xtg

Z 240

120
JðϕÞ gtgðϕÞ dϕ

þ Xgg

Z 360

240
JðϕÞ gggðϕÞ dϕ ð21Þ

along with the restriction that the populations should add up
to unity.
The experimental rotamer populations obtained for 1, 3, and 6

using our proposed approach are summarized in Table 4. The
experimental rotamer populations for 1 and all of the terminal
rotamers in 3 and 6 decrease from Xgt > Xgg > Xtg. In the case of
internal rotamers in 3 and 6, the rotamer population decreases
from Xgt > Xgg ≈ Xtg. The differences between Xgg and Xtg are
larger for the terminal rotamers than the internal rotamers in
3 and 6. We also determined mean and standard deviations of
the populations of H4�C4�C5�H5R and H4�C4�C5�H5S
dihedral angles of 1 using the conventional MD and umbrella
sampling simulations. The mean and standard deviations
were used to construct the Gaussian distributions about the
H4�C4�C5�H5R and H4�C4�C5�H5S dihedrals, which
were then used to calculate the experimental rotamer popula-
tions of 1. The experimental rotamer population obtained
from the MD (Xgt = 58%, Xtg = 13%, Xgg = 29%) and the
umbrella sampling parameters (Xgt = 57%, Xtg = 12%, Xgg = 31%)
were found to be very similar to those obtained from the
O4�C4�C5�O5 dihedral angle (Table 4). In our opinion,
the thermal Gaussian distribution approach should be used
because it properly accounts for thermal fluctuations in the
dihedral angles unlike earlier studies14�17 where only either ideal
dihedral angles (60�, 180�, and 300�) or the most probable
dihedral values from conventional MD simulations were used to
calculate the experimental rotamer population. In this study, the
experimental rotamer population of 1 and 3 obtained from ideal
and most probable dihedral angles were found to differ by a few
percentage units when compared to the thermal Gaussian
distribution approach.
A comparison of theoretical and experimental rotamer popu-

lations (Tables 1 and 4) shows that the rotamer populations
obtained from simulation decrease from Xgg > Xgt > Xtg, while the
experimental values decrease from Xgt > Xgg > Xtg. The experi-
mental rotamer populations of course greatly depend on the
quality of the J function. One explanation for the difference
between experimental and theoretical rotamer populations is that
the DFT-based Karplus relationship used for 3JH4,H5S led to an

average coupling constant that differed by about 1.3 Hz from
experimental results (see Table 2). One could adjust the 3JH4,H5S
function to obtain average couplings that agree better with
experimental results and subsequently use this adjusted 3JH4,
H5S function to repeat the calculation of experimental rotamer
populations. We do not attempt this sort of adjustment here.

’CONCLUSIONS

Umbrella sampling simulations were carried out to accurately
determine the C4�C5 rotamer populations and the distribution
of ring puckering in oligoarabinofuranosides 1�6. A comparison
of the rotamer populations calculated with umbrella sampling
and conventional MD simulations for monomer 1 reveals that
umbrella sampling reproduces the results obtained from the MD
simulation. For larger oligomers (e.g., 3), converged rotamer
populations were obtained after several hundred nanoseconds of
conventional MD simulations, which limits the use of conven-
tional MD simulations for even larger oligomers (e.g., 6). On the
other hand, convergence of the rotamer populations was
achieved more efficiently with the umbrella sampling simula-
tions. In general, an umbrella sampling simulation only allows
one to calculate properties associated with the reaction coordi-
nate being restrained. We have shown that for these oligofurano-
sides, results based on a C4�C5 dihedral reaction coordinate can
also be used to obtain accurate proton�proton dihedral dis-
tributions. Vicinal proton�proton coupling constants (3JH,H)
could therefore be calculated from the information obtained
from umbrella sampling simulations and using the DFT-based
Karplus relationship for methylR-L-arabinofuranoside. For 1, the
3JH,H values agree very well with those obtained directly from
experimental results, while for oligomers 3 and 6 the 3JH,H values
obtained using the umbrella sampling simulations are found to
be very similar to those obtained from conventional MD simula-
tions conducted on 3. Ring puckering distributions and amplitudes
were also calculated from the umbrella sampling simulations, and
the results agree very well with those obtained from the MD
simulations. We have established that the umbrella sampling
simulations along a particular bond can be used to determine
ring conformations, as the energy barriers for changes in the
ring geometries are much lower. A correlation study showed
that there is no correlation between the ring conformation and
rotamer population in R-L-arabinofuranosides in solution.

Because short umbrella sampling simulations provide reliable
rotamer populations and ring puckering distributions in 1�6, it is
a desirable and more efficient alternative to long MD simulations
for the conformational study of larger oligofuranosides. The
efficiency of the umbrella sampling approach also makes it
possible to envisage simulations with more accurate descriptions
of the electronic structure in order to capture polarization effects.
The simulation of larger systems nevertheless remains a great
challenge, and approaches to further improve sampling efficiency
will continue to be developed.

’ASSOCIATED CONTENT

bS Supporting Information. Synthetic details, NMR spec-
tra, and coupling constant data (experimental and theoretical);
3JH4,H5 coupling profiles; C4�C5 rotameric distributions and
convergence plots; dihedral angle and puckering distributions;
and H-bond occupancies. This material is available free of charge
via the Internet at http://pubs.acs.org.

Table 4. Experimental Rotameric Distribution (%) about the
C4�C5 Bond of 1, 3, and 6 in Solution Obtained Using the
Gaussian Distribution Approacha

1 3 6

A B C A B C D E F

Xgt 56 58 55 58 58 58 60 59 60 59

Xtg 14 19 19 12 19 20 21 21 20 11

Xgg 30 23 25 30 23 22 19 20 20 30
aThe values obtained from the ideal and most probable dihedrals are
very similar to those obtained from the Gaussian approach, and these are
provided in the Supporting Information.
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ABSTRACT:Reliable predictions of relative binding free energies are essential in drug discovery, where chemists modify promising
compounds with the aim of increasing binding affinity. Conventional thermodynamic integration (TI) approaches can estimate
corresponding changes in binding free energies but suffer from inadequate sampling due to the ruggedness of the molecular energy
surfaces. Here, we present an improved TI strategy for computing relative binding free energies of congeneric ligands. This strategy
employs a specific, unphysical single-reference (SR) state and Hamiltonian replica exchange (HREX) to locally enhance sampling.
We then apply this strategy to compute relative binding free energies of 12 ligands in the L99A mutant of T4 lysozyme. Besides the
ligands, our approach enhances hindered rotations of the important V111 as well as V87 and L118 side chains. Concurrently, we
devise practical strategies to monitor and improve HREX-SRTI efficiency. Overall, the HREX-SRTI results agree well (R2 = 0.76,
RMSE = 0.3 kcal/mol) with available experimental data. When optimized for efficiency, the HREX-SRTI precision matches that of
experimental measurements.

1. INTRODUCTION

High-quality predictions of binding free energies of small
molecules to their biomolecular targets are important in drug
design. The continued growth of computational power has
enabled applications of statistical mechanics-based free energy
perturbation (FEP) and thermodynamic integration (TI)
methods to real life problems.1�5 These advanced computa-
tional techniques are considered gold standards for binding
free energy predictions, akin to isothermal titration calorimetry
(ITC)—a technique that measures the binding free energies
experimentally.6,7

Since their inception, great progress has beenmade in improv-
ing FEP and TI methods. Introduction of the soft-core potentials
has made the calculations more reliable.8�10 Subsequently,
multiconfiguration simulation protocols11 have laid the founda-
tion for the application of generalized ensemble strategies such
as Hamiltonian replica exchange (HREX)12�17 which further
improve the quality of the FEP and TI simulations.18�22 Mean-
while, better postprocessing protocols have been developed
that resulted in more reliable predictions of free energies and
assessments of corresponding standard deviations.4,23�27

Despite this progress, binding free energy calculations remain
challenging because of sampling limitations that are inherent in
the molecular dynamics (MD) methods used in the simulations.
Conventional FEP and TI free energy calculations are known to
be sensitive to starting conformations of the bound complexes.
For example, in a well-studied L99A mutant of T4 lysozyme, the
conformation of the binding site residue V111 affects binding
free energies of indene and p-xylene ligands by as much as 6 kcal/
mol.1,28�30 Other hindered residues can have a similar effect.1

The predictions also depend on the initial orientation of the
ligands in the binding pocket. These challenges are likely to be
general and, therefore, need to be properly addressed.

Many enhanced sampling approaches have been devised to
combat conformational challenges. It is impossible to list all of
them here, but we will name a few that benefit alchemical free
energy calculations. One of the earliest approaches scaled parts of
the potential energy before and after an alchemical transforma-
tion to enhance sampling.31 Recently, an approach called accel-
erated molecular dynamics (AMD) was combined with
alchemical free energy calculations.32�34 This approach adds a
boosting potential to reduce barriers and is also independent of
alchemical transformations.35 Other methods exploited the
alchemical transformations to enhance sampling. Examples in-
clude λ dynamics36�38 or its Monte Carlo (MC) counterparts,
such as chemical MC/MD39,40 and more general simulated
scaling.41,42 In fact, these methods share important features with
currently developing FEP and TI methods augmented with
Hamiltonian replica exchange (HREX).15�22,43

Enhanced sampling will overcome dependence of FEP and
TI predictions on the starting conformations and ultimately
improve their accuracy and precision. Judiciously combining
multiconfigurational FEP andTImethods withHREX can achieve
enhanced sampling.22,43 Previously, we presented a TI variant,
called single-reference TI augmented with HREX (HREX-SRTI),
which achieved convergence of solvation free energies for a
challenging case of an amide system where conventional FEP
and TI methods failed.22 The amide in question had an internal
barrier to cis/trans interconversion that was insurmountable in
conventional MD simulations. HREX-SRTI was able to generate
converged results using simulation times of only 4 ns.

In the present study, we applyHREX-SRTI to the well-studied
T4 lysozyme mutant. Although this system has a simple binding
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site—a hydrophobic cavity buried beneath the protein surface—
it is sufficiently complex to render conventional FEP and
TI approaches ineffective. Importantly, our binding free
energy predictions for this system can be compared to the pre-
viously published independent computational and experimental
values.1,28�30

First, we assess the variability in the free energy predictions
using regular SRTI. Then, we employ SRTI with the HREX
option and demonstrate that HREX efficiency is crucial to
obtaining converged results. Thus, we provide practical recipes
to improve the efficiency of HREX-SRTI simulations. Finally,
we use one of these recipes to optimize HREX efficiency and
obtain highly converged results for the most challenging of the
ligands—indole.

2. METHODS

2.1. Parameters for Small Molecule Ligands. We stud-
ied 12 small molecules as follows: benzene, toluene, o-xylene,
p-xylene, ethyl-benzene, n-propyl-benzene, n-butyl-benzene, i-butyl-
benzene, phenol, indene, benzofuran, and indole. The initial coordi-
nates of all of the small molecules in the present study were derived
using the program CORINA.44 Where applicable, we performed
conformational expansion using the program ROTATE.45 Two
charge models described in sections 2.1.1 and 2.1.2 were used in
combination with the GAFF force field for small molecules.46 Each
conformational ensemble was structurally refined through geometry
optimization using the AM1 semiempirical quantum mechanical
potential47 as implemented in MOPAC7, version1.11.48

2.1.1. AM1BCC Charge Model. Partial charges from each
unique conformation were accumulated using Boltzmann weight-
ing with appropriate degeneracies by their AM1 energies at 300 K.
The final AM1 charges were symmetrized where applicable and
then augmented through the BCC procedure49,50 implemented in
the ANTECHAMBER program51,52 from AMBER TOOLS, ver-
sion 1.2. The resulting conformation-independent, properly sym-
metrized set of AM1BCC charges is expected to reproduce HF/
6-31G(d) RESP charges to a good approximation.53�56

2.1.2. RESP Charge Model. For a select subset of molecules,
we derived HF/6-31G(d) restricted electrostatic potential fit
(RESP) partial charges using B3LYP/6-31G(d) optimized geom-
etries. The geometry optimization and the electrostatic potential
calculations were achieved using Gaussian 09.57 The RESP fit58

was performed using the ANTECHAMBER program.
2.2. Setup of Protein�Ligand Complexes.Coordinates of all

of the ligands in complexes with the L99A mutant of T4 lysozyme
were derived from a crystal structure (PDB: 181L) of the protein
bound to benzene.59 Initial placements of ligands other than benzene
were derived using graph theory. Specifically, molecules were repre-
sented as graphs on the basis of their atom and bond types.
Subsequently, association graphs were constructed, and maximal
cliques were found to match atoms in the benzene rings of each
molecule to those of the bound benzene.60 There are 12 different
cliques that give rise to 12unique placements of each ligandwithin the
binding site of the protein. Some of the cliques are degenerate
dependingon the symmetry of themolecule. Thus, for benzene, all 12
cliques are degenerate, yielding identical complex structures that differ
only in thenumbering of the carbon atomsof the ligand.However, for
ligands such as benzofuran, indene, and indole, each clique yields a
unique conformation of the complex.
By construction, initial protein coordinates and those of the

benzene ring are identical for all of the complexes, while the

atoms protruding from the benzene ring change their position. In
cases with branched ligands, such as n-propyl-, n-butyl-, and
i-propyl-benzene, the protrusions have been examined for steric
clashes with protein side chains.
The protein is described by an all-atom Amber 99SB molecular

mechanics force field compatible with GAFF.61 The solvation
effects were modeled using a cubic periodic box of explicit TIP3P
water molecules that extended at least 10 Å beyond the solute. The
protein system was neutralized by adding nine Cl� ions.
2.3. Single Reference State.The choice of the reference states

in SRTI determines which degrees of freedomof the systemwould
be accelerated.22 To allow for enhanced sampling of the ligands in
the confines of the binding pocket, we chose the benzene core
without hydrogen atoms as the reference state (Figure 1). Con-
veniently, our ligand reference state is independent of the charge
model because the benzene core atoms have no charges by
construction. Previously, we successfully employed this ligand
reference state in computing free energies of hydration.22

Similarly, choosing an appropriate protein reference state
could enhance sampling of the hindered protein side chains such
as Val, Leu, Ile, and Thr. Each hindered residue could be mutated
to a modified Ala residue referred to as pseudo-Ala (p-Ala).

Figure 1. Thermodynamic cycle for computing binding free energies
relative to an unhindered, unphysical reference state using SRTI. Hor-
izontal arrows represent alchemical transformations of indole into the
benzene core in water and the protein binding site. The protein residue
V111 is alchemically converted to p-A at the same time. In the reference
state, the molecular volumes of the ligand and the V111 residue (shown
with green and brown shaded contours, respectively) are reduced due to
disappearing atoms. The disappearing atoms interact with the rest of the
system through soft-core Coulomb and vdWpotentials and are connected
to the reference core by dashed bonds. The torsional potentials associated
with the virtual atoms are removed. These changes greatly enhance
translational, rotational, and torsional degrees of freedom involved in
the alchemical transformation with the help of HREX, thus activating
rotation of the V111 and of the ligand in the binding site.
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In p-Ala, hydrogen atoms of the methyl side chain are united with
the Cβ carbon. A mutation of a hindered residue to p-Ala in the
reference state would render its side chain atoms starting with Cβ
virtual. Thus, HREX would enhance hindered rotations about
bonds such as CR�Cβ, Cβ�Cγ, and outward. In addition, the
alchemical mutation of binding site residues to p-Ala can render
the binding site in the reference state bigger, further aiding in the
sampling of ligand transitions.
In this study, we simultaneously enhance sampling of the

ligand and the protein side chains by combining the correspond-
ing unphysical reference states.
2.4. TI Simulation Setup. In order to run the simulations,

we employed GROMACS version 4.0.5 in single precision.
Because the simulated system is described by Amber 99SB61

and GAFF46 molecular mechanical force fields that are not native
to GROMACS, we used the PERL conversion script, which was
described previously.62 The script also automates setup of the
alchemical transformation from the real to the reference state.
2.4.1. Soft-Core Potentials. In order to avoid the end-point

catastrophe at the reference state, we employed soft-core elec-
trostatic and LJ potentials9,10 as implemented in GROMACS.63�67

Earlier calculations employed a GROMOS style soft-core po-
tential (eqs 1�3). Here, λ is the Hamiltonian coupling para-
meter, p is the coupling power, r is the distance between a given

pair of atoms, R is the soft-core parameter, and σ is the radius of
interaction computed from LJ parameters. For certain polar
hydrogen atoms, σ is undefined, and in those cases a fixed value
is used. Originally, we used p = 2, R = 1.5, and σ = 0.3 as
recommended in the user manual. Subsequently, to improve the
acceptance ratio and level its distribution over TI window pairs,
we used an alternative soft-core potential with p = 1.10 For the
latter potential, we reoptimized the value ofR to arrive atR = 0.4.
The optimization of the R parameter was performed to achieve
the best convergence behavior by monitoring standard devia-
tions across independent TI runs. Other more complicated
measures could be used to search for better alchemical paths,
but these were not pursued in this study.68

V sc
ABðrÞ ¼ ð1� λÞ VAðRAðr, λÞÞ þ λVBðRBðr, λÞÞ ð1Þ

RAðr, λÞ ¼ ðRσ6
Aλ

p þ r6Þ1=6 ð2Þ

RBðr, λÞ ¼ ðRσ6
Bð1� λÞp þ r6Þ1=6 ð3Þ

2.4.2. MD Simulation Parameters. The production runs were
performed in the NPT ensemble at T = 300 K and P = 1 atm,
following the equilibration protocol described previously.22

Table 1. The L99A T4 Lysozyme Mutant Relative Binding Free Energies (Standard Deviations) to a Series of Benzene
Derivativesa

compound exptl FEP SRTI Diff1 HREX-SRTI Diff2 Wat% Prt%

AM1BCC Charge Model

benzene 0.0(0.2) 0.0 0.0(0.3) 0.0 0.0(0.2) 0.0 34 29

phenol 2.5(N/A) 3.3 2.2(0.6) �0.3 2.3(0.4) �0.2 25 26

toluene �0.3(0.2) 0.0 �0.1(0.3) 0.2 �0.2(0.2) 0.1 30 27

ethylbenzene �0.6(0.2) �1.8 �0.2(0.5) 0.3 �0.9(0.6) �0.3 27 25

n-propylbenzene �1.4(0.2) �1.3 �0.4(0.5) 0.9 �1.5(0.4) �0.2 26 23

n-butylbenzene �1.5(0.2) �0.3 �1.0(1.2) 0.5 �1.4(1.1) 0.1 23 21

i-butylbenzene �1.3(0.2) �0.5 �1.4(1.2) �0.1 �1.3(0.7) 0.1 24 21

o-xylene 0.6(0.2) 3.3 1.0(0.4) 0.4 0.8(0.3) 0.2 28 25

p-xylene 0.5(0.2) 1.0 0.5(0.6) 0.0 0.4(0.3) �0.1 29 26

indene 0.1(0.2) 2.8 1.3(0.4) 1.3 1.4(0.3) 1.3 21 20

indole 0.3(0.2) 4.1 2.9(1.7) 2.6 2.8(0.5) 2.5 14 21

benzofuran �0.3(0.2) 1.0 0.4(0.5) 0.6 0.2(0.4) 0.5 24 22

RMS (cyclic) (1.0) 1.7 (0.4) 1.7

RMS (acyclic) (0.7) 0.5 (0.5) 0.2

RMS (all) (0.8) 1.0 (0.5) 0.9

RESP Charge Model

indene �0.1(0.4) �0.2 0.0(0.3) �0.1 b 20

indole 0.6(1.9) 0.3 1.1(1.8) 0.8 b 19

benzofuran �0.4(0.6) �0.1 �0.8(0.4) �0.5 b 22

RMS (cyclic) (0.8) 0.2 (0.7) 0.5

RMS (all)c (1.1) 0.4 (1.1) 0.3
a Energies are in kcal/mol relative to benzene. Averages and standard deviations are over eight (cyclic) or four (acyclic) independent simulations with
distinct starting positions of the ligand in the binding site of the protein and two (all) independent simulations in water. Experimental and previously
reported absolute binding free energies for benzene are�5.2 and�4.6 kcal/mol, respectively. bBecause the effect of HREXon the simulations in water is
small, regular simulations were performed. Diff1 is the free energy difference between regular SRTI and experimental results; Diff2 is the difference
between HREX-SRTI and experimental results. The Wat and Prt columns contain acceptance ratios for the corresponding legs of the thermodynamic
cycle (Figure 1). For these calculations, p = 2, and default values of R = 1.5 parameters were used. Each simulation was run using 12 TI windows equally
spaced in λ and 4-ns-longMD runs in the NPT ensemble at 1 atm and 300 K. The terms exptl and FEP represent previously published experimental and
computational free energy perturbation benchmarks.30 cCombined values with RESP@HF/6-31G(d) for cyclic and AM1BCC for acyclic compounds.
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The production run employed a Langevin thermostat and a
Berendsenbarostat,64�67with identical collision frequencies of 2 ps�1.
Throughout the simulations, all of the bonds containing

hydrogen atoms were constrained using LINCS,69 and the
integration time step was set to 2 fs. We employed the particle
mesh Ewald (PME) approach for electrostatics64�67 with a 1 nm
real space cutoff and switched off van der Waals interactions over
the range of 0.8�0.9 nm. Typically, production runs were 2-ns-
long for each TI window, but in some cases they were extended
to 4 ns. The coordinates of the system were recorded every 1000
steps for subsequent analyses.
2.4.3. Regular SRTI Simulations. To obtain the alchemical free

energies or reversible works, the real and reference states of each
system corresponded to values 0 and 1 of the Hamiltonian
coupling parameter λ, respectively. Each alchemical SRTI trans-
formation employed M equally separated λ windows. The
majority of the simulations used M = 12, but in some cases
simulations were performed with M = 23. All λ windows of an
SRTI simulation had the same initial configuration. For each λ
window, we recorded ∂V/∂λ values at every time step. The mean
values Æ∂V/∂λæ for all of the λ windows were assembled into the
final work using the Fourier beads integration procedure, which
was described previously.22

Averages of the final work values and their standard deviations
were computed using several independent simulations. Specifi-
cally, for proteins in complex with cyclic molecules (benzofuran,
indene, and indole), we performed eight simulations each with
distinct starting positions of the ligand. For acyclic (not cyclic)
molecules, we only performed four such simulations. Finally, for
all of the ligands in water, we performed two independent
simulations. The differences between the alchemical work values
in water and protein environments yielded the relative binding
free energies with respect to the unphysical reference state. The
final relative binding free energies and their standard deviations
were reported with respect to benzene.
2.4.4. HREX-SRTI Simulations. In order to run HREX-SRTI

simulations, we employed an in-house PERL script interfaced
with GROMACS. Replica exchanges were attempted every 1000
MD steps or 2 ps. For the majority of the simulations, we
attempted exchanges a total of 2000 times resulting in 4-ns-long
simulations of each window. In special cases, the number of
exchange attempts was reduced to 1000, decreasing the simula-
tion time to 2 ns per window. Following the exchanges, each λ
window received a new random seed to restart its MD run. All of
the other simulation details were the same as those associated
with regular SRTI simulations.
2.4.5. Analysis of SRTI and HREX-SRTI Results. The analysis of

real state trajectories was performed with standard GROMACS
tools. Specifically, the g_angle program was used to obtain time
series of dihedral angles of the hindered side chains. For the Val
side chain, we gathered data on the HR�CR�Cβ�Hβ (k1)
dihedral, and for the Leu side chain, data on HR�CR�Cβ�Cγ
(k1) and CR�Cβ�Cγ�Hγ (k2) dihedrals were collected. For
HREX-SRTI simulations, the real state trajectory had to be
assembled from short trajectories using an in-house PERL script
that followed the state through all of the exchanges.

3. RESULTS AND DISCUSSION

In order to demonstrate the utility of the SRTI approach in
computing relative binding free energies, we studied ligand bind-
ing to a well-defined binding site in the L99A mutant of T4

lysozyme. Specifically, we chose a congeneric series of 12 ligands
derived from benzene that has been studied previously.28�30

We distinguished two classes of compounds within the series
according to their structure outside the common benzene motif,
namely cyclic and acyclic. Thus, benzofuran, indene, and indole
were considered cyclic, whereas all of the remaining compounds
were considered acyclic. Because all of the ligands in the series
(Table 1), with the exception of benzene, can have multiple
orientations in the binding pocket, this system presents a con-
siderable challenge for binding free energy calculations.

The cyclic and acyclic ligands behave differently when in
complex with the protein. For acyclic ligands, the benzene ring
can flip without an overall structural change to the complex. For
cyclic ligands, the benzene flip alters the overall structure of the
complex. Hence, for cyclic ligands, i.e., benzofuran, indene, and
indole, we selected eight orientations (four for each of the two
states resulting from the benzene flip). The degeneracy with
respect to the benzene flip allowed us to reduce the number of
representative orientations to four for the remaining acyclic
ligands. Thus, for each ligand, we performed simulations with
different initial orientations in the binding pocket.

The conformations of the active site residues are equally
important and should be considered when determining binding
free energies.28�30 For the L99A mutant of T4 lysozyme, the
conformational state of the V111 side chain profoundly affects
the computed binding free energies. Because this residue lines the
surface of the binding site, inadequate sampling of its conforma-
tions has been shown to cause discrepancies of as much as 6 kcal/
mol.28�30 Other residues in the active site may have similar effects
on binding free energies.1 Hence, we need to improve sampling of
the ligand and relevant protein conformations at the same time.
This combination makes the problem particularly challenging.
3.1. Regular SRTI Simulations. 3.1.1. AM1BCC ChargeModel.

The average variability in the relative binding free energies from
regular SRTI is 0.7 kcal/mol (Table 1). Most of the ligands have
standard deviations in the range of 0.3�0.6 kcal/mol. However,
the largest acyclic ligands, n-butyl-benzene and i-butyl-benzene,
show increased standard deviations of 1.2 kcal/mol. Surprisingly,
one of the cyclic ligands, indole, exhibits a record high standard
deviation of 1.7 kcal/mol. Indole, like other cyclic ligands, is
expected to have hindered flip transitions in the binding site.
In comparison to experimental values, the regular SRTI

approach has an RMSE of 1.0 kcal/mol relative to and excluding
benzene. Smaller ligands are in good agreement—within 0.3
kcal/mol—with the available experimental data (Table 1). It
should be noted that only an upper estimate of binding free
energy is available for phenol, which does not bind the T4
lysozyme mutant well. For more extended acyclic molecules,
such as n-propyl- and n-butyl-benzenes, the agreement is not as
favorable, with n-propyl-benzene demonstrating the highest
deviation of 0.9 kcal/mol. The predicted binding free energy
for i-butyl-benzene is serendipitously within 0.1 kcal/mol of the
experimental value. Interestingly, the cyclic ligands exhibit the
largest deviations of all compounds, diverging by as much as 2.6
kcal/mol in the case of indole.
The disagreement between computed and experimental bind-

ing free energies for the heterocyclic compounds is instructive. In
particular, the results for indene and benzofuran ligands were
well-converged judging by the low standard deviations (Table 1).
In contrast, the binding free energy of indole exhibited a large
standard deviation of 1.7 kcal/mol. These observations suggest
that issues other than sampling could be responsible for the
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overall disagreement with experimental results. Because we
employed the AM1BCC charge model, which approximates
the RESP HF/6-31G(d) partial charges, we decided to assess
the effect of the model.
3.1.2. RESP ChargeModel for Cyclic Compounds.Using RESP

HF/6-31G(d) charges for the cyclic compounds considerably
improved the agreement of regular SRTI predictions with experi-
mental values. Indeed, while simulations with the AM1BCC
charge model systematically overestimated the binding free
energies, with the RESP charges the disagreement was no longer
systematic and remained within 0.3 kcal/mol. Thus, for indole,
the RESP charges lowered the disagreement with experimental
values by more than 2 kcal/mol. Despite the improved accuracy
of the predictions, the RESP charges did not affect convergence
of the cyclic ligands. Indole still had the largest standard deviation
of 1.9 kcal/mol. These results suggest that a charge model can
strongly affect the accuracy, but not necessarily the precision, of
the computed binding free energies.
Large standard deviations in computed binding free energies

identify ligands most sensitive to the initial complex config-
uration. The reasons for this sensitivity likely reside in hin-
dered ligand motions. Indeed, inspecting trajectories of the
ground state simulations for benzofuran using all 12 starting
configurations, we found that they converge to only four

metastable configurations. These metastable configurations de-
monstrate that the cyclic ligands do not flip freely in the binding
pocket on a nanosecond time scale. Furthermore, alignment of
the ligands suggests that the binding pocket has the geometry of a
flattened prolate ellipsoid. Each unique configuration contributes
distinctly to the binding free energy, thus, increasing the standard
deviation. Therefore, enhanced sampling of the ligands in their
complexes would allow the metastable configurations to rapidly
interconvert, ultimately improving the quality of predictions. Because
the regular SRTI approach does not have the ability to enhance these
transitions alone, we need to invoke the HREX option.
3.2. Improving the SRTI Results with HREX. The use of

SRTI with HREX22 could simultaneously enhance sampling of
the ligand and select protein side chains. First, we attempted
to enhance motions of the ligand and the V111 side chain.
Specifically, by choosing the benzene core as a ligand refer-
ence state, we intended to activate rotations of the bulkier
ligands within the active site. Furthermore, by choosing a
V111p-A mutant as a protein reference state (see the Methods
section for definition), we expected to activate the V111
rotations that have activation barriers in the 5�8 kcal/mol
range.29,70 This strategy is expected to reduce the size of each
ligand to the size of the benzene core while simultaneously
enlarging the binding site around p-A111 (Figure 1) to

Figure 2. Side chain conformational transitions for the indole complex
with the L99A mutant of T4 lysozyme using the V87p-A:V111p-A:
L118p-A reference. Time series and respective histograms are presented
for the k1 (HR�CR�Cβ�Hβ) torsion of V111 and V87 and for the k1
(HR�CR�Cβ�Cγ) and k2 (CR�Cβ�Cγ�Hγ) torsions of L118.
The bins of the histograms were 5� wide. The time series reports the
corresponding values of the torsions. The top panel summarizes the
regular SRTI simulation results with relatively few conformational
transitions, whereas the bottom panel shows the HREX-SRTI results
with numerous such transitions. The reported HREX-SRTI simulations
employed 12 windows and the optimized p = 1 soft cores.

Figure 3. Side chain conformational transitions for indole complex with
the L99A mutant of T4 lysozyme using the V111p-A reference. Time
series and respective histograms are presented for the k1
(HR�CR�Cβ�Hβ) torsion of V111. The bins of the histograms were
5� wide. The time series report the corresponding values of the torsions.
The top panel summarizes the regular SRTI simulation results with
relatively few conformational transitions, whereas the bottom panel
displays the HREX-SRTI results with numerous such transitions. The
reported HREX-SRTI simulations employed 12 windows and the
optimized p = 1 soft cores.
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activate ligand flip transitions which are important in the
evaluation of cyclic compounds.
Interestingly, regular SRTI simulations suggest that the V111

rotation does not significantly affect relative free energies of
many ligands in the series. The free energy barrier for the valine
rotation is such that it could spontaneously rotate on a time scale
of several nanoseconds.29,70 Indeed, we observed that during
4-ns-long unenhanced SRTI simulations of the ground state,
V111 does spontaneously flip a few times without having a
significant effect on the binding free energies of many molecules
in the series (Figures 2 and 3, top panels).
The absence of the previously reported effect of V11128�30 in

cases of p-xylene and indene, among other ligands, is not
surprising. It could be explained by the fact that SRTI computes
relative binding free energies as opposed to the absolute free
energies reported previously. Indeed, in the present SRTI setup,
we do not need to sample an empty binding site of the protein,
where V111 has a preferred conformation.29 Nevertheless, for
the largest acyclic ligands, the effect could still be significant.
Therefore, we expect that enhancing the rotation of the V111
side chain through HREX would improve the overall agreement
with experimental data. This approach can also be applied to
enhance V111 rotation in the absolute binding free energy calcula-
tions with TI.
3.2.1. AM1BCC Charge Model and HREX-SRTI. Simply turning

on the HREX option in SRTI with the V111p-A reference state
produced seemingly modest improvements over the correspond-
ing regular SRTI results (Table 1). The average standard
deviation for all of the ligands decreased from 0.7 to 0.5 kcal/
mol with the AM1BCC charge model. However, some of the

ligands enjoyed significantly lower standard deviations versus
regular SRTI. For example, i-butyl-benzene and indole, which
had among the highest standard deviations, experienced signifi-
cant drops from 1.2 to 0.7 kcal/mol and from 1.7 to 0.5 kcal/mol,
respectively.
For the AM1BCC model, the overall agreement with experi-

mental values improved only slightly, with RMSE decreasing to
0.9 kcal/mol. Most of the improvement was achieved for the
acyclic ligands, which, when separated from the rest of the
ligands, showed a change in RMSE from 0.5 to 0.2 kcal/mol.
The cyclic compounds with AM1BCC charges are unaffected by
HREX and persistently show an RMSE of 1.7 kcal/mol. Despite
the improved agreement with experimental data, larger acyclic
ligands still exhibit elevated standard deviations, particularly in
the case of n-butyl-benzene.
The lack of significant improvements could indicate that other

residues in the binding site might be important. Most notably, all
of these simulations used 12 windows and consequently had
modest acceptance ratios (Table 1). Indole in water had the
lowest acceptance ratio of 14%, which increased to 21% in the
protein environment with the V111p-A reference. Indole and
phenol are the only two ligands in the series that have polar
hydrogen atoms and an increased acceptance ratio in the protein
environment.
3.2.2. RESP Charge Model and HREX-SRTI. Different charge

models behave distinctly when running SRTI with the HREX
option. Thus, HREX-SRTI with RESP charges for the cyclic
compounds diminished the agreement with experimental results
compared with that in regular SRTI. Specifically, RMSE for the
three cyclic compounds increased from 0.2 to 0.5 kcal/mol.
However, the average standard deviations decreased from 0.9 to
0.8 kcal/mol (Table 1). Unexpectedly, indole exhibited a sharply
increased standard deviation of 1.8 kcal/mol using the RESP
model compared to 0.5 kcal/mol with the AM1BCC model.
3.3. Improving HREX-SRTI Predictions. To understand the

reason for poor convergence of the free energy values with
HREX-SRTI and to possibly improve the results, we examined
the indole system in greater detail. Specifically, we focused on the
indole simulations with RESP charges that exhibited the largest
disagreement with experimental values and the largest standard
deviation.
3.3.1. Triple Mutant Reference State V87p-A:V111p-A:L118p-

A.We hypothesized that even with the HREX option turned on,
flipping of the indole might still be impeded in the V111p-A
reference state. In order to test this hypothesis, we created a triple
mutant reference state by mutating two additional residues, V87
and L118 to p-A. These two residues pin the benzene moiety of
the ligands to the floor of the binding site. It should be noted that
L118 has been experimentally shown to exhibit conformational
variability similarly to V111.1

The triple mutant system V87p-A:V111p-A:L118p-A should
completely remove the ligand flipping restriction. Moreover, this
unphysical reference state could potentially open water access to
the hydrophobic binding site of the L99A T4 lysozyme. In the
proposed experiment, three residues would undergo alchemical
transformations, making 30 atoms of the protein (nine for each
valine and 12 for leucine) disappear in the reference state. While
this should theoretically enhance sampling of the three residues
along with the ligand, it might be difficult in practice to achieve a
sufficient overall exchange rate in HREX-SRTI.22 Hence, this test
would also identify the limits of our approach in extending it to
concurrent activation of multiple residues.

Table 2. Improving HREX-SRTI Efficiency for the L99A T4
Lysozyme Mutant in Complex with Indolea

system NSRTI p R ΔGPrt(SD), kcal/mol NHREX accept, %

V87p-A:V111p-A:L118p-A

SRTI 12 2 1.5 34.2(3.8)

SRTI 23 2 1.5 36.9(3.3)

HREX-SRTI 23 2 1.5 39.5(1.4) 1000b 30

HREX-SRTI 12 1 0.3 29.4(0.9) 2000 17

HREX-SRTI 12 1 0.4 30.6(0.8) 2000 13

HREX-SRTI 12 1 0.5 33.6(1.2) 2000 9

V111p-A

SRTI 12 2 1.5 �0.6(1.8)

HREX-SRTI 12 2 1.5 �1.0(1.8) 2000 19

HREX-SRTI 23 2 1.5 �1.6(0.5) 2000 48

HREX-SRTI 12 1 0.4 �1.7(0.2) 2000 29
aThese results are representative of the protein leg of the thermody-
namic cycle (Figure 1) using RESP@HF/6-31G(d) point charges on the
ligand. NSRTI and NHREX refer to the number of TI windows and
exchange cycles, respectively. Soft-core parameters involved in optimi-
zation are p and R (see text for description). Averages and standard
deviations (SD) are over eight independent simulations with distinct
starting positions of the ligand in the binding site. Two unphysical
references, namely, V87p-A:V111p-A:L118p-A and V111p-A, are con-
sidered. By design, the use of the former reference with HREX should
enhance side chain torsions of the V87, V111, and L118 along with
rotation and flipping of the ligand. The latter reference should enhance
torsions of the V111 side chain and rotations of the ligand. Unless
otherwise stated, all TI windows were run in the NPT ensemble at 1 atm
and 300 K for 4 ns. b Each window was run for 2 ns.
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The triple mutant V87p-A:V111p-A:L118p-A presents a chal-
lenge for HREX-SRTI. As seen in Table 2, regular SRTI
simulations with 12 and 23 windows had standard deviations
of 3.8 and 3.3 kcal/mol, respectively, for just the protein leg of the
thermodynamic cycle (Figure 1). The fact that the standard
deviation with the triple mutant reference is more than twice as
large as that with the single mutant one (1.8 kcal/mol) suggests
that conformations of residues V87 and L118 may indeed affect
ligand binding. The standard deviation was reduced to 1.4 kcal/
mol when employing 23 windows in the HREX-SRTI simula-
tions. The corresponding 12-window simulations did not achieve
a sufficient overall exchange rate to yield results that were distinct
from the regular SRTI simulations.
3.3.2. Assessing HREX Efficiency. 3.3.2.1. Round-Trip Count.

Achieving efficient exchanges is critical for obtaining converged
free energies in HREX simulations.43 The overall acceptance
ratio might be inadequate to assess the efficiency of HREX
simulations. While the overall acceptance ratio is a satisfactory
criterion to assess the efficiency of the more widely applied
temperature replica exchange (TREX) simulations in the absence
of first order transitions,71,72 the situation withHREX is different.
It is difficult to devise a universal exchange protocol for HREX

simulations, because the Hamiltonian generally depends on λ
nonlinearly.15,16 One way to monitor the efficiency of HREX
simulations is to examine the number of round-trips made over
the simulation time.42,71 A replica that has returned to its initial λ
after visiting both λ = 0 and λ = 1 states in either order is said to
have accomplished a round-trip. Although this is an excellent
measure of efficiency in theory, simulations might not, in
practice, be long enough to complete even a single round-trip.
In addition, when increasing a number of windows, a round-trip
may take longer time. Therefore, long simulation times may be
required to use this measure of exchange efficiency.
Finally, we note that besides the λ = 1window in SRTI, scaling of

the dihedral and soft-core potentials can activate hindered transi-
tions in several neighboring windows. This means that multiple
windows can experience enhanced sampling. While a standard
round-trip count would reflect the overall efficiency of the simula-
tions, it may not capture diffusion of the conformations from all of
the enhanced windows down to the λ = 0 window. Ultimately, we
gauge the sampling gains by the reduction in the standard deviations
ofHREX-SRTI compared to regular SRTI, which is an independent
measure of both convergence and sampling efficiency.
3.3.2.2. Acceptance Ratio Profile. Alternatively, one can

generate an acceptance ratio profile for each pair of TI windows
that is adjacent in λ space from the actual simulation data.15 A flat
profile would indicate equally probable exchanges between adja-
cent windows and, consequently, produce the largest number of
round-trips possible for any given time. Therefore, we consider the
acceptance ratio profile a practical alternative to the round-trip
count. A simple inspection of the acceptance ratio profile could
identify problems in the HREX simulations. The pair with the
lowest ratio across all of thewindowpairs limits the round-trip rate.
3.3.2.3. Energy Difference Histograms. The acceptance ratio

profile is related to the corresponding double and single energy
difference histograms. Single energy difference histograms over all
adjacent pairs of λi and λi+1 involve the corresponding forward and
backward energy differences. These histograms contain valuable
information not only with respect to the efficiency of the simula-
tions but also with respect to their validity.73 Furthermore, the
information from the forward and backward histograms can be
used to estimate the free energy difference between the adjacent

states, though such an estimator may be suboptimal.43,73 In cases
with linear dependence of the Hamiltonian on λ, the single energy
difference histogram is closely related to the corresponding
histogram of the energy derivative with respect to λ.43 The double
energy difference histogram comprises the energy change of the
generalized ensemble that enters the Metropolis function to
decide on the exchange of a particular pair.15 These double energy
difference histograms are perhaps the most informative for the
purpose of the HREX. They could be computed using configura-
tions generated by regular SRTI for a given set of λ values at an
additional expense that would increase the cost of the calculation
to that of HREX-SRTI.
3.3.3. Parameters That Influence HREX Efficiency. Predicting

the dependence of the double energy difference or the accep-
tance ratio profile on the coupling parameter λ without actually
running HREX simulations could help design more efficient
simulations. Indeed, determining an optimal set of λ values that
would yield a uniform acceptance ratio profile will maximize the
efficiency. It is easy to show that the mean of the double energy
difference histograms and the Æ∂V/∂λæ are related according to
eq 4 (see the Appendix for derivation):

ÆΔΔijæ≈ βðΔλijÞ2 ∂
2V

∂λ2

� �
ðλi þ λjÞ=2

� d
dλ

∂V
∂λ

� �
ðλi þ λjÞ=2

 !

≈ β2ðΔλijÞ2var ∂V
∂λ

� �
ðλi þ λjÞ=2

ð4Þ

Figure 4. Monitoring efficiency of HREX-SRTI. The top panel illus-
trates the acceptance ratio profile for indole bound to the L99A mutant
of T4 lysozyme with the V87p-A:V111p-A:L118p-A reference state. The
bottom panel shows the ΔΔij histograms in color. On the top of the
histograms is the actual profile of the mean ΔΔij value (solid black line
with circles), its estimate from the variance (dashed black line with
diamonds), and the contribution of the derivative of the <∂V/∂λ>
(dashed black line with triangles), which are derived from eq 4. The
HREX-SRTI simulations employed 23 windows, each run for 2 ns with
p = 2 soft-core potentials in the NPT ensemble at 1 atm and 300 K.
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Figure 4 shows an overlay of the ΔΔij distributions, their actual
mean value, and its approximation using eq 4. As can be seen
from Figure 4, eq 4 closely approximates the mean of the double
energy difference. Furthermore, the contribution of the mean
second derivative is significant and should not be neglected.
Thus, eq 4 is a useful starting point for improving HREX
simulation protocols.
It might be worthwhile to note that the derivative in the latter

equation is related to the variance of the ∂V/∂λ:43,74

var
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� �
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2V

∂λ2

� �
� d
dλ
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ð5Þ
According to eq 5, in cases when the potential V depends on λ
linearly, the variance reduces to the first derivative of the <∂V/∂λ>.
Because the variance is a positive quantity, the left-hand side
of eq 4 would always be positive. Assuming that the value of the
mean double energy difference would correspond to the most
probable value of its distribution, one might expect better
acceptance ratios if the mean is closer to zero. For nonlinear
dependence, convexity of the potential with respect to λ would
play an important role.
3.3.3.1. Increasing the Number of TI Windows. Equation 4

suggests that reducing the spacing between adjacent λ’s
(increasing the number of windows) would result in an increase
in the acceptance probability. Indeed, similarly to our previous
study,22 increasing the number of windows from 12 to 23 in
the system with the V87-pA:V111-pA:L118-pA reference
state considerably improves the overall acceptance ratio from
less than 10% to 30%. The reduction in standard deviation
from 3.3 to 1.4 kcal/mol attests to the improved efficiency.
It should be noted that the cost of the 23-windowHREX-SRTI
simulations was maintained similar to that of the 12-window
simulation by reducing the number of exchange cycles to
1000.
The acceptance ratio profile of the HREX-SRTI simulations

with V87-pA:V111-pA:L118-pA reference and 23 windows
(shown in Figure 4) revealed an exchange bottleneck. Indeed,
as seen in Figure 4, the acceptance ratio for the pair of windows
with λi = 0.4091 and λi+1 = 0.4545 is close to zero. In other words,
our generalized ensemble was divided, with replicas sampling
two independent regions of the λ space. This prevented the
system from reaching a true equilibrium. Clearly, the 23-window
HREX simulations, while greatly improving the overall accep-
tance ratio, still had the limitation of inefficient exchanges in a
specific region of the λ space.
3.3.3.2. Position of Windows. Although generally applicable,

simply increasing the number of windows to improve the
efficiency of HREX simulations is not a viable strategy.
Certainly, if successive TI windows were kept at constant
λ intervals, this strategy would not remove the existing
exchange bottlenecks. In addition, maintaining the number
of windows at the same level as in regular SRTI simulations
would be desirable from a computational cost perspective.
Therefore, a better strategy would be to adjust the positions
of the existing TI windows. Importantly, regular TI is
sufficient for obtaining the ∂V/∂λ variance profile that
according to eq 4 could be used to determine an optimal
set of λ’s for efficient HREX simulations. Alternatively,
round-trip-based methods could be used to optimize place-
ment of λ’s as has been done in the context of simulated

scaling.42 However, determining the optimal set of λ’s is
highly system-dependent. Therefore, we did not pursue this
strategy here. Fortunately, eq 4 suggests yet another strategy
for improving HREX-SRTI simulations.
3.3.3.3. Altering Mean Force Profile. Besides manipulating

the number and position of TI windows, eq 4 indicates that
the acceptance probability is greatly affected by the shape of the
∂V/∂λ variance profile. Therefore, we could improve the ex-
change rates by changing the shape of the profile using param-
eters we have at our disposal. Specifically, we can vary parameters
of the soft-core potentials.
Recall the general form of the soft-core potentials available in

GROMACS9,10,63,75 (eqs 1�3). The present implementation of
GROMACS supports soft-cores with p = 1 and p = 2.9,10 The R
and σ parameters have been optimized for each p using an approach
that decouplesCoulomb and vdWchanges.76 For the SRTI approach
that simultaneously transformsCoulomb and vdW interactions, these
values of parameters may be suboptimal.
Soft-core potentials with p = 1 are well-suited for HREX-SRTI

simulations. Indeed, our earlier SRTI simulations with p = 2
potentials had the limitation of sharp peaks in the Æ∂V/∂λæ profile
near λ = 0 as previously described in the literature.9,67 These
peaks are due to the hydrogen atoms with undefined σ param-
eters and present an obstacle to accurate integration within the
Fourier beads approach.22 In order to integrate these sharp peaks

Figure 5. Optimization of HREX-SRTI efficiency by altering soft-core
potential parameters. The top panel illustrates the acceptance ratio
profiles for indole bound to the L99A mutant of T4 lysozyme with the
V111p-A reference state. Unlike in Figure 4, these simulations em-
ployed p = 1 soft-core potentials with three different values for the
parameterR, namely 0.3, 0.4, and 0.5. The bottom panel shows theΔΔij

histograms in color along with their actual mean (solid black line with
circles), the estimate of the mean from the ∂V/∂λ variance (dashed
black line with diamonds), and the contribution of the derivative of the
<∂V/∂λ> (dashed black line with triangles), which are derived from
eq 4. The bottom panel only shows results for the simulations with R =
0.4 that achieve the best precision. The HREX-SRTI simulations
employed only 12 windows, each run for 4 ns in the NPT ensemble
at 1 atm and 300 K.
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properly, additional TI windows have been introduced. In
contrast, the profile derived using p = 1 soft-core potentials is
devoid of such peaks.10

Switching to the soft-core potentials with p = 1 improves the
acceptance ratio of the HREX-SRTI simulations. Indeed, using
default parameters with only 12 windows, we obtained modest
acceptance ratios of 17% in the system that had the V87-pA:
V111-pA:L118-pA reference. Recall that 12-window simulations
with p = 2 failed to achieve acceptance ratios above 10%.
However, as discussed above, an improved acceptance ratio does
not guarantee improved efficiency. The analysis of the accep-
tance ratio profile for p = 1 shows that windows near λ = 1
exchange poorly.
3.3.3.4. Optimization of Soft-Core Parameters for HREX.

The optimization of the R parameter helps to flatten the
acceptance ratio profile, rendering the HREX-SRTI more effi-
cient. Using 12-window simulations of indole with the V87-pA:
V111-pA:L118-pA reference, we varied the value of R from its
default value of 0.3 to 0.4 and 0.5 at p = 1. Figure 5 summarizes
the acceptance ratio profiles and compares predicted and actual
meanΔΔij for the best of them. While at R = 0.5 we obtained the
most uniform acceptance ratio profile, the overall acceptance
ratio declined to 9% (Table 2). At the intermediate value of 0.4,
the overall acceptance ratio was 13%, with the acceptance ratio
profile demonstrating sufficient exchange probabilities near λ = 1.
Clearly, one has to find a compromise between the flatness of the
acceptance ratio profile and the overall acceptance ratio.
To choose the best value of parameter R, we compared the

standard deviations from each set of simulations. As seen in
Table 2, the intermediate value R = 0.4 yielded the lowest
standard deviations of 0.8 kcal/mol. This is a considerable
improvement for the system with the triple mutant reference, in
comparison to the regular 12-window SRTI simulation with
p = 2, which had a standard deviation of 3.8 kcal/mol. Inter-
estingly, simulations with R = 0.5 that were associated with an
almost flat acceptance ratio profile yielded a standard deviation
of 1.2 kcal/mol.

3.3.3.5. Transferability of Optimized Parameters. The value
of R optimized for the challenging system with the V87-pA:
V111-pA:L118-pA reference state could be transferred to
improve the results for an easier system with the V111-pA
reference. With the latter reference state, only the V111 side
chain is enhanced along with the ligand in HREX-SRTI. Indeed,
as seen in Table 2, for p = 2, the HREX-SRTI simulations with 12
windows and the V111-pA reference achieved a standard devia-
tion of 1.8 kcal/mol. In fact, HREX-SRTI and regular SRTI had
identical standard deviations, despite the fact that the overall
acceptance ratio of the former was 19%. With 23 windows, both
the acceptance ratio and the standard deviation improved to 48%
and 0.5 kcal/mol, respectively. To our great satisfaction, the
optimized HREX-SRTI with p = 1 demonstrated significantly
improved convergence. Remarkably, we were able to achieve an
improved standard deviation of 0.2 kcal/mol using only 12
windows with an overall acceptance ratio of 29%.
Even with the optimized protocol, our predictions for indole

deviate significantly from the experimental data. Figure 6 shows
the comparison of our predicted binding free energies with the
experimental values for all of the ligands, including the optimized
results for indole. Indeed, the binding free energy of indole using
the most efficient HREX-SRTI protocol is still overestimated by
1.5 kcal/mol.
3.3.3.6. Decoupling of Coulomb and vdW Transforma-

tions. As a final note on efficiency, we would like to mention
that the Æ∂V/∂λæ profile would change radically by decoupling of
the vdW and Coulomb transformations. Such a decoupling is
expected to render the overall profile smoother and hence
improve the acceptance ratio.21 Indeed, HREX simulations with
decoupled vdW and Coulomb transformations were recently
reported.20,21 Unfortunately, the overall acceptance ratios or
acceptance ratio profiles were not provided. Since the HREX-
SRTI approach was originally designed22 to electrostatically
guide ligands to better binding poses,77,78 decoupling of the
electrostatics and vdW would defeat the purpose.
3.4. HREX-SRTI As a Conformational Analysis Tool. It is

instructive to analyze structural transitions in the L99A T4
lysozyme mutant in complex with indole in an attempt to explain
the observed disagreement with experimental values.
3.4.1. Transitions of Hindered Residues Are Indeed Enhanced

by HREX-SRTI. In order to demonstrate that HREX-SRTI
enhances conformational transitions of the hindered protein
side chains, we performed additional analyses of the real state
trajectories (λ = 0). Figures 2 and 3 compare the dihedral angles,
described in the Methods section, that characterize side chain
conformations of V87, V111, and L118 where applicable.
Although the histograms of the referred to dihedral angles may
look similar, the time series clearly demonstrate the increased
number of transitions in HREX-SRTI. In most cases, each side
chain samples multiple conformational basins, supporting our
earlier conclusion regarding their contributions to the binding
free energies. Interestingly, the V87 side chain appears to con-
sistently prefer a particular conformation.
3.4.2. Indole Transitions in the Binding Pocket. We also

verified that indole could flip its benzene plane in HREX-SRTI
simulations with triple mutant reference states. The analysis of
the real state trajectories revealed multiple indole orientations in
the binding pocket. In one of the orientations, the NH group of
indole persistently hydrogen-bonded with the S atom of M102.
In another orientation, the same NH group was involved in
hydrogen bonding with the backbone carbonyl group of V87.

Figure 6. Comparison of the HREX-SRTI relative binding free energy
predictions to experimental results. The binding free energies are relative
to benzene. The best-fitted line passing through the origin is y = 1.10x,
and the corresponding correlation coefficient is R2 = 0.76. The RESP
HF/6-31G(d) charge model was used for the cyclic compounds, and the
AM1BCC model was used for the acyclic compounds. With the
exception of indole, all of the simulations employed p = 2 soft-cores
with default parameters. The indole prediction incorporates the results
obtained with the optimized p = 1 soft-cores.
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In the HREX-SRTI simulations with the single mutant V111p-A
reference state, the ligand in-plane rotation was enhanced, but
the plane flipping transitions remained hindered.
3.4.3. Water Does Not Bind T4 LysozymeMutant with Indole.

The indole disagreementwith experimental values is not attributable
to a lack ofwater access to the binding site. Althoughour simulations
with the V111p-A reference state are not designed to open the
normally sealed active site, we have tested this hypothesis using the
V87p-A:V111p-A:L118p-A reference state. By inspecting the MD
trajectories, we observed that water molecules did penetrate the
pocket of the triple mutant reference state (λ = 1). However, none
of the configurations with water molecules inside the binding site
reached the real state (λ = 0) during the HREX-SRTI simulations.
This strongly suggests that water is not responsible for the observed
discrepancy.

4. CONCLUSIONS

This study presented a practical application of the SRTI
approach to compute relative binding free energies of small
molecules to a challenging binding site in the L99A mutant
of T4 lysozyme. With the HREX option, SRTI successfully
enhanced sampling of the hindered transitions of protein side
chains and bound ligands. Achieving efficient HREX simulations
improves the quality of predictions. However, the commonly
used overall acceptance ratio is not a good indicator of the
efficiency of the HREX. Instead, acceptance ratio profiles should
be examined and whenever possible made uniform by adjusting
simulation parameters. To aid the future design of efficient
simulation protocols, we have provided a useful relationship
between the mean exchange energy and the corresponding ∂V/
∂λ variance profiles. Guided by the relationship, we demon-
strated that judicial changes in the soft-core potentials consider-
ably improved HREX-SRTI simulation efficiency. Overall, the
HREX-SRTI predicted relative binding free energies for a series
of 12 ligands with an RMSE of 0.3 kcal/mol comparable to
experimental data. Ultimately, improving efficiency of the HREX
simulations may further reduce computational cost and increase
the precision of the predictions.

Note, while this paper was under revision, we discovered a
paper by Steiner and coauthors that used an approach identical to
HREX-SRTI to compute relative free energies of a number of
ligands to Plasmepsin II, albeit without accelerating any residues
of the protein.79

’APPENDIX

For a configuration R, the vertical excitation energy
Δij(R) from a Hamiltonian at λi to that at λj is calculated as
follows:

ΔVijðRÞ ¼ VðR, λjÞ � VðR, λiÞ ðA1Þ

The overall potential energy change ΔΔij(R,R0) for the
generalized ensemble upon Hamiltonian exchange between
two configurations R and R0 from the adjacent windows λi
and λj is

ΔΔijðR,R0Þ ¼ β½ΔVijðRÞ�λi þ β½ΔVjiðR0Þ�λj ðA2Þ

The subscripts after the square brackets indicate the Hamiltonian
of the simulations used to obtain the respective configurations.
Only two configurations representing each λ are involved.

The generalized ensemble average value of the double differ-
ence for a given pair of adjacent replicas is then

ÆΔΔijæ ¼ βÆΔVijæλi þ βÆΔVjiæλj ðA3Þ
Using second order Taylor expansion:

½ΔVijðRÞ�λi≈
∂VðRÞ
∂λ

� �
λi

Δλij þ 1
2

∂
2VðRÞ
∂λ2

" #
λi

ðΔλijÞ2 ðA4Þ

where

Δλij ¼ λj � λi ðA5Þ
we obtain the following expression, which is equivalent to eq 4 in
the main text:

ÆΔΔijæ≈ βΔλij
∂V
∂λ

� �
λi

� ∂V
∂λ

� �
λj

 !

þ βðΔλijÞ2
2

∂
2V

∂λ2

� �
λi

þ ∂
2V

∂λ2

� �
λi

 !

≈ βðΔλijÞ2 ∂
2V

∂λ2

� �
λðiþjÞ=2

� d
dλ

∂V
∂λ

� �
λðiþjÞ=2

 !
ðA6Þ

Recalling eq 5 from the main text we obtain the final relation.

ÆΔΔijæ≈ β2ðΔλijÞ2 var ∂V
∂λ

� �
λðiþjÞ=2

ðA7Þ

’AUTHOR INFORMATION

Corresponding Author
*E-mail: ikhavrutskii@bioanalysis.org.

’ACKNOWLEDGMENT

We would like to thank Dr. In-Chul Yeh, Dr. Michael S. Lee,
and Dr. Hyung-June Woo for stimulating scientific discussions.
Also, we acknowledge the National Cancer Institute (NCI) for
an allocation of computing time and staff support at the
Advanced Biomedical Computing Center (ABCC) at National
Cancer Institute, Frederick, Maryland. This work was sponsored
by the U.S. Department of Defense High Performance Comput-
ing Modernization Program (HPCMP) under the High Perfor-
mance Computing Software Applications Institutes (HSAI)
initiative. Disclaimer: The opinions and assertions contained
herein are the private views of the authors and are not to be
construed as official or as reflecting the views of the U.S. Army or
the U.S. Department of Defense.

’REFERENCES

(1) Boyce, S. E.; Mobley, D. L.; Rocklin, G. J.; Graves, A. P.; Dill,
K. A. J. Mol. Biol. 2009, 394, 747.

(2) Gallicchio, E.; Levy, R. M. Curr. Opin. Struct. Biol. 2011, 21, 161.
(3) Aleksandrov, A.; Thompson, D.; Simonson, T. J. Mol. Recognit.

2010, 23, 117.
(4) Bruckner, S.; Boresch, S. J. Comput. Chem. 2011, 32, 1303.
(5) Chodera, J. D.; Mobley, D. L.; Shirts, M. R.; Dixon, R. W.;

Branson, K.; Pande, V. S. Curr. Opin. Struct. Biol. 2011, 21, 150.
(6) Leavitt, S.; Freire, E. Curr. Opin. Struct. Biol. 2001, 11, 560.
(7) Chaires, J. B. Annu. Rev. Biophys. 2008, 37, 135.
(8) Straatsma, T. P.; McCammon, J. A. J. Chem. Phys. 1994, 101, 5032.



3011 dx.doi.org/10.1021/ct2003786 |J. Chem. Theory Comput. 2011, 7, 3001–3011

Journal of Chemical Theory and Computation ARTICLE

(9) Beutler, T. C.; Mark, A. E.; van Schaik, R. C.; Gerber, P. R.; van
Gunsteren, W. F. Chem. Phys. Lett. 1994, 222, 529.
(10) Shirts, M. R.; Pande, V. S. J. Chem. Phys. 2005, 122, 134508.
(11) Straatsma, T. P.; McCammon, J. A. J. Chem. Phys. 1991, 95, 1175.
(12) Kwak, W.; Hansmann, U. H. E. Phys. Rev. Lett. 2005, 95, 138102.
(13) Fukunishi, H.; Watanabe, O.; Takada, S. J. Chem. Phys. 2002,

116, 9058.
(14) Sugita, Y.; Kitao, A.; Okamoto, Y. J. Chem. Phys. 2000, 113, 6042.
(15) Hritz, J.; Oostenbrink, C. J. Chem. Phys. 2007, 127, 204104.
(16) Hritz, J.; Oostenbrink, C. J. Chem. Phys. 2008, 128, 144121.
(17) Hritz, J.; Oostenbrink, C. J. Phys. Chem. B 2009, 113, 12711.
(18) Woods, C. J.; Essex, J. W.; King, M. A. J. Phys. Chem. B 2003,

107, 13703.
(19) Woods, C. J.; King, M. A.; Essex, J. W. Lect. Notes Comput. Sci.

Eng. 2006, 49, 251.
(20) Jiang, W.; Hodoscek, M.; Roux, B. J. Chem. Theory Comput.

2009, 5, 2583.
(21) Jiang, W.; Roux, B. J. Chem. Theory Comput. 2010, 6, 2559.
(22) Khavrutskii, I. V.; Wallqvist, A. J. Chem. Theory Comput. 2010,

6, 3427.
(23) Shirts, M. R.; Pande, V. S. J. Chem. Phys. 2005, 122, 144107.
(24) Shirts, M. R.; Chodera, J. D. J. Chem. Phys. 2008, 129, 124105.
(25) Shirts, M. R.; Bair, E.; Hooker, G.; Pande, V. S. Phys. Rev. Lett.

2003, 91, 140601.
(26) Bennett, C. H. J. Comput. Phys. 1976, 22, 245.
(27) Kumar, S.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A.;

Rosenberg, J. M. J. Comput. Chem. 1992, 13, 1011.
(28) Deng, Y.; Roux, B. J. Chem. Theory Comput. 2006, 2, 1255.
(29) Mobley, D. L.; Chodera, J. D.; Dill, K. A. J. Chem. Theory

Comput. 2007, 3, 1231.
(30) Mobley, D. L.; Graves, A. P.; Chodera, J. D.;McReynolds, A. C.;

Shoichet, B. K.; Dill, K. A. J. Mol. Biol. 2007, 371, 1118.
(31) Mark, A. E.; van Gunsteren, W. F.; Berendsen, H. J. C. J. Chem.

Phys. 1991, 94, 3808.
(32) Wereszczynski, J.; McCammon, J. A. J. Chem. Theory Comput.

2011, 6, 3285.
(33) Fajer, M.; Hamelberg, D.; McCammon, J. A. J. Chem. Theory

Comput. 2008, 4, 1565.
(34) Fajer, M.; Swift, R. V.; McCammon, J. A. J. Comput. Chem.

2009, 30, 1719.
(35) Hamelberg, D.; Mongan, J.; McCammon, J. A. J. Chem. Phys.

2004, 120, 11919.
(36) Kong, X. J.; Brooks, C. L. J. Chem. Phys. 1996, 105, 2414.
(37) Banba, S.; Guo, Z.; Brooks, C. L. J. Phys. Chem. B 2000, 104, 6903.
(38) Bitetti-Putzer, R.; Yang,W.; Karplus, M.Chem. Phys. Lett. 2003,

377, 633.
(39) Eriksson, M. A. L.; Pitera, J.; Kollman, P. A. J. Med. Chem. 1999,

42, 868.
(40) Pitera, J.; Kollman, P. J. Am. Chem. Soc. 1998, 120, 7557.
(41) Li, H.; Fajer, M.; Yang, W. J. Chem. Phys. 2007, 126, 024106.
(42) Zheng, L.; Yang, W. J. Chem. Phys. 2008, 129, 124107.
(43) Min, D.; Li, H.; Li, G.; Bitetti-Putzer, R.; Yang,W. J. Chem. Phys.

2007, 126, 144109.
(44) Sadowski, J.; Gasteiger, J.; Klebe, G. J. Chem. Inf. Comput. Sci.

1994, 34, 1000.
(45) Renner, S.; Schwab, C. H.; Gasteiger, J.; Schneider, G. J. Chem.

Inf. Model. 2006, 46, 2324.
(46) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case,

D. A. J. Comput. Chem. 2004, 25, 1157.
(47) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P.

J. Am. Chem. Soc. 1985, 107, 3902.
(48) Stewart, J. J. P.MOPAC7; University of Texas, Austin: Austin, TX.
(49) Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I. J. Comput. Chem.

2000, 21, 132.
(50) Jakalian, A.; Jack, D. B.; Bayly, C. I. J. Comput. Chem. 2002,

23, 1623.
(51) Wang, J. Antechamber 2009, 1, 2.

(52) Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. J. Mol. Graphics
Model. 2006, 25, 247.

(53) Nicholls, A.; Mobley, D. L.; Guthrie, J. P.; Chodera, J. D.; Bayly,
C. I.; Cooper, M. D.; Pande, V. S. J. Med. Chem. 2008, 51, 769.

(54) Mobley, D. L.; Bayly, C. I.; Cooper, M. D.; Dill, K. A. J. Phys.
Chem. B 2009, 113, 4533.

(55) Mobley, D. L.; Bayly, C. I.; Cooper, M. D.; Shirts, M. R.; Dill,
K. A. J. Chem. Theory. Comput. 2009, 5, 350.

(56) Shivakumar, D.; Deng, Y.; Roux, B. J. Chem. Theory Comput. 2009,
5, 919.

(57) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson,
G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.;
Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.;
Fukuda,R.;Hasegawa, J.; Ishida,M.;Nakajima,T.;Honda, Y.;Kitao,O.;Nakai,
H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.;
Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.;
Normand, J.; Raghavachari,K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi,
J.; Cossi,M.;Rega,N.;Millam,N. J.;Klene,M.;Knox, J. E.;Cross, J. B.; Bakken,
V.; Adamo,C.; Jaramillo, J.;Gomperts, R.; Stratmann,R. E.; Yazyev,O.; Austin,
A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;
Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.;
Daniels, A. D.; Farkas, €O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.
Gaussian 09, Revision A.1; Wallingford, CT, 2009.

(58) Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A. J. Phys.
Chem. 1993, 97, 10269.

(59) Morton, A.; Matthews, B. W. Biochemistry 1995, 34, 8576.
(60) Bron, C.; Kerbosch, J. Commun. ACM 1973, 16, 575.
(61) Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.;

Simmerling, C. Proteins 2006, 65, 712.
(62) Mobley, D. L.; Chodera, J. D.; Dill, K. A. J. Chem. Phys. 2006,

125, 084902.
(63) Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark,

A. E.; Berendsen, H. J. J. Comput. Chem. 2005, 26, 1701.
(64) Berendsen, H. J. C.; van der Spoel, D.; van, D. R. Comput. Phys.

Commun. 1995, 91, 43.
(65) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem.

Theory Comput. 2008, 4, 435.
(66) Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark,

A. E.; Berendsen, H. J. C. J. Comput. Chem. 2005, 26, 1701.
(67) van der Spoel, D.; Lindahl, E.; Hess, B.; Kutzner, C.; van

Buuren, A. R.; Apol, E.; Meulenhoff, P. J.; Tieleman, D. P.; Sijbers, A. L. T.
M.; Feenstra, K. A.; Drunen, R. v.; Berendsen, H. J. C. GROMACS User
Manual Version 4.0; The GROMACS development team: Groningen,
The Netherlands, 2006.

(68) Blondel, A. J. Comput. Chem. 2004, 25, 985.
(69) Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M.

J. Comput. Chem. 1997, 18, 1463.
(70) Khavrutskii, I. V.; Fajer, M.; McCammon, J. A. J. Chem. Theory

Comput. 2008, 4, 1541.
(71) Trebst, S.; Troyer, M.; Hansmann, U. H. E. J. Chem. Phys. 2006,

124, 174903.
(72) Yeh, I.-C.; Lee, M. S.; Olson, M. A. J. Phys. Chem. B 2008,

112, 15064.
(73) Pohorille, A.; Jarzynski, C.; Chipot, C. J. Phys. Chem. B 2010,

114, 10235.
(74) Simonson, T. Mol. Phys. 1993, 80, 441.
(75) Lange, O. F.; Schaefer, L. V.; Grubmueller, H. J. Comput. Chem.

2006, 27, 1693.
(76) Bash, P. A.; Singh, U. C.; Langridge, R.; Kollman, P. A. Science

1987, 236, 564.
(77) Sines, J. J.; Allison, S. A.; McCammon, J. A. Biochemistry 1990,

29, 9403.
(78) Tan, R. C.; Truong, T. N.; McCammon, J. A.; Sussman, J. L.

Biochemistry 1993, 32, 401.
(79) Steiner, D.; Oostenbrink, C.; Diederich, F.; Zurcher, M.; van

Gunsteren, W. F. J. Comput. Chem. 2011, 32, 1801.



Published: August 07, 2011

r 2011 American Chemical Society 3012 dx.doi.org/10.1021/ct200405w | J. Chem. Theory Comput. 2011, 7, 3012–3018

ARTICLE

pubs.acs.org/JCTC

RI-MP2 and MPWB1K Study of π�Anion�π0 Complexes: MPWB1K
Performance and Some Additivity Aspects
Carolina Garau,† Antonio Frontera,*,† David Qui~nonero,† Nino Russo,*,‡ and Pere M. Dey�a†

†Department de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
‡Department di Chimica, Universit�a della Calabria, 87036 Arcavacata di Rende (CS), Italy

bS Supporting Information

ABSTRACT: Several sandwich complexes of hexafluorobenzene, trifluorobenzene, s-triazine, and trifluoro-s-triazine with halides,
nitrate, and carbonate anions have been optimized at the RI-MP2/6-31++G** (full and frozen core), B3LYP/6-31++G**, and
MPWB1K/6-31++G** levels of theory. All possible combinations of the π-systems and anions (to generate the sandwich
π�anion�π0 complexes) have been computed and analyzed using the aforementioned levels of theory. This allows us to evaluate
the reliability and the performance of the MPWB1K functional to compute the binding energies of the anion�π complexes and to
analyze the additivity of the interaction in π�anion�π0 complexes where the aromatic rings are of different nature (π-acidity). We
have also explored the Cambridge Structural Database and several interesting X-ray structures that support the theoretical
calculations that have been found.

1. INTRODUCTION

Noncovalent interactions play a key role in many areas of
modern chemistry, especially in the fields of supramolecular
chemistry and molecular recognition.1 Interactions involving
aromatic rings are important binding forces in both chemical
and biological systems, and they have been recently reviewed.2

Among them, the favorable interaction of anions with π-acidic
rings, namely anion�π interaction,3 has been extensively studied
theoretically.4 Moreover, the importance of this interaction has
been corroborated by a great deal of experimental work. For
instance, a new family of anion receptors based on anion�π
interactions has emerged.5 In addition, the design and synthesis
of highly selective anion channels6 represents a very significant
progress in this nascent field of supramolecular chemistry. In
addition, the anion�π interaction has been observed in several
biological systems. For instance, it participates in the inhibition of
the enzyme urate oxidase by cyanide7 or the enzymatic chlorina-
tion of tryptophan by PrnA flavin-dependent halogenase.8 There
are several excellent reviews9 that describe different aspects of the
anion�π interaction. From the physicochemical point of view,
the anion�π interaction is dominated by electrostatic and anion-
induced polarization forces.3 The strength of the electrostatic
component depends upon the value of the quadrupole moment
of the arene. The anion-induced polarization term correlates with
the molecular polarizability (R||) of the aromatic compound.10

This manuscript is devoted to the study of three different
topics of the anion�π interaction. First, we report a computa-
tional study where we analyze the geometrical and energetic
features of anion�π complexes at several levels of theory,
including ab initio methods (MP2(FC), RI-MP2(FC), and RI-
MP2(full)) and density functional theory (DFT) methods
(B3LYP and MPWB1K). We study the performance of the
MPWB1K11 method to reproduce the MP2 results in compar-
ison with the more popular B3LYP. It is well-known that DFT,
especially with hybrid functionals, allows predicting accurately

hydrogen-bonding interactions. However in case of π�π stack-
ing interactions, DFT fails completely,12 and the use of DFT-D
(empirical London dispersion) is required.13However this method
is less accurate than other functionals in the case of hydrogen-
bonded systems. More recently, Truhlar and Zhao11 developed
the MPWB1K functional and demonstrated that it gives good
results for both hydrogen-bonding and stacking interactions.
Moreover, Dkhissi and Blossey14 have confirmed the ability of
this functional to describe stacking and hydrogen-bonding
interactions of nucleic acid bases. They have further demon-
strated that the medium basis set (6-31+G**) is sufficient to
predict accurately the stacking interactions and, consequently,
DFT/MPWB1K is very promising for studies of larger bio-
molecules (DNA/RNA bases, proteins, etc.).

Since the credibility of the MPWB1K has not been evaluated
for anion�π interactions, our aim here is to demonstrate that
this functional gives results that are comparable to higher level ab
initio methods. On the other hand, a previous study has demon-
strated that the anion�π interaction is approximately additive in
a reduced number of ternaryπ�anion�π complexes where both
π-systems are equal.15 Furthermore, the additivity of this inter-
action has been recently studied using a totally different ap-
proximation.16 That is, depending on the number of double
bonds and the number of fluorine substituents, the additivity
in several complexes of fluorine-substituted ethyne, ethene,
butadiene, cyclobutadiene, fulvene, benzene, and [n]radialenes
(n = 3�5) has been analyzed. However in the second part of this
work, we have studied an unexplored aspect of the additivity of
the anion�π interaction. That is, we have combined four
aromatic rings and five anions (see Figure 1), in order to have
a large representation of π�anion�π0 complexes and with the
purpose to study if the interaction is additive in these complexes
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where the aromatic rings are different using RI-MP2 and
MPWB1K methods. In the third part, we have explored the
Cambridge Structural Database (CSD),17 and we have found
experimental evidence of the existence of π�anion�π assem-
blies in X-ray structures that have a strong influence in the crystal
packing.

2. THEORETICAL METHODS

The geometry of all binary complexes included in this study
was fully optimized at the MP2(FC)/6-31++G**, RI-MP2(FC)/
6-31++G**, RI-MP2(full)/6-31++G**, MPWB1K/6-31++G**,
and B3LYP/6-31++G** level of theory using the Gaussian 0318

and TURBOMOLE version 5.10.19 See Supporting Information
for Cartesian coordinates of RI-MP2(FC)/6-31++G** and
MPWB1K/6-31++G**optimized structures.TheRI-MP2method20,21

applied to the study of cation�π and anion�π interactions
(among others) is considerably faster than the MP2method, and
the interaction energies and equilibrium distances are almost
identical for both methods.22,23 For the ternary complexes, the
optimizations and binding energy calculations were performed
only at the RI-MP2(FC)/6-31++G** andMPWB1K/6-31++G**
levels of theory. The binding energy was calculated with correc-
tion for the basis set superposition error (BSSE) using the Boys�
Bernardi counterpoise technique.24

The topological analysis of the electron charge density per-
formed for the complexes was determined using Bader’s theory
of “atoms-in-molecules” (AIM).25 The electronic density analysis
was performed using the AIM2000 program26 at the RI-MP2-
(FC)/6-31++G** level of theory. All complexes are stationary
points apart from the fluoride complexes, where the global
minimum corresponds to the nucleophilic attack of the fluoride
to one carbon atom of the aromatic ring.

3. RESULTS AND DISCUSSION

3.1. Preliminary Calculations.Table 1 reports the interaction
energies and equilibrium distances of binary anion�π complexes
1�20 at several levels of theory (see Figure 1), which have been
computed using both ab initio (MP2(FC), RI-MP2(full), and
RI-MP2(FC)) and DFT (MPWB1K and B3LYP) methods and
the 6-31++G** basis set. In agreement with previous reports, the
ab initio MP2 methods give very similar results, indicating that
the frozen core and/or the resolution of the identity (RI)
approximations, that significantly reduce the computational time

Table 1. Interaction Energies Using Several Methods and the 6-31++G** Basis Set With the BSSE Correction (EBSSE, kcal/mol)
and Equilibrium Distances from the Anion to the Ring Centroid (Re, Å) for Complexes 1�20a

complex EBSSE
MP2(FC) Re

MP2(FC) EBSSE
RI-MP2(full) Re

RI-MP2(full) EBSSE
RI-MP2(FC) Re

RI-MP2(FC) EBSSE
MPWB1K Ee

MPWB1K EBSSE
B3LYP Ee

B3LYP

1 (HFB�F�) �18.31 2.570 �18.80 2.566 �18.79 2.566 �19.74 2.624 �17.48 2.656

2 (HFB�Cl�) �12.88 3.148 �13.10 3.154 �12.91 3.154 �12.99 3.297 �10.96 3.310

3 (HFB�Br�) �12.11 3.201 �12.70 3.282 �12.58 3.301 �11.92 3.412 �9.40 3.367

4 (HFB�NO3
�) �12.65 2.917 �12.70 2.927 �12.80 2.931 �10.82 2.985 �8.40 2.911

5 (HFB�CO3
2�) �33.07 2.720 �32.10 2.750 �33.01 2.744 �32.09 2.755 �28.37 2.880

6 (TFB�F�) �7.77 2.748 �7.70 2.755 �7.70 2.758 �7.65 2.995 �6.62 2.854

7 (TFB�Cl�) �4.79 3.323 �4.81 3.336 �4.82 3.341 �4.59 (�4.77) 3.662 (3.656) �3.31 (�3.39) 3.626 (2.569)

8 (TFB�Br�) �4.39 3.359 �4.94 3.468 �4.97 3.487 �3.72 3.422 �2.09 3.640

9 (TFB�NO3
�) �5.62 3.471 �5.72 3.043 �5.71 3.043 �4.07 (�4.39) 3.043 (3.041) �2.59 (�2.50) 3.473 (3.421)

10 (TFB�CO3
2�) �17.33 2.814 �17.32 2.854 �17.34 2.856 �16.47 2.853 �10.05 3.019

11 (TFZ�F�) �24.23 2.390 �24.32 2.385 �22.23 2.385 �26.30 2.327 �23.01 2.416

12 (TFZ�Cl�) �14.98 3.009 �15.05 3.008 �15.05 3.006 �15.63 (�15.69) 3.057 (3.054) �13.00(�13.14) 3.155 (3.150)

13 (TFZ�Br�) �14.00 3.137 �14.19 3.176 �14.11 3.157 �13.72 3.156 �10.89 3.267

14 (TFZ�NO3
�) �13.01 2.805 �13.04 2.814 �13.06 2.816 �12.21 (�12.32) 2.830 (2.868) �8.89 (�8.93) 3.047 (3.063)

15 (TFZ�CO3
2�) �36.94 2.505 �36.95 2.520 �37.95 2.520 �40.21 2.508 �35.30 2.602

16 (TAZ�F�) �9.70 2.592 �9.76 2.584 �9.74 2.582 �11.02 2.625 �8.92 2.659

17 (TAZ�Cl�) �5.22 3.223 �5.27 3.220 �5.24 3.219 �5.57 3.475 �4.01 3.475

18 (TAZ�Br�) �5.01 3.339 �5.05 3.338 �5.22 3.402 �5.23 3.462 �2.99 3.582

19 (TAZ�NO3
�) �5.34 3.003 �5.37 3.007 �5.36 3.009 �4.21 3.016 �2.59 3.318

20 (TAZ�CO3
2�) �16.85 2.751 �16.90 2.756 �16.90 2.758 �19.23 2.750 �12.18 2.859

rmsd � � 0.31 0.102 0.54 0.104 1.323 0.162 3.107 0.181
aThe computed values using the 6-311++G** basis set are indicated in parentheses. The root-mean-square deviation (rmsd) for the different levels with
respect to MP2(FC) results is also shown.

Figure 1. Aromatic rings used in this work and anion�π complexes
1�20.
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of calculation, are fully applicable in these systems. A more
detailed analysis of Table 1 shows that when comparing the
results obtained using RI-MP2(FC) with those obtained
using MP2(FC), the largest difference is found in complex 8
(TFB�Br�), which is overestimated in 0.6 kcal/mol using the RI
approximation. This provokes the bromide complex to become
more favorable than the chloride complex, in spite of having a
larger equilibrium distance. A similar overestimation (0.5 kcal/mol)
is observed inHFB�Cl� andHFB�Br� complexes, although in
this case, the chloride complex is more favorable. Moreover, the
differences between the interaction energies computed at the
RI-MP2(full) and RI-MP2(FC) are also small, being the largest
difference 2.1 kcal/mol in the TFZ�F� complex (11). The
equilibrium distances are almost equivalent for both methods;
the maximum difference is 0.06 Å in complexTAZ�Br� (18). In
spite of these small differences, the utilization of the RI-MP2(FC)
method is convenient, since it gives almost identical interaction
energies and equilibrium distances with a significantly reduced
computational cost.
In terms of energetic and geometric results gathered inTable 1,

a good performance of the MPWB1K method is observed since
they are comparable to MP2 results. In addition, the MPWB1K
method gives much better results than the more popular B3LYP
method. In general the B3LYP method underestimates the
interaction energies with respect to MP2 results. For instance,
the interaction energy of complex TFB�CO3

2� at the B3LYP/
6-31++G** differs in∼6 kcal/mol with respect to the other levels
of theory. In addition the interaction energies obtained using the
B3LYP functional are between 2 and 4 kcal/mol less favorable
than theMP2 ones for the rest of the complexes. The equilibrium
distances are larger using the DFT than the MP2 methods. For
the MPWB1K functional, the largest differences are found in
complexes TAZ�Cl� and TFB�Cl� (around 0.3 Å). We have
included in Table 1 the root-mean-square deviation (rmsd)
between the reference method (MP2(FC)) and the other
computational levels. The rmsd values for both RI-MP2 levels
are very small for both energies and distances. In addition, the
rmsd values obtained for the DFT calculations clearly demon-
strate that the MPWB1K method is more reliable than the B3LYP
method to study these complexes. Finally, for some complexes
(using both MPWB1K and B3LYP functionals), we have also
obtained the geometries and energies using the more flexible
6-311++G** basis set (values in parentheses, see Table 1). The
geometric and energetic results are almost equivalent, indicating
that the 6-31++G** basis set is of sufficient quality to perform
this study.
3.2. Ternary π�anion�π0 Complexes. Once demonstrated

in the previous section of the manuscript that the RI-MP2(FC)

and MPWB1K methods give reliable and comparable results, we
have studied the additivity of the anion�π interaction in
π�anion�π0 complexes using the four aromatic rings used so
far (see Figure 1). Two of them (HFB and TFZ) are strongly
π-acidic (large and positive quadrupole moment), therefore, in
their complexes, the interaction will be dominated by both
electrostatic and ion-induced polarization effects.10 The other
two aromatic rings (TFB and TAZ) have negligible quadrupole
moments, and the interaction will be dominated only by polar-
ization effects.27,28 The additivity of the interaction has been
analyzed in the ternary π�anion�π0 complexes using all possible
combinations of HFB, TFB, TFZ, and TAZ and the five anions
considered in this work (F�, Cl�, Br�, NO3

�, and CO3
2�). As a

result, we have optimized the complexes 21�50 shown in
Figure 2 at both RI-MP2(FC)/6-31++G** and MPWB1K/
6-31++G** levels of theory.
The energetic and geometric results are summarized in Table 2.

In all cases the interaction energies are large and negative, indicat-
ing a very favorable interaction. As expected complexes 26�30 are
more favorable than the rest because both aromatic rings (HFB and
TFZ) present large and positive values of quadrupole moment
(Qzz = 9.50 and 8.23 B, respectively). The contrary is observed
in complexes 41�45 because in this case both aromatic rings (TFB
and TAZ) have negligible values of quadrupole moment (Qzz =
0.19 and 0.99 B, respectively), and the interaction is dominated
only by ion-induced polarization effects. For the rest of complexes,
where one aromatic ring is electron-deficient (Qzz > 8 B) and the
other is neutral (Qzz ≈ 0 B), the interaction energies are compar-
able for each series of anions. Therefore the interaction energies
exhibit a clear trend depending on the π-acidity of the rings. For
instance, for F� the interaction energy varies from�39.9 kcal/mol
in strong π-acidic rings to around �28 kcal/mol in hybrid com-
plexes that combine high and low π-acidic rings and finally to
�16 kcal/mol in weak π-acidic rings. Likewise, the interaction for
Cl�, Br�, and NO3

� varies from around �25 to �18 and to �10
kcal/mol for the same groups, suggesting a qualitative relationship
with the π-acidic nature of the ring.
In Table 2 we also summarize the “ideal” interaction energy

(Eideal) that is obtained by summing the interaction energies of
the two related binary complexes (see Table 1). For instance in
ternary complex 21 (HFB�F��TFB), the Eideal is the sum of
the interaction energies of binary complexes 1 (HFB�F�) and 6
(TFB�F�). The Eideal can be understood as the expected
interaction energy of the ternary complex, considering the
interaction is totally additive. From the results reported in
Table 2, it can be observed that the difference between the
Eideal and the EBSSE (ΔEideal) is smaller for the ab initio than for
the DFT method. As a matter of fact ΔEideal is smaller than

Figure 2. Schematic representation of π�anion�π0 complexes 21�50.



3015 dx.doi.org/10.1021/ct200405w |J. Chem. Theory Comput. 2011, 7, 3012–3018

Journal of Chemical Theory and Computation ARTICLE

2 kcal/mol for all complexes apart from CO3
2� complexes at the

RI-MP2/6-31++G** level of theory. Therefore the interaction
energy is approximately additive for all monoanionic complexes.
For carbonate dianion, the ΔEideal values are greater than for the
rest of complexes, ranging from�1.7 to�6.5 kcal/mol. However
it should be remarked that the interaction energy in these
complexes is very large, and therefore the difference between
the “ideal” and “real” interaction energies increases. In addition
the two negative charges of the carbonate ion may promote a
larger polarization in the sandwich complex than in the two
binary anion�π complexes. In addition, in almost all complexes,
the ΔEideal energies are negative, which means that the interac-
tion energy is always less favorable than expected from the sum of
the interaction energies of the binary complexes. Regarding the
equilibrium distances, they are mostly unaffected by the presence
of an additional anion�π interaction. As an example, in all
ternary complexes of chloride, which are represented in Figure 3,
the equilibrium distances are almost equivalent with respect to
the related binary complexes. For the rest of the complexes, the
largest variation is found in complex TFB�Br��TAZ (43),

where theπ�anion distance increases in 0.063Å and the anion�π0
distance increases in 0.094 Å. Finally, the performance of the
DFT method should be emphasized since it is able to reproduce
the interaction energies of the ternary complexes computed at
the RI-MP2(FC)/6-31++G** level of theory. The agreement of
MPWB1K and RI-MP2(FC) methods is illustrated in Figure 4
and the rmsd values provided in Table 2. For two complexes, we
have also validated the utilization of the 6-31++G** basis set by
computing the geometries and the energies at the MPWB1K/
6-311++G** level of theory and obtaining very similar results
(values in parentheses in Table 2).
To further confirm the additivity of the anion�π interaction in

these systems, we have used the Bader’s theory of atoms in
molecules (AIM), which provides an unambiguous definition of
chemical bonding,29 using the MP2(FC)/6-31++G** wave func-
tion. The AIM theory has been successfully used to characterize
anion�π interactions and to analyze nonadditivity effects.16 The
distribution of critical points in several representative complexes
is shown in Figure 5. For the anion�π complex 12 (TFZ�Cl�),
the exploration of the CPs revealed the presence of three bond

Table 2. Interaction Energies (in kcal/mol) with the BSSE Correction for π�Anion�π0 Complexes 21�50 at RI-MP2(FC)/
6-31++G** and MPWB1K/6-31++G** Levels of Theorya

π�anion�π0 complex EBSSE
RI-MP2 Eideal

RI-MP2 ΔEideal
RI-MP2 Rπ�anion Ranion�π0 EBSSE

MPWB1K Eideal
MPWB1K ΔEideal

MPWB1K Rπ�anion Ranion�π0

HFB�F��TFB (21) �25.01 �26.50 �1.49 2.539 2.704 �25.82 �27.38 �1.56 2.631 2.683

HFB�Cl��TFB (22) �17.68 �17.73 �0.05 3.132 3.330 �17.01 �17.59 �0.58 3.252 3.306

HFB�Br��TFB (23) �17.28 �17.56 �0.27 3.273 3.446 �14.79 �15.64 �0.86 3.324 3.412

HFB�NO3
��TFB (24) �17.77 �18.51 �0.74 2.917 3.020 �13.99 �14.89 �0.90 3.023 3.046

HFB�CO3
2��TFB (25) �47.42 �50.34 �2.92 2.742 2.886 �44.88 �48.57 �3.68 2.766 3.020

HFB�F��TFZ (26) �39.94 �41.02 �1.08 2.374 2.617 �41.86 �46.04 �4.17 2.642 2.368

HFB�Cl��TFZ (27) �26.65 �27.96 �1.31 2.974 3.103 �27.20 �28.62 �1.42 3.253 3.063

HFB�Br��TFZ (28) �25.61 �26.69 �1.08 3.182 3.277 �24.27 �25.64 �1.38 3.308 3.144

HFB�NO3
��TFZ (29) �24.07 �25.85 �1.78 2.815 2.919 �20.99 �23.03 �2.04 3.017 2.890

HFB�CO3
2��TFZ (30) �63.53 �70.06 �6.53 2.567 2.765 �63.46 �72.31 �8.85 2.778 2.563

HFB�F��TAZ (31) �27.14 �28.53 �1.39 2.552 2.570 �28.54 �30.75 �2.22 2.633 2.570

HFB�Cl��TAZ (32) �18.09 �18.16 �0.06 3.135 3.220 �17.92 �18.56 �0.64 3.132 3.216

HFB�Br��TAZ (33) �17.57 �17.80 �0.24 3.279 3.380 �15.36 �17.15 �1.79 3.262 3.376

HFB�NO3
��TAZ (34) �17.45 �18.16 �0.71 2.920 3.006 �14.14 �15.03 �0.89 3.020 3.038

HFB�CO3
2��TAZ (35) �46.92 �49.91 �2.99 2.749 2.794 �46.64 �51.32 �4.68 2.769 2.787

TFB�F��TFZ (36) �30.41 �29.93 0.48 2.724 2.378 �32.34 �33.95 �1.60 2.692 2.343

TFB�Cl��TFZ (37) �19.56 �19.87 �0.31 3.312 3.014 �19.68 (�21.80) �20.22 (�20.46) �0.55 (1.34) 3.302 (3.299) 3.059 (3.063)

TFB�Br��TFZ (38) �18.72 �19.08 �0.36 3.462 3.183 �16.79 �17.45 �0.66 3.390 3.149

TFB�NO3
��TFZ (39) �18.07 �18.77 �0.70 3.023 2.803 �14.94 (�15.30) �16.28 (�16.71) �1.34 (�1.41) 3.037 (3.031) 2.867 (2.863)

TFB�CO3
2��TFZ (40) �50.55 �54.39 �3.84 2.888 2.541 �51.26 �56.69 �5.43 3.017 2.525

TFB�F��TAZ (41) �16.93 �17.44 �0.51 2.750 2.583 �17.87 �18.66 �0.79 2.683 2.570

TFB�Cl��TAZ (42) �10.13 �10.06 0.06 3.328 3.223 �10.26 �10.16 0.10 3.319 3.398

TFB�Br��TAZ (43) �10.32 �10.20 0.12 3.531 3.432 �8.49 �8.95 �0.46 3.413 3.476

TFB�NO3
��TAZ (44) �10.96 �11.07 �0.11 3.027 2.995 �7.80 �8.27 �0.47 3.041 3.038

TFB�CO3
2��TAZ (45) �32.54 �34.24 �1.70 2.868 2.773 �32.57 �35.70 �3.14 3.009 2.778

TFZ�F��TAZ (46) �32.32 �31.97 0.35 2.382 2.577 �35.01 �37.32 �2.31 2.366 2.572

TFZ�Cl��TAZ (47) �19.96 �20.29 �0.33 3.008 3.220 �20.85 �21.20 �0.34 3.063 3.387

TFZ�Br��TAZ (48) �18.93 �19.33 �0.40 3.186 3.382 �18.07 �18.95 �0.88 3.157 3.467

TFZ�NO3
��TAZ (49) �16.97 �18.42 �1.45 2.809 3.004 �15.47 �16.41 �0.94 2.831 3.025

TFZ�CO3
2��TAZ (50) �49.85 �53.96 �4.10 2.547 2.811 �52.47 �59.45 �6.98 2.540 2.797

rmsd - - - - - 1.93 2.48 1.27 0.111 0.086
aThe ideal interaction energy (sum of the energies of the corresponding binary complexes, Eideal) and the difference between this energy and the
interaction energy (ΔEideal) are also shown. The computed values using the 6-311++G** basis set are indicated in parentheses. The rmsd for the different
levels with respect to MP2(FC) results is also shown.
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and three ring CPs that connect the anion with the carbon and
nitrogen atoms of the arene, respectively. The interaction is
further described by the presence of a cage CP that it is located
along the main symmetry axis (see Figure 5). The distribution
of the CPs for complex 17 (TAZ�Cl�) is identical. In the

π�anion�π0 complex 47 (TFZ�Cl��TAZ) the exploration
of the CPs revealed the same number and distribution than
the binary complexes. A common feature of the complexes is the
presence of a cage CP linking the anion with the center of the
ring, as is common in the anion�π complexes.4 As a matter of
fact, the value of the charge density (F) at the cage CP has been
used as a measure of bond order, and it is related to the strength
of the interaction.4 In Figure 5 we have included the values of F at
the cage CPs. It can be appreciated that the value of F in complex
12 is considerably greater than the one for complex 17, in
agreement with the interaction energies (see Table 1). It is
interesting to compare the values of F obtained for the ternary
complex 47 to those of the binary complexes 12 and 17. It can be
observed that the values of F are very similar (see Figure 5),
indicating that the bond order of each anion�π interaction in the
ternary complex does not change with respect to the binary
complexes. Consequently, each interaction is not affected by the
presence of the second aromatic ring, thus confirming the
additivity of the anion�π interaction.
3.4. CSD Study. The CSD17 is a convenient and reliable

storehouse for geometrical information. The utility of small-
molecule crystallography and the CSD in analyzing geometrical
parameters and nonbonding interactions is well established.30

We have explored the CSD searching crystallographic fragments
where π�anion�π assemblies are present in the solid state. We
show in Figure 6 three selected examples (CSD reference codes:
KEZNIH,31 NIGPOJ,32 and XELVUG)33 that we have retrieved
from the database where the π�anion�π binding motif is very
relevant and crucial in the crystal packing. The KEZNIH
structure was published by Zhou et al.31 as a part of a very
interesting manuscript where the authors report the self�assem-
bly of Ag(I) coordination networks directed by anion�π inter-
actions. In their study of Ag(I) metal complexes with 2,4,6-tri
(2-pyridyl)-1,3,5-triazine (tpt), they found that polyatomic anions
(ClO4

�, BF4
�, and PF6

�) directed the self-assembly of Ag-tpt

Figure 3. RI-MP2(FC)/6-31++G** optimized structures of π�Cl��π0
complexes. Distances (in Å) in italics correspond to the binary anion�π
complexes.

Figure 4. Plot of the interaction energies of all series of π�X�π0
complexes (X = F�, Cl�, NO3

�, and CO3
2�) at two levels of theory.

The bromide complexes have been omitted for clarity.

Figure 5. Schematic representation of the CPs obtained for complexes
12 (TFZ�Cl�), 17 (TAZ�Cl�), and 47 (TFZ�Cl��TAZ). Bond
CPs are represented in red, ring CPs in yellow, and cage CPs in green.
The values of F at the cage CPs are in atomic units.

Figure 6. Selected fragments of the X-ray crystal structures of KEZNIH,
NIGPOJ and XELVUG.
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coordination polymers through infinite π�anion�π interac-
tions, as can be observed in the X-ray structure shown in Figure 6,
where the anions interact with the central triazine ring of the tpt
ligands in the X-ray crystal structure. Notably, the same binding
motif is found in the other two X-ray structures published by
Zhou et al. using BF4

� and PF6
� as counterions and the same

ligand. In fact, in all three structures, the anions are located on the
C3-axis above and below the central triazine rings of the tpt
ligands, as it is observed in KEZNIH. The XELVUG structure
was reported by Dunbar and co-workers in their investigation on
the role of anion�π interactions in the assembly of Ag(I)
complexes using the 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine (bptz)
ligand.33 This work was the first example of a comprehensive
investigation of anion�π interactions as controlling elements in
self-assembly reactions. They reported the formation of com-
plexes of different structural types depending on the experi-
mental conditions and the anion used. Interestingly the reaction
of Ag(I) and bptz in a 1:1 ratio in the presence of PF6

� ions
afforded a polymer, as indicated by the single-crystal X-ray
structural determination (Figure 6, bottom). Anion�π interac-
tions are a major factor in stabilizing the structural motif where
the anion is sandwiched between two central s-tetrazine rings of
the ligands. Finally, NIGPOJ structure was published by Black
et al.,32 and it consists in a coordination polymer formed from
Ag(I) ions and bis(4-pyrimidylmethyl)sulphide. It has the ability
to encapsulate PF6

� anion via a uniform mode of π�anion�π
binding. The combination of this ligand with silver salts of other
anions like BF4

� and ClO4
� in a 1:1 molar ratio gives isomor-

phous complexes. Anions embedded in the cavities formed by
this open network are held in place by four complementary
π�anion�π sandwich interactions with two pyrimidine rings
(see Figure 6). These three important investigations provide
strong experimental evidence for the usefulness of π-acidic rings
in the design of anion receptors coordinated to transition-metal
ions (that increase the π-acidity of the ring), which are bound to
their counterions via multiple π�anion�π interactions, demon-
strating the potential use of this binding motif in a structurally
directing role.

4. CONCLUSION

The results derived from this study reveal that the interaction
energies and the equilibrium distances of several anion�π
complexes are well described using the MPWB1K functional.
The performance of this method is considerably better than the
widely used B3LYP functional in comparison to the ab initio
MP2 method. In addition, the ability of the MPWB1K functional
to describe the energetic and geometric parameters in π�anion�π0
complexes has been demonstrated. Moreover, we have also
demonstrated that the interaction is approximately additive in
these complexes, especially when the anion is monoanionic.
Finally, we have explored the CSD, and we have found several
interesting examples where the π�anion�π assemblies are
crucial to understand the architecture of the X-ray structure.
Therefore, the potential of multiple anion�π interactions for the
design of novel sensors, hosts, catalysts, and materials is
anticipated.
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A Failure of DFT Is Not Necessarily a DFT Failure�Performance
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ABSTRACT: The claim that DFT does not provide an accurate description of a weak Ru�C interaction (J. Chem. Theory Comput.
2007, 3, 665�670) is put into broader perspective. Themismatch between structures obtained fromDFT (BP86) as well as DFT-D
(BP86-D2) calculations of isolated molecules in the gas phase and geometries resulting from X-ray crystal structure determination is
due to a dissatisfactory chemical model system. Intermolecular forces within themolecular surroundings of the crystal obtained from
semiempirical lattice energy calculations emerge as likely candidates responsible for the incongruity of experimental results and
computation.

’ INTRODUCTION

In a short article recently published in the Journal of Chemical
Theory and Computation, Perdew and co-workers discuss some
fundamental issues in ground-state density functional theory
(DFT).1 The authors forego equations and tables, and the article
reads like a collection of DFT-apothegms, centered around some
prime problems. When addressing the question whether or not
all approximations are created equal, the authors make reference
to Mel Levy, who “has stressed that, when an investigator reports
a ‘failure of density functional theory’, he or she is typically
reporting the failure of a given density functional approximation
and should say that.” Perdew and co-workers further suggest that
users should utilize several different density functionals as a check
on consistency of their results.1

By now, the practice to appropriate a variety of density func-
tionals for one particular problem has found general recognition
among computational chemists and users of computational
chemistry tools, and it reflects the essence of many meaningful
benchmark studies. For a representative review of the general
performance of density functionals based on reliable proof of
principle computations, we refer the reader to the recent work of
Ramos and co-workers.2 Nevertheless, a brief inspection of the
current literature reveals that new work continues to be pub-
lished reporting failures of density functional theory. While most
of these studies pass the Levy test with flying colors, not all of
them qualify as indicators of a DFT failure. When it comes to
chemical quandaries, not only an improper sampling of the
density functional space but also an inadequate construction of
the representative model scenario is likely to result in a failure of
DFT. Only if exploration of an entire verified subset of currently
available functionals in conjunction with a factual chemical embodi-
ment fails to produce reliable results might an unsuccessful
density functional calculation indicate a DFT failure.

In the present work, we will revisit a case that prompted
statements and speculations of a DFT failure, supposedly due to
an improper chemical model system. We also suggest a simple pro-
cedure of how such a case might be identified (but not necessarily
rectified). Before we present and discuss our results, we set the
stage and shed some light on the chosen problem.

’BACKGROUND

An article recently published in the Journal of Chemical Theory
and Computation addresses the apparent failure of a variety of
density functionals in the description of the geometry of the
dicationic Ru(IV) allyl complex [Ru(η5-C5H5)(η

3-CH2CHCH-
C6H5)(CH3CN)2]

2+.3 The question is posed whether the futile
geometry optimization of this transition metal compound pro-
vides any evidence for a DFT failure.

It is commonly understood that the ultimate test for success of
DFT is acceptable agreement with experimental results. Various
gauges of comparison are conventionally utilized for entities of
the realm of chemistry, but reproduction of geometric parameters
remains one of the most decisive test criteria. Special attention
needs to be drawn to the field of transition metal (TM) chemistry,
which not only spearheaded themajor success ofDFT in chemistry4

but also confronts any chemist who employs computations with a
profusion of challenges. Since the problem at hand falls into the
area of TM chemistry, we refer the reader to recent work of
Cramer and Truhlar for an authoritative review of state of the art
TM-DFT.5

The drawn conclusions were based on a comparison of opti-
mized geometries of the chosen model compound with results of
an X-ray structure determination of an analogous complex with
permethylated cyclopentadienyl units, and the key results are
reproduced in Figure 1. It was found that all density functional
methods employed resulted in an unsatisfactory description of
the coordinationmode of theη3-allyl unit. In particular, the Ru�C3
separation was overestimated by 20�50 pm, which gave rise to
considerations of a DFT failure.

To put this result into proper perspective, one should keep in
mind that molecular arrangements as obtained from crystal
structure analyses are not always good representatives of the
geometry of the isolated and unperturbedmolecule. If the potential
energy surface around relevant internal molecular coordinates
exhibits a shallow profile and does not display a pronouncedmin-
imum, intermolecular dispersive forces and electrostatic interactions

Received: July 8, 2011
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might significantly influence the geometry of the molecular unit
in the solid state. For this reason, B€uhl and co-workers proposed
a set of geometric reference data for second-row transition-metal
complexes, collated from sufficiently precise gas-phase electron-
diffraction experiments, as a testing ground for existing density
functionals.6 Evaluation of various density functionals in the
description of 4d-TM complexes indicated that DFT only slightly
overestimates the experimental bond lengths with small devia-
tions of 2�3 pm. Further, the authors note that bond lengths
involving Ru are particularly well reproduced.6 Thus, the results
of DFT calculations for the Rumodel complex clearly fall short in
meeting the expectations of an acceptable DFT performance.

The authors have critically analyzed their work in the search
for reasons and remedies for the unsatisfactory DFT perfor-
mance. For one, an exploration of the potential energy surface
(PES) around the critical Ru�C3 distance revealed that a
decrease in Ru�C3 separation from the B3LYP-optimized value
(279 pm) to the crystal structure equivalent (238 pm) is
accompanied by a destabilizing change in energy of only about
13 kJ/mol. It is concluded that “this reflects a reasonably flat PES
with respect to Ru�C3 stretching, indicating a weak interaction
with probably a strong component of dispersion forces”.3 It is
noted that the development of DFT approaches that accurately
model London dispersion interactions represents an active field
of ongoing research efforts, and one straightforward approach to
the problem at hand is treatment of dispersion correction as an
add-on to standard density functionals either empirically7 or
semiempirically.8 By now, density functional theory with added
dispersion (DFT-D) has already found its entry into major
quantum chemical computer programs, and a recent review article
provides a peremptory entry to the field of dispersion DFT.9

Besides the limitations of the theory level, other reasons may
be responsible for the mismatch between the calculated and the
experimental Ru�C3 separation. One aspect concerns the
adequacy of cyclopentadienyl C5H5

� as a model for the permethy-
lated system C5(CH3)5

�. Additional calculations on [Ru(η5-C5-
(CH3)5)(η

3-CH2CHCHC6H5)(CH3CN)2]
2+ have been carried

out,3 and the results demonstrate that the nature of the model

used for the dication is not the main cause for the poor per-
formance observed with B3LYP in particular, and by conjecture
with DFT in general.

Furthermore, so-called solid-state packing effects need to be
considered. The authors argue that a “close look at the X-ray
structure seems to exclude the possibility that the presence of the
counterions (PF6

�) leads to a distortion of the allyl coordination
geometry.”3 However, crystal effects are not always evident by
close inspection alone; for the cation [CpClZrClZrCp3]

+, the
negative charge field of its molecular environment in the crystal
has a significant influence on the Zr�Cl distances,10 and the bent
molecule tBu3PCuOSiPh3 (—(Cu�O�Si) = 117� in the gas
phase) undergoes linearization in the solid state due to inter-
molecular dispersive interactions.11 The capabilities and pro-
spects of readily available atomistic simulation packages12 allow
one to promote “crystal packing” from the status of deus ex
machina to a quantifiable effect.

The proper construction of a suitable model system for an
extended chemical system such as the one previously discussed3

constitutes the main focus of the present work. Dispersive interac-
tions, not only intramolecular but also intermolecular, receive
special attention.

’COMPUTATIONAL DETAILS

DFT calculations for isolated molecules in the gas phase were
carried out with the Amsterdam Density Functional suite of
programs ADF, version 2008.01.13 The general gradient approx-
imation (GGA) constitutes the basic computational framework,
and the functional employed—BP86—was chosen from the set
of functionals utilized in previous work3 guided by results of
benchmark studies.6Within the architecture of the ADF program
package, such calculations are based on the local density approx-
imation with Slater exchange14 and VWN-V correlation,15 aug-
mented by gradient corrections for exchange and correlation due
to Becke16 and Perdew,17 respectively. DFT-D calculations
include a dispersion correction added to the energy terms.8

Figure 1. Geometry of the model compound [Ru(η5-C5H5)(η
3-CH2CHCHC6H5)(CH3CN)2]

2+ and values for the Ru�C3 separation (in pm)
obtained from the experiment and computations at various levels of theory (adapted from ref 3 with permission by the American Chemical Society).
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Molecular orbitals were expanded in an uncontracted set of
Slater-type orbitals (STOs) of polarized triple-ζ quality.18 For
TM complexes with permethylated cyclopentadienyl ligands, the
basis set for H atoms was reduced to double-ζ quality. Core shells
(C, N, O, F: 1s; P: 1s2s2p; Ru: 1s2s2p3s3p3d) were treated by
the frozen-core approximation.19

ReportedDFT energy values EDFT refer to total bond energies
(TBE), computed as an energy difference between a molecule
and single atoms, which are computed as spherical symmetric
and spin-restricted. For the DFT-D energy values EDFT-D, the
total bond energy is augmented by intramolecular dispersion
energies (IDE).

Atomic charges were estimated by using models that are based
on separation of the electron density in real space rather than on a
basis-set-based partitioning. Most often, use is made of the
electronic densities of the molecule F(r) and of a fictitious
promolecule Fpromolecule(r), the promolecule density being
defined as the sum over the spherically averaged ground-state
atomic densities. Such models seem to be an appropriate
choice when using charges to calculate lattice energies within
a crystal.

Hirshfeld atomic charges qA
Hmake use of a properly weighted

molecular density, the weight function being the ratio of the
charge density of the free atom to that of the promolecule
(eq 1):20

qHA ¼ ZA �
Z

FAðrÞ
FpromoleculeðrÞ

FmoleculeðrÞ dr ð1Þ

Voronoi atomic charges qA
V are based on deformation den-

sities, Fdef(r) = F(r)� Fpromolecule(r), and are obtained by direct
spatial integration of the electron deformation density over an
atomic domain.21

Lattice energies U have been estimated with the help of the
General Utility Lattice Program (GULP), version 3.0.1.22 U has
beenmodeled as the sum of pairwise interactions within a crystal,
excluding intramolecular contributions to Coulomb terms and
dispersive interactions (eq 2).

U ¼ ∑
ij
ðUCoulomb

ij þ Udispersion
ij Þ ð2Þ

Coulomb interactions were based on charges obtained from
Hirshfeld populations, Uij

Coulomb(qA
H), or Voronoi deformation

densities, Uij
Coulomb(qA

V) (eq 3).

UCoulomb
ij ¼ qiqj

4πε0Rij
ð3Þ

In a straightforward approach, energy contributions to dis-
persive interactions were obtained from a simple C6-type disper-
sion potential (eq 4):

UC6
ij ¼ � Cij

6=R
6
ij ð4Þ

C6 coefficients for atoms were taken from the work of
Grimme;8 C6

ij combined coefficients for pairs of atoms were
estimated as the harmonic mean of the corresponding atomic
coefficients, a well-known combination rule for potential param-
eters first proposed by Fender and Halsey.23

A refined model takes its contributions to intermolecular
dispersive interactions from a truncated damped dispersion

potential, as suggested by Tang and Toennies (eq 5).24

Udamped�TT
ij ¼ � 1� ∑

6

k¼ 0

ðbijRijÞk
k!

( )
expð � bijRijÞ

" #
Cij
6

R6
ij

ð5Þ
Damping coefficients bij were based on a comparison of the

dispersive corrections obtained from the Tang�Toennies
potential with those obtained from a Fermi-function damped
potential, proposed by Wu and Yang.7 This damping function
fd(R) contains the value R0—the sum of atomic van der Waals
(vdW) radii—and it depends only on one additional parameter
β. Wu and Yang determined a value of 23 for β, requiring fd(R) =
0.99 at R = 1.2R0. To account for the constraints of a crystal
lattice, this requirement was tightened to fd(R) = 0.99 at
R = 1.125R0, which leads to β = 37. Thus, the defining equa-
tion for the damping coefficient bij of an atom pair reads as
follows (eq 6):

Udamped � TT
ij ðRref Þ ¼ � ð1=ð1 þ exp�37ðRref=R0 � 1ÞÞÞ C

ij
6

R6
ref

ð6Þ
The reference distance Rref was chosen as distance Rmin—the

distance at which the Fermi-function damped potential reaches
its minimum—to which the harmonic mean of the atomic
covalent radii was added. Following Wu and Yang, the vdW radii
to construct R0 were taken from the work of Bondi (H, C, N, O,
F, P);25 a vdW radius for Ru was reported by Batsanov.26

Covalent atomic crystal radii27 were chosen to build reference
distances Rref. Damping coefficients bij obtained from an adjust-
ment based on the DFT-D2 dispersion potential8 yield qualita-
tively the same results. The interested reader will find further
information on the construction of the dispersion potentials in
the Supporting Information.

Geometric analyses of crystal structures and crystal graphics
utilized the program Mercury CSD, version 2.3.28 Additional
molecular graphics were created with help of the program Jmol.29

’RESULTS

A crystal structure30 taken from the Cambridge Structural
Database (CSD) constitutes the reference system for the present
and previous3 work. Bis-acetonitrile-(η5-pentamethylcyclopen-
tadienyl)-(η3-phenylallyl)-ruthenium bis (hexafluorophosphate)
acetone solvate, referenced as CSD crystal structure HEQNEX,
crystallizes in the space group P1 with two asymmetric units per
unit cell. We thus have optimized geometries of [Ru(η5-C5-
(CH3)5)(η

3-CH2CHCHC6H5)(CH3CN)2]
2+ (1), [PF6]

� (2),
and (CH3)2CO (3) as well as of the model system [Ru(η5-
C5H5)(η

3-CH2CHCHC6H5)(CH3CN)2]
2+ (10). The nomen-

clature is such that an afterscript x refers to crystal structure
geometries, u to results from DFT calculations, and d to results
from DFT-D calculations, while s indicates not an optimized but
a suitably adjusted geometry, to be specified later.
IsolatedMolecules.Themolecular framework of 1 is depicted

in Figure 2. The key-problem of the present and previous work
relates to the intramolecular structure relationship of the atoms
Ru, C1, C2, and C3; essential geometric parameters are collected
in Table 1.
The discussion centers around the distance dRuC between

atoms Ru and C3, laxly referred to as bond distance.3 A closer
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inspection of the geometry of 1 reveals that dRuC is not the best
choice for one of the three major internal coordinates that
characterize the coordination around atom C3. If one seeks to
define the internal coordinate that describes a distance between
two atoms such that the chosen distance comes closest to an
accepted value of a covalent bond, the distance dCC(C2�C3),
but not the distance dRuC(Ru�C3), emerges as the best choice
for one of the major internal coordinates of atom C3. It is the
dihedral angle —(C3�C2�C1�Ru) that establishes a geo-
metric relationship between the atoms Ru and C3. This internal
coordinate in turn determines the separation betweenC3 and the
transition metal center. In the present work, this angle is referred
to as significant torsion σ. Values for the significant torsion σ are
also listed in Table 1.
In previous work, additional calculations (B3LYP) with the

Ru�C3 distance fixed at the experimental value of 238 pm have
been carried out; the small change in energy going from the local
minimum geometry to the adjusted structure, ΔEdisr = 13 kJ/
mol, was interpreted as “reasonably flat PES with respect to
Ru�C3 stretching.”3 It remains unclear which other internal
coordinates have been affected by this change in Ru�C3 separation.
As noted above, the significant torsion σ is a suitable internal

coordinate describing the coordination around C3, and we have
constructed an additional set of molecules 1us, 1ds, 10us, and
10ds. Here, the optimized geometries of 1u, 1d, 10u, and 10dwere
described as Z matrix built upon atoms Ru, C1, C2, and C3. The
dihedral angle —(C3�C2�C1�Ru) was adjusted to the experi-
mental value of 66.4�, while the remaining internal coordinates
were taken from the corresponding optimized geometry. The
change in energy with respect to the local minimum structure
ΔEdisr and the resulting value for dRuC are presented in Table 2.

Lattice Structures and Intermolecular Energies. A series of
model crystals was constructed, for which the basic structure and
the molecular arrangement within the asymmetric unit {1, 2� 2,
3} was taken from the experimental crystal structure. In other
words, a model crystal was considered to have the same space
group and lattice parameters as HEQNEX, and the relative
orientation with respect to each other of the four independent
molecules that comprise one asymmetric unit was maintained.
The internal geometry and atomic charges for the individual
components of the asymmetric unit were taken from DFT
calculations. Four model crystals for which the chemical content
of the unit cell is identical to that of HEQNEX are IU {1u, 2 �
2u, 3u}, IUS {1us, 2 � 2u, 3u}, ID {1d, 2 � 2d, 3d}, and IDS
{1ds, 2 � 2d, 3d}. An exemplary overlay of crystal structures
HEQNEX and IU is shown in Figure 3.
Inspection of Figure 3 reveals that the core molecular struc-

tures obtained from experimental results and calculation are in
fair agreement. Slight differences are observed when considering
the coordination geometries of the acetonitrile ligands and the
orientation of the cyclopentadienyl group. Significant differences
become obvious when focusing on the orientation of the phenyl-
allyl group. This discrepancy is caused by a difference in σ of
about 10�. The interested reader will find in the Supporting
Information CIF data of model crystals for further examination.
A second set of model crystals, for which the chemical content

of the unit cell differs from that of HEQNEX, comprises the four
systems IIU {1u, 2� 2u}, IIUS {1us, 2� 2u}, IID {1d, 2� 2d},
and IIDS {1ds, 2� 2d}. Space group, lattice parameters, and the
relative orientation with respect to each other of entities within

Table 2. Change in Energy (in kJ/mol) andResulting Ru�C3
Separation (in pm) When the Significant Torsion σ in 1u, 1d,
10u, and 10d Is Adjusted to the Experimental Value of 66.4�

1us 1ds 10us 10ds

ΔEdisr 12 4 24 10

dRuC 248 241 250 242

Figure 2. Molecular structure of 1 (H atoms omitted for clarity)
indicating the two critical geometric coordinates: the distance dRuC
between atoms Ru and C3 and the significant torsion σ, which is the
dihedral angle —(C3�C2�C1�Ru).

Table 1. Relevant Atomic Separations (in pm) and Angles
(in deg) for the Real System 1, Obtained from Experimental
Results (1x) and Calculations (1u, 1d), and for the Model
System 10, Obtained from Calculations (10u, 10d)

1xa 1u 1d 10u 10d

dRuC (Ru�C1) 218 221 221 223 223

dRuC (Ru�C2) 219 227 223 228 224

dRuC (Ru�C3) 238 267 248 278 257

σ 66.4 77.6 70.5 83.0 74.8
aRef 30.

Figure 3. View along a* of an overlay of the unit cells of HEQNEX
(black) and IU (gray) (H atoms omitted for clarity).
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an asymmetric unit are the same as in HEQNEX, but the solvent
molecule acetone has been excluded from the unit cell.
Lattice energies U for the two sets of model crystals IU, IUS,

ID, and IDS and IIU, IIUS, IID, and IIDS are collected in
Table 3. The table contains entries for the contribution per unit
cell of various Coulomb and dispersive interactions.
Intramolecular Energies. While the entries in Table 3 sum-

marize essential contributions to the intermolecular lattice energy
per unit cell, the content of the intramolecular crystal energy
per unit cell comprises total bond energies (TBE) fromDFT and
DFT-D calculations, the latter one in addition containing intra-
molecular dispersion energies (IDE). The intramolecular energy
content per unit cell for the two sets of model crystals is collected
in Table 4.

’DISCUSSION

The critical bond distance dRuC between atoms Ru and C3 for
model compound 10u is, at 278 pm, in fair agreement with the
BP86 value formerly reported (274 pm).3 As previously
observed,3 the substitution of hydrogen for methyl groups of
the cyclopentadienyl ring causes an elongation of the critical
bond distance by about 10 pm (1u f 10u: 11 pm; 1df 10d: 9
pm). Although not negligible, the present calculations confirm
that the nature of the chosen model for the transition metal
complex is not the main reason for the observed mismatch in
dRuC when comparing experimental results and theory.

Inclusion of intramolecular dispersion interactions during
geometry optimization significantly reduces the Ru�C3 separa-
tion by about 20 pm (1u f 1d: 19 pm; 1u0f 10d: 21 pm), but
the best value, obtained for 1d (dRuC = 248 pm), still is off by
10 pm in comparison to the crystal structure data for 1x (dRuC =
238 pm). This discrepancy does not meet the expectations of
DFT performance for 4d-TM complexes with anticipated devia-
tions in bond lengths of about 2�3 pm.6 Only if the significant
torsion σ is adjusted to the experimental value, the Ru�C3
separation in 1ds (dRuC = 241) reaches acceptable agreement
with experimental results. The fact that an adjustment of σ leads
to a major improvement, signified by a reduction in dRuC even for
model systems where intramolecular dispersion interactions are
not accounted for (1u, 10u), establishes σ as one of the three
major internal coordinates that define the coordination environ-
ment of atom C3. At the same time, the σ adjustment leads to
only a small increase in total bond energies, ranging from 4 to
24 kJ/mol. All of this suggests that intermolecular interactions
within the crystal environment might be responsible for this
unexpectedly short Ru�C3 separation as found in HEQNEX.

This becomes evident when combined intermolecular and
intramolecular energies serve as basis for a comparison of dif-
ferent crystal arrangements. Within the context of the present
work, the crystal energy per unit cell Ex is understood as the sum
of the intramolecular total bond energies EDFT/DFT-D and the
intermolecular lattice energy U per unit cell, and ΔEx values
produce a relative stability ranking for various crystal scenarios.
Although the absolute value for dispersion contributions to the
lattice energy depends on the chosen dispersion potential (C6-
undamped vs TT-damped), the energy differences obtained in
comparison of different model crystals are not only qualitatively
in accordance but also in fair quantitative agreement. The same
holds true for Coulomb contributions to the lattice energy based
on different charge models (qA

H vs qA
V), and we base our com-

parison on lattice energies based on one set of charges and one
dispersion potential only, namely, Hirshfeld charges and a
damped Tang�Toennies potential. Values of ΔU and ΔEx for
a comparison of variousmodel crystal pairs are compiled inTable 5.

Table 3. Lattice Energy Contributions (in kJ/mol) to Cou-
lomb and Dispersive Interactions Per Unit Cell for the Two
Sets of Model Crystals IU, IUS, ID, and IDS and IIU, IIUS,
IID, and IIDS

Udispersion

(C6-undamped)

Udispersion

(TT-damped)

UCoulomb

(qA
H)

UCoulomb

(qA
V)

IU �719 �690 �2009 �1984

IUS �638 �625 �2021 �1997

ID �655 �633 �2028 �2006

IDS �695 �650 �2028 �2006

IU �601 �572 �1982 �1953

IUS �501 �490 �1994 �1967

ID �481 �466 �2005 �1978

IDS �462 �450 �2006 �1979

Table 4. Intramolecular Energy Contributions (in kJ/mol) to
Total Bond Energies and Dispersive Interactions Per Unit
Cell for the Two Sets of Model Crystals IU, IUS, ID, and IDS
and IIU, IIUS, IID, and IIDS

TBE IDE EDFT/DFT-D

IU �86946 0 �86946

IUS �86921 0 �86921

ID �86916 �675 �87591

IDS �86901 �682 �87583

IU �76323 0 �76323

IUS �76298 0 �76298

ID �76293 �643 �76936

IDS �76278 �650 �76928

Table 5. Changes Per Unit Cell in Lattice Energy ΔU and in
Crystal Energy ΔEx (in kJ/mol) When (a) the Significant
Torsion σ Is Adjusted (Entries 1 to 4), (b) Dispersion Is
Included on the Intramolecular Level (Entries 5�8), and (c)
the Solvent Molecule Is Omitted (entries 9�12)

ΔUdispersion ΔUCoulomb ΔU ΔTBE ΔIDE ΔEx

1. IU f IUS 59 �13 46 25 0 71

2. ID fIDS �11 0 �11 16 �8 �3

3. IIU f IIUS 75 �14 61 25 0 86

4. IID fIIDS 16 �1 15 16 �8 23

5. IUfID 55 �22 33 a a a

6. IUS fIDS �15 �9 �24 a a a

7. IIU fIID 99 �25 74 a a a

8. IIUS fIIDS 40 �12 28 a a a

9. IUfIIU 118 31 149 0 0 149

10. IUS fIIUS 134 30 164 0 0 164

11. ID fIID 162 28 190 0 0 190

12. IDS fIIDS 189 27 216 0 0 216
aNot reported.
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The data are organized in the sense of a chemical reaction where
negative energies indicate a preference for the product side.

Entries 1�4 in Table 5 examine the role of the significant
torsion σ. We note that only if the adjustment of σ is carried out
for a DFT-D optimized molecular system does a net stabilization
in U result that is large enough to outweigh the intramolecular
destabilization due to deviation from the optimized geometry.
Entries 5�8 assess the indirect influence of intramolecular
dispersive interactions on lattice energies. Once again, it is noted
that the inclusion of dispersive interaction on the molecular level
only leads to crystal stabilization when coupled with an adjust-
ment of σ. Entries 9�12 indicate that the cocrystallizing solvent
molecule too might have an influence on the crystal geometry of
the transition metal cation. Entries 9�12 might be interpreted as
the binding energy of two acetone molecules per unit cell. Not
only do the DFT-D optimized geometries favor the inclusion of
the solvent molecule by about 50 kJ/mol, the adjustment of σ too
leads to additional stabilization. This in turn influences the preferred
geometry of the Ru cation 1. Neither the DFT nor the DFT-D gas-
phase calculations are thus able to satisfactorily describe the crystal
geometry of 1, and the analysis of the adjusted crystal geometries
reveals that intermolecular dispersive interactions are most likely
responsible for the apparent failure of DFT methodologies.

A closer look at packing motifs of model crystals IU, IUS, and
IDS illustrates the importance of intermolecular dispersive forces
and the role of the cocrystallizing solvent molecule. An overlay of
model crystals within a decisive unit cell packing range, 0.7 < a <
1.3, 0.7 < b < 1.3, and 0.0 < c < 1.0, is presented in Figure 4.

Also reported in Figure 4 are shortest intermolecular Callyl�
Cphenyl and Cacetone�Cphenyl distances, and an adjustment of the
significant torsion not only shortens the Ru�C3 separation but
also increases the distance between two neighboring transition
metal complexes. At the same time, Cacetone�Cphenyl dis-
tances are reduced, an effect that is further enhanced when
molecular geometries are based onDFT-Dmethodology. It is the
value of separation between the solvent molecule and the transition

metal complex that ultimately tips the balance of intermolecular
dispersive interaction in favor of the shortest intramolecular
Ru�C3 distance.

Although it appears that crystallization without a solvent
might produce a Ru cation with a Ru�C3 distance that is more
in accord with results from gas-phase calculations, the empirical
nature of the present work does not support any definite conclu-
sions. Omission of the solvent molecule might induce a reorga-
nization of unit cell contents and produce an entirely different
crystal structure. What the present work however indicates is the
importance of and subtle balance between intramolecuar and
intermolecular van der Waals energies. Similar conclusions can be
drawn for the influence of Coulombic interactions.

’CONCLUSION

It is clear that the present work does not provide a definite
answer to the question as to whyDFT calculations apparently are
unable to satisfactorily reproduce the crystal geometry of the
transition-metal cation [Ru(η5-C5Me5)(η

3-CH2CHCHC6H5)-
(CH3CN)2]

2+. Crystal energies have been based on an empirical
model and were only included as perturbation to intramolecular
energies. Recent work demonstrates that for a more reliable
assessment, the periodicity of the crystal environment needs to
be taken into accout,31 and not only the molecular geometry but
also the crystal lattice have to be treated variationally.32 But, as
already anticipated in the qualitative assessment of the present
work, the interplay between intra- and intermolecular dispersion
effects within the crystal holds the key to many counterintuitive
observations. These conclusions are not restricted to the solid
state but are of equal importance for solution chemistry.33

With the ongoing development of computational methodol-
ogies that incorporate increasingly smaller contributions to the
total energy, it appears that the boundaries of suitable models for
a chemical system of interest might need to be extended beyond
the intramolecular regime. The simple and straightforward
assessment presented here provides a first educated estimate
whether, for a given problem, conventional DFT methodology
might or might not be sufficient. It is advisable in cases of an
apparent DFT failure not to exclude the possibility of a simple
failure of DFT due to insufficiencies in the model system before
expanding the computational methodology to more costly
methods, as previously suggested.3

’ASSOCIATED CONTENT

bS Supporting Information. Optimized geometries, final
energies, convergence criteria, atomic charges, CIF data for
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’AUTHOR INFORMATION

Corresponding Author
*E-mail: jacobsen@kemkom.com.

’ACKNOWLEDGMENT

KemKom expresses its gratitude to Professor L. Cavallo for
granting access to the MoLNaC computing facilities at Diparti-
mento di Chimica, Universit�a di Salerno, Italy. The author
is indebted to Professor J. T. Mague, Department of Chemistry,

Figure 4. Overlay of model crystals IU (light gray), IUS (dark gray),
and IDS (black) in the unit cell packing ranges 0.7 < a < 1.3, 0.7 < b < 1.3,
and 0.0 < c < 1.0 (H atoms omitted for clarity) and shortest inter-
molecular Callyl�Cphenyl and Cacetone�Cphenyl distances (in pm) for IU
(regular), IUS (italics), and IDS (bold).



3025 dx.doi.org/10.1021/ct200476u |J. Chem. Theory Comput. 2011, 7, 3019–3025

Journal of Chemical Theory and Computation ARTICLE

Tulane University, New Orleans, for providing an entry into the
Cambridge Structural Database.

’REFERENCES

(1) Perdew, J. P.; Ruzsinszky, A.; Constantin, L. A.; Sun, J.; Csonka,
G. I. J. Chem. Theory Comput. 2009, 5, 902–908.
(2) Sousa, S. F.; Fernandes, P. A.; Ramos,M. J. J. Phys. Chem. A 2007,

111, 10439–10452.
(3) Calhorda, M. J.; Pregosin, P. S.; Veiros, L. F. J. Chem. Theory

Comput. 2007, 3, 665–670.
(4) Ziegler, T. Can. J. Chem. 1995, 73, 743–761.
(5) Cramer, C. J.; Truhlar, D. G. Phys. Chem. Chem. Phys. 2009,

11, 10757–10816.
(6) Waller, M. P.; Braun, H.; Hojdis, N.; B€uhl, M. J. Chem. Theory

Comput. 2007, 3, 2234–2242.
(7) Wu, Q.; Yang, W. T. J. Chem. Phys. 2002, 116, 515–524.
(8) Grimme, S. J. Comput. Chem. 2006, 27, 1787–1799.
(9) Grimme, S. WIREs—CMS 2011, 1, 211–228.
(10) Jacobsen, H.; Brackemeyer, T.; Berke, H.; Erker, G.; Fr€ohlich,

R. Eur. J. Inorg. Chem. 2000, 1423–1428.
(11) Jacobsen, H.; Fink, M. J. Eur. J. Inorg. Chem. 2007, 5294–5299.
(12) Gale, J. D. Z. Kristallogr. 2005, 220, 552–554.
(13) te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra,

C.; vanGisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J. Comput. Chem. 2001,
22, 931�967. http://www.scm.com (accessed: 11/05/2011).
(14) Slater, J. C. Phys. Rev. 1951, 81, 385–390.
(15) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58,

1200–1211.
(16) Becke, A. D. Phys. Rev. A 1988, 38, 3098–3100.
(17) Perdew, J. P. Phys. Rev. B 1986, 33, 8822–8824.
(18) Van Lenthe, E.; Baerends, E. J.Comput. Chem. 2003, 24, 1142–1156.
(19) Baerends, E. J.; Ellis, D. E.; Ros, P. Chem. Phys. 1973, 2, 41–51.
(20) Hirshfeld, F. L. Theor. Chim. Acta 1977, 44, 129–138.
(21) FonsecaGuerra, C.;Handgraaf, J.-W.; Baerends, E. J.; Bickelhaupt,

F. M. J. Comput. Chem. 2004, 25, 189–210.
(22) Gale, J. D.; Rohl, A. L. Mol. Simulat. 2003, 29, 291–341.
(23) Fender, B. E. F.; Halsey, G. D. J. Chem. Phys. 1962, 36, 1881–1888.
(24) Tang, K. T.; Toennies, J. P. J. Chem. Phys. 1984, 80, 3726–3741.
(25) Bondi, A. J. Phys. Chem. 1964, 68, 441–451.
(26) Batsanov, S. S. Inorg. Mater. 2001, 37, 871–885.
(27) Cordero,B.;G�omez,V.; Platero-Prats,A. E.;Rev�es,M.;Echeverría, J.;

Cremades, E.; Barrag�an, F.; Alvarez, S. Dalton Trans. 2008, 2832–2838.
(28) Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.;

McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de
Streek, J.; Wood, P. A. J. Appl. Crystallogr. 2008, 41, 466–470.
(29) Jmol: an open-source Java viewer for chemical structures in 3D.

http://www.jmol.org/ (accessed: 11/05/2011).
(30) Fern�andez, I.; Hermatschweiler, R.; Breher, F.; Pregosin, P. S.;

Veiros, L. F.; Calhorda,M. J.Angew. Chem., Int. Ed. 2006, 45, 6386–6391.
(31) Moellmann, J.; Grimme, S. Phys. Chem. Chem. Phys. 2010, 12,

8500–8504.
(32) Hongo, K.; Watson, M. A.; S�anches-Carrera, R. S.; Iitaka, T.;

Aspuru-Guzik, A. J. Phys. Chem. Lett. 2010, 1, 1789–1794.
(33) Jacobsen, H. Phys. Chem. Chem. Phys. 2009, 11, 7231–7240.


	2667–2674.pdf
	2675–2680.pdf
	2681–2684.pdf
	2685–2688.pdf
	2689–2693.pdf
	2694–2698.pdf
	2699–2709.pdf
	2710–2720.pdf
	2721–2727.pdf
	2728–2739.pdf
	2740–2752.pdf
	2753–2760.pdf
	2761–2765.pdf
	2766–2779.pdf
	2780–2785.pdf
	2786–2794.pdf
	2795–2803.pdf
	2804–2817.pdf
	2818–2830.pdf
	2831–2841.pdf
	2842–2851.pdf
	2852–2863.pdf
	2864–2875.pdf
	2876–2885.pdf
	2886–2902.pdf
	2903–2909.pdf
	2910–2918.pdf
	2919–2928.pdf
	2929–2936.pdf
	2937–2946.pdf
	2947–2962.pdf
	2963–2980.pdf
	2981–2988.pdf
	2989–3000.pdf
	3001–3011.pdf
	3012–3018.pdf
	3019–3025.pdf

